Machine learning identification of symmetrized base states of Rydberg atoms
Daryl Ryan Chong, Minhyuk Kim, Jaewook Ahn, Heejeong Jeong
Machine learning identification of symmetrized base states of Rydberg atoms
Studying the complex quantum dynamics of interacting many-body systems is one of the most challenging areas in modern physics. Here, we use machine learning (ML) models to identify the symmetrized base states of interacting Rydberg atoms of various atom numbers (up to six) and geometric configurations. To obtain the data set for training the ML classifiers, we generate Rydberg excitation probability profiles that simulate experimental data by utilizing Lindblad equations that incorporate laser intensities and phase noise. Then, we classify the data sets using support vector machines (SVMs) and random forest classifiers (RFCs). With these ML models, we achieve high accuracy of up to 100% for data sets containing only a few hundred samples, especially for the closed atom configurations such as the pentagonal (five atoms) and hexagonal (six atoms) systems. The results demonstrate that computationally cost-effective ML models can be used in the identification of Rydberg atom configurations.
Rydberg atoms / machine learning
[1] |
D. Barredo, V. Lienhard, S. de Léséleuc, T. Lahaye, and A. Browaeys, Synthetic three-dimensional atomic structures assembled atom by atom, Nature 561(7721), 79 (2018)
CrossRef
ADS
Google scholar
|
[2] |
H. Sun, Y. Song, A. Byun, H. Jeong, and J. Ahn, Imaging three-dimensional single-atom arrays all at once, Opt. Express 29(3), 4082 (2021)
CrossRef
ADS
Google scholar
|
[3] |
G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto, and L. Zdeborová, Machine learning and the physical sciences, Rev. Mod. Phys.91(4), 045002 (2019)
CrossRef
ADS
Google scholar
|
[4] |
J. Lee, A. Seko, K. Shitara, K. Nakayama, and I. Tanaka, Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques, Phys. Rev. B 93(11), 115104 (2016)
CrossRef
ADS
Google scholar
|
[5] |
D. L. Deng, X. Li, and S. D. Das Sarma, Machine learning topological states, Phys. Rev. B 96(19), 195145 (2017)
CrossRef
ADS
Google scholar
|
[6] |
K. Min, B. Choi, K. Park, and E. Cho, Machine learning assisted optimization of electrochemical properties for Nirich cathode materials, Sci. Rep. 8(1), 15778 (2018)
CrossRef
ADS
Google scholar
|
[7] |
G. Torlai, G. Mazzola, J. Carrasquilla, M. Troyer, R. Melko, and G. Carleo, Neural-network quantum state tomography, Nat. Phys. 14(5), 447 (2018)
CrossRef
ADS
Google scholar
|
[8] |
T. Weiss and O. Romero-Isart, Quantum motional state tomography with nonquadratic potentials and neural networks, Phys. Rev. Res. 1(3), 033157 (2019)
CrossRef
ADS
Google scholar
|
[9] |
Y. Che, C. Gneiting, T. Liu, and F. Nori, Topological quantum phase transitions retrieved through unsupervised machine learning, Phys. Rev. B 102(13), 134213 (2020)
CrossRef
ADS
Google scholar
|
[10] |
A. J. Barker, H. Style, K. Luksch, S. Sunami, D. Garrick, F. Hill, C. J. Foot, and E. Bentine, Applying machine learning optimization methods to the production of a quantum gas, Mach. Learn.: Sci. Technol. 1(1), 015007 (2020)
CrossRef
ADS
Google scholar
|
[11] |
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, and J. Vanderplas, Scikit-learn: Machine learning in python, J. Mach. Learn. Res.12, 2825 (2011)
|
[12] |
M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, Dipole blockade and quantum information processing in mesoscopic atomic ensembles, Phys. Rev. Lett. 87(3), 037901 (2001)
CrossRef
ADS
Google scholar
|
[13] |
M. Kim, Y. Song, J. Kim, and J. Ahn, Quantum Ising Hamiltonian programming in trio, quartet, and sextet qubit systems, PRX Quantum 1(2), 020323 (2020)
CrossRef
ADS
Google scholar
|
[14] |
E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, Observation of Rydberg blockade between two atoms, Nat. Phys. 5(2), 110 (2009)
CrossRef
ADS
Google scholar
|
[15] |
A. Gaëtan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys, and P. Grangier, Observation of collective excitation of two individual atoms in the Rydberg blockade regime, Nat. Phys. 5(2), 115 (2009)
CrossRef
ADS
Google scholar
|
[16] |
A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras & Tensor Flow, O’Reilly Media, 2019
|
[17] |
D. Cox and D. Hinkley, Theoretical Statistics, Chapman & Hall, 1974
CrossRef
ADS
Google scholar
|
[18] |
R. Hoekstra, R. D. Morey, J. N. Rouder, and E. J. Wagenmakers, Robust misinterpretation of confidence intervals, Psychon. Bull. Rev.21(5), 1157 (2014)
CrossRef
ADS
Google scholar
|
[19] |
L. D. Brown, T. T. Cai, and A. DasGupta, Interval estimation for a binomial proportion, Stat. Sci. 16(2), 101 (2001)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |