Machine learning identification of symmetrized base states of Rydberg atoms

Daryl Ryan Chong, Minhyuk Kim, Jaewook Ahn, Heejeong Jeong

PDF(13066 KB)
PDF(13066 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (1) : 12504. DOI: 10.1007/s11467-021-1099-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Machine learning identification of symmetrized base states of Rydberg atoms

Author information +
History +

Abstract

Studying the complex quantum dynamics of interacting many-body systems is one of the most challenging areas in modern physics. Here, we use machine learning (ML) models to identify the symmetrized base states of interacting Rydberg atoms of various atom numbers (up to six) and geometric configurations. To obtain the data set for training the ML classifiers, we generate Rydberg excitation probability profiles that simulate experimental data by utilizing Lindblad equations that incorporate laser intensities and phase noise. Then, we classify the data sets using support vector machines (SVMs) and random forest classifiers (RFCs). With these ML models, we achieve high accuracy of up to 100% for data sets containing only a few hundred samples, especially for the closed atom configurations such as the pentagonal (five atoms) and hexagonal (six atoms) systems. The results demonstrate that computationally cost-effective ML models can be used in the identification of Rydberg atom configurations.

Graphical abstract

Keywords

Rydberg atoms / machine learning

Cite this article

Download citation ▾
Daryl Ryan Chong, Minhyuk Kim, Jaewook Ahn, Heejeong Jeong. Machine learning identification of symmetrized base states of Rydberg atoms. Front. Phys., 2022, 17(1): 12504 https://doi.org/10.1007/s11467-021-1099-0

References

[1]
D. Barredo, V. Lienhard, S. de Léséleuc, T. Lahaye, and A. Browaeys, Synthetic three-dimensional atomic structures assembled atom by atom, Nature 561(7721), 79 (2018)
CrossRef ADS Google scholar
[2]
H. Sun, Y. Song, A. Byun, H. Jeong, and J. Ahn, Imaging three-dimensional single-atom arrays all at once, Opt. Express 29(3), 4082 (2021)
CrossRef ADS Google scholar
[3]
G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto, and L. Zdeborová, Machine learning and the physical sciences, Rev. Mod. Phys.91(4), 045002 (2019)
CrossRef ADS Google scholar
[4]
J. Lee, A. Seko, K. Shitara, K. Nakayama, and I. Tanaka, Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques, Phys. Rev. B 93(11), 115104 (2016)
CrossRef ADS Google scholar
[5]
D. L. Deng, X. Li, and S. D. Das Sarma, Machine learning topological states, Phys. Rev. B 96(19), 195145 (2017)
CrossRef ADS Google scholar
[6]
K. Min, B. Choi, K. Park, and E. Cho, Machine learning assisted optimization of electrochemical properties for Nirich cathode materials, Sci. Rep. 8(1), 15778 (2018)
CrossRef ADS Google scholar
[7]
G. Torlai, G. Mazzola, J. Carrasquilla, M. Troyer, R. Melko, and G. Carleo, Neural-network quantum state tomography, Nat. Phys. 14(5), 447 (2018)
CrossRef ADS Google scholar
[8]
T. Weiss and O. Romero-Isart, Quantum motional state tomography with nonquadratic potentials and neural networks, Phys. Rev. Res. 1(3), 033157 (2019)
CrossRef ADS Google scholar
[9]
Y. Che, C. Gneiting, T. Liu, and F. Nori, Topological quantum phase transitions retrieved through unsupervised machine learning, Phys. Rev. B 102(13), 134213 (2020)
CrossRef ADS Google scholar
[10]
A. J. Barker, H. Style, K. Luksch, S. Sunami, D. Garrick, F. Hill, C. J. Foot, and E. Bentine, Applying machine learning optimization methods to the production of a quantum gas, Mach. Learn.: Sci. Technol. 1(1), 015007 (2020)
CrossRef ADS Google scholar
[11]
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, and J. Vanderplas, Scikit-learn: Machine learning in python, J. Mach. Learn. Res.12, 2825 (2011)
[12]
M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, Dipole blockade and quantum information processing in mesoscopic atomic ensembles, Phys. Rev. Lett. 87(3), 037901 (2001)
CrossRef ADS Google scholar
[13]
M. Kim, Y. Song, J. Kim, and J. Ahn, Quantum Ising Hamiltonian programming in trio, quartet, and sextet qubit systems, PRX Quantum 1(2), 020323 (2020)
CrossRef ADS Google scholar
[14]
E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, Observation of Rydberg blockade between two atoms, Nat. Phys. 5(2), 110 (2009)
CrossRef ADS Google scholar
[15]
A. Gaëtan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys, and P. Grangier, Observation of collective excitation of two individual atoms in the Rydberg blockade regime, Nat. Phys. 5(2), 115 (2009)
CrossRef ADS Google scholar
[16]
A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras & Tensor Flow, O’Reilly Media, 2019
[17]
D. Cox and D. Hinkley, Theoretical Statistics, Chapman & Hall, 1974
CrossRef ADS Google scholar
[18]
R. Hoekstra, R. D. Morey, J. N. Rouder, and E. J. Wagenmakers, Robust misinterpretation of confidence intervals, Psychon. Bull. Rev.21(5), 1157 (2014)
CrossRef ADS Google scholar
[19]
L. D. Brown, T. T. Cai, and A. DasGupta, Interval estimation for a binomial proportion, Stat. Sci. 16(2), 101 (2001)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(13066 KB)

Accesses

Citations

Detail

Sections
Recommended

/