Suppressing laser phase noise in an optomechanical system
Yexiong Zeng, Biao Xiong, Chong Li
Suppressing laser phase noise in an optomechanical system
We propose a scheme to suppress the laser phase noise without increasing the optomechanical singlephoton coupling strength. In the scheme, the parametric amplification terms, created by Kerr and Duffing nonlinearities, can restrain laser phase noise and strengthen the effective optomechanical coupling, respectively. Interestingly, decreasing laser phase noise leads to increasing thermal noise, which is inhibited by bringing in a broadband-squeezed vacuum environment. To reflect the superiority of the scheme, we simulate quantum memory and stationary optomechanical entanglement as examples, and the corresponding numerical results demonstrate that the laser phase noise is extremely suppressed. Our method can pave the way for studying other quantum phenomena.
optomechanical system / quantum entanglement / quantum memory
[1] |
M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Rev. Mod. Phys. 86(4), 1391 (2014)
CrossRef
ADS
Google scholar
|
[2] |
T. J. Kippenberg and K. J. Vahala, Cavity optomechanics: Back-action at the mesoscale, Science321(5893), 1172 (2008)
CrossRef
ADS
Google scholar
|
[3] |
A. Naik, O. Buu, M. D. LaHaye, A. D. Armour, A. A. Clerk, M. P. Blencowe, and K. C. Schwab, Cooling a nanomechanical resonator with quantum back-action, Nature443(7108), 193 (2006)
CrossRef
ADS
Google scholar
|
[4] |
J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, Strong and tunable nonlinear optomechanical coupling in a low-loss system, Nat. Phys. 6(9), 707 (2010)
CrossRef
ADS
Google scholar
|
[5] |
Y. S. Park and H. Wang, Resolved-sideband and cryogenic cooling of an optomechanical resonator, Nat. Phys. 5(7), 489 (2009)
CrossRef
ADS
Google scholar
|
[6] |
P. Rodgers, Mirror finish, Nat. Mater. 9(S1), S20 (2010)
CrossRef
ADS
Google scholar
|
[7] |
M. R. Vanner, Selective linear or quadratic optomechanical coupling via measurement, Phys. Rev. X1(2), 021011 (2011)
CrossRef
ADS
Google scholar
|
[8] |
V. Macrì, A. Ridolfo, O. Di Stefano, A. F. Kockum, F. Nori, and S. Savasta, Nonperturbative dynamical Casimir effect in optomechanical systems: Vacuum Casimir-Rabi splittings, Phys. Rev. X8(1), 011031 (2018)
CrossRef
ADS
Google scholar
|
[9] |
T. K. Paraïso, M. Kalaee, L. Zang, H. Pfeifer, F. Marquardt, and O. Painter, Position-squared coupling in a tunable photonic crystal optomechanical cavity, Phys. Rev. X5(4), 041024 (2015)
CrossRef
ADS
Google scholar
|
[10] |
M. Cirio, K. Debnath, N. Lambert, and F. Nori, Amplified optomechanical transduction of virtual radiation pressure, Phys. Rev. Lett.119(5), 053601 (2017)
CrossRef
ADS
Google scholar
|
[11] |
J. H. Liu, Y. B. Zhang, Y. F. Yu, and Z. M. Zhang, Photonphonon squeezing and entanglement in a cavity optomechanical system with a flying atom, Front. Phys.14(1), 12601 (2019)
CrossRef
ADS
Google scholar
|
[12] |
Z. R. Zhong, X. Wang, and W. Qin, Towards quantum entanglement of micromirrors via a two-level atom and radiation pressure, Front. Phys.13(5), 130319 (2018)
CrossRef
ADS
Google scholar
|
[13] |
K. C. Schwab and M. L. Roukes, Putting mechanics into quantum mechanics, Phys. Today58(7), 36 (2005)
CrossRef
ADS
Google scholar
|
[14] |
C. Reinhardt, T. Müller, A. Bourassa, and J. C. Sankey, Ultralow-noise SiN trampoline resonators for sensing and optomechanics, Phys. Rev. X6(2), 021001 (2016)
CrossRef
ADS
Google scholar
|
[15] |
S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, Cavity optomechanical magnetometer, Phys. Rev. Lett.108(12), 120801 (2012)
CrossRef
ADS
Google scholar
|
[16] |
Z. Zhang, J. Pei, Y.-P. Wang, and X. Wang, Measuring orbital angular momentum of vortex beams in optomechanics, Front. Phys.16(3), 32503 (2021)
CrossRef
ADS
Google scholar
|
[17] |
J. Q. Liao and L. Tian, Macroscopic quantum superposition in cavity optomechanics, Phys. Rev. Lett.116(16), 163602 (2016)
CrossRef
ADS
Google scholar
|
[18] |
J. Q. Liao, Q. Q. Wu, and F. Nori, Entangling two macroscopic mechanical mirrors in a two-cavity optomechanical system, Phys. Rev. A89(1), 014302 (2014)
CrossRef
ADS
Google scholar
|
[19] |
E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, Quantum squeezing of motion in a mechanical resonator, Science349(6251), 952 (2015)
CrossRef
ADS
Google scholar
|
[20] |
B. Xiong, X. Li, S. L. Chao, Z. Yang, W. Z. Zhang, W. Zhang, and L. Zhou, Strong mechanical squeezing in an optomechanical system based on Lyapunov control, Photon. Res.8(2), 151 (2020)
CrossRef
ADS
Google scholar
|
[21] |
X. B. Yan, H. L. Lu, F. Gao, and L. Yang, Perfect optical nonreciprocity in a double-cavity optomechanical system, Front. Phys.14(5), 52601 (2019)
CrossRef
ADS
Google scholar
|
[22] |
A. A. Clerk, F. Marquardt, and J. G. E. Harris, Quantum measurement of phonon shot noise, Phys. Rev. Lett.104(21), 213603 (2010)
CrossRef
ADS
Google scholar
|
[23] |
P. Rabl, S. J. Kolkowitz, F. H. L. Koppens, J. G. E. Harris, P. Zoller, and M. D. Lukin, A quantum spin transducer based on nanoelectromechanical resonator arrays, Nat. Phys.6(8), 602 (2010)
CrossRef
ADS
Google scholar
|
[24] |
X. W. Xu and Y. Li, Optical nonreciprocity and optomechanical circulator in three-mode optomechanical systems, Phys. Rev. A 91(5), 053854 (2015)
CrossRef
ADS
Google scholar
|
[25] |
L. N. Song, Q. Zheng, X. W. Xu, C. Jiang, and Y. Li, Optimal unidirectional amplification induced by optical gain in optomechanical systems, Phys. Rev. A 100(4), 043835 (2019)
CrossRef
ADS
Google scholar
|
[26] |
W. Li, P. Piergentili, J. Li, S. Zippilli, R. Natali, N. Malossi, G. Di Giuseppe, and D. Vitali, Noise robustness of synchronization of two nanomechanical resonators coupled to the same cavity field, Phys. Rev. A 101(1), 013802 (2020)
CrossRef
ADS
Google scholar
|
[27] |
H. Jing, Ş. K. Özdemir, Z. Geng, J. Zhang, X. Y. Lü, B. Peng, L. Yang, and F. Nori, Optomechanically-induced transparency in parity-time-symmetric microresonators, Sci. Rep.5(1), 9663 (2015)
CrossRef
ADS
Google scholar
|
[28] |
H. Jing, Ş. K. Özdemir, H. Lü, and F. Nori, High-order exceptional points in optomechanics, Sci. Rep.7(1), 3386 (2017)
CrossRef
ADS
Google scholar
|
[29] |
Y. X. Zeng, J. Shen, M. S. Ding, and C. Li, Macroscopic Schrödinger cat state swapping in optomechanical system, Opt. Express 28(7), 9587 (2020)
CrossRef
ADS
Google scholar
|
[30] |
Y. X. Zeng, T. Gebremariam, J. Shen, B. Xiong, and C. Li, Application of machine learning for predicting strong phonon blockade, Appl. Phys. Lett.118(16), 164003 (2021)
CrossRef
ADS
Google scholar
|
[31] |
X. Y. Lü, W. M. Zhang, S. Ashhab, Y. Wu, and F. Nori, Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems, Sci. Rep.3(1), 2943 (2013)
CrossRef
ADS
Google scholar
|
[32] |
J. R. Johansson, G. Johansson, and F. Nori, Optomechanical-like coupling between superconducting resonators, Phys. Rev. A 90(5), 053833 (2014)
CrossRef
ADS
Google scholar
|
[33] |
M. M. Zhao, Z. Qian, B. P. Hou, Y. Liu, and Y. H. Zhao, Optomechanical properties of a degenerate nonperiodic cavity chain, Front. Phys.14(2), 22601 (2019)
CrossRef
ADS
Google scholar
|
[34] |
M. Asjad, G. S. Agarwal, M. S. Kim, P. Tombesi, G. D. Giuseppe, and D. Vitali, Robust stationary mechanical squeezing in a kicked quadratic optomechanical system, Phys. Rev. A89(2), 023849 (2014)
CrossRef
ADS
Google scholar
|
[35] |
E. J. Kim, J. R. Johansson, and F. Nori, Circuit analog of quadratic optomechanics, Phys. Rev. A91(3), 033835 (2015)
CrossRef
ADS
Google scholar
|
[36] |
W. Z. Zhang, L. B. Chen, J. Cheng, and Y. F. Jiang, Quantum-correlation-enhanced weak-field detection in an optomechanical system, Phys. Rev. A 99(6), 063811 (2019)
CrossRef
ADS
Google scholar
|
[37] |
B. Xiong, X. Li, S. L. Chao, Z. Yang, R. Peng, and L. Zhou, Strong squeezing of duffing oscillator in a highly dissipative optomechanical cavity system, Ann. Phys. (Berlin)532(4), 1900596 (2020)
CrossRef
ADS
Google scholar
|
[38] |
B. Xiong, X. Li, S. L. Chao, and L. Zhou, Optomechanical quadrature squeezing in the non-Markovian regime, Opt. Lett.43(24), 6053 (2018)
CrossRef
ADS
Google scholar
|
[39] |
D. G. Lai, X. Wang, W. Qin, B. P. Hou, F. Nori, and J. Q. Liao, Tunable optomechanically induced transparency by controlling the dark-mode effect, Phys. Rev. A 102(2), 023707 (2020)
CrossRef
ADS
Google scholar
|
[40] |
H. Wang, X. Gu, Y. X. Liu, A. Miranowicz, and F. Nori, Tunable photon blockade in a hybrid system consisting of an optomechanical device coupled to a two-level system, Phys. Rev. A92(3), 033806 (2015)
CrossRef
ADS
Google scholar
|
[41] |
J.Q. Liao, K. Jacobs, F. Nori, and R. W. Simmonds, Modulated electromechanics: Large enhancements of nonlinearities, New J. Phys.16, 072001 (2014)
CrossRef
ADS
Google scholar
|
[42] |
J. Q. Liao, J. F. Huang, L. Tian, L. M. Kuang, and C. P. Sun, Generalized ultrastrong optomechanical-like coupling, Phys. Rev. A101(6), 063802 (2020)
CrossRef
ADS
Google scholar
|
[43] |
Y. C. Liu, Y. F. Xiao, X. Luan, and C. W. Wong, Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics, Phys. Rev. Lett.110(15), 153606 (2013)
CrossRef
ADS
Google scholar
|
[44] |
Y. C. Liu, Y. F. Xiao, X. Luan, Q. Gong, and C. W. Wong, Coupled cavities for motional ground-state cooling and strong optomechanical coupling, Phys. Rev. A 91(3), 033818 (2015)
CrossRef
ADS
Google scholar
|
[45] |
M. Wang, X. Y. Lü, Y. D. Wang, J. Q. You, and Y. Wu, Macroscopic quantum entanglement in modulated optomechanics, Phys. Rev. A 94(5), 053807 (2016)
CrossRef
ADS
Google scholar
|
[46] |
X. Y. Zhang, Y. Q. Guo, P. Pei, and X. X. Yi, Optomechanically induced absorption in parity–time-symmetric optomechanical systems, Phys. Rev. A95(6), 063825 (2017)
CrossRef
ADS
Google scholar
|
[47] |
X. Y. Zhang, Y. H. Zhou, Y. Q. Guo, and X. X. Yi, Optomechanically induced transparency in optomechanics with both linear and quadratic coupling, Phys. Rev. A 98(5), 053802 (2018)
CrossRef
ADS
Google scholar
|
[48] |
A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, Resolved-sideband cooling of a micromechanical oscillator, Nat. Phys.
CrossRef
ADS
Google scholar
|
[49] |
G. A. Phelps and P. Meystre, Laser phase noise effects on the dynamics of optomechanical resonators, Phys. Rev. A83(6), 063838 (2011)
CrossRef
ADS
Google scholar
|
[50] |
A. Dalafi and M. H. Naderi, Dispersive interaction of a Bose-Einstein condensate with a movable mirror of an optomechanical cavity in the presence of laser phase noise, Phys. Rev. A 94, 063636 (2016)
CrossRef
ADS
Google scholar
|
[51] |
L. Diósi, Laser linewidth hazard in optomechanical cooling, Phys. Rev. A 78(2), 021801 (2008)
CrossRef
ADS
Google scholar
|
[52] |
Z. Q. Yin, Phase noise and laser-cooling limits of optomechanical oscillators, Phys. Rev. A80(3), 033821 (2009)
CrossRef
ADS
Google scholar
|
[53] |
F. Farman and A. R. Bahrampour, Effects of optical parametric amplifier pump phase noise on the cooling of optomechanical resonators, J. Opt. Soc. Am. B30(7), 1898 (2013)
CrossRef
ADS
Google scholar
|
[54] |
P. Rabl, C. Genes, K. Hammerer, and M. Aspelmeyer, Phase-noise induced limitations on cooling and coherent evolution in optomechanical systems, Phys. Rev. A 80(6), 063819 (2009)
CrossRef
ADS
Google scholar
|
[55] |
N. Meyer, A. R. Sommer, P. Mestres, J. Gieseler, V. Jain, L. Novotny, and R. Quidant, Resolved-sideband cooling of a levitated nanoparticle in the presence of laser phase noise, Phys. Rev. Lett.123(15), 153601 (2019)
CrossRef
ADS
Google scholar
|
[56] |
B. He, L. Yang, Q. Lin, and M. Xiao, Radiation pressure cooling as a quantum dynamical process, Phys. Rev. Lett.118(23), 233604 (2017)
CrossRef
ADS
Google scholar
|
[57] |
W. Wieczorek, S. G. Hofer, J. Hoelscher-Obermaier, R. Riedinger, K. Hammerer, and M. Aspelmeyer, Optimal state estimation for cavity optomechanical systems, Phys.Rev. Lett.114(22), 223601 (2015)
CrossRef
ADS
Google scholar
|
[58] |
A. Mehmood, S. Qamar, and S. Qamar, Effects of laser phase fluctuation on force sensing for a free particle in a dissipative optomechanical system, Phys. Rev. A 98(5), 053841 (2018)
CrossRef
ADS
Google scholar
|
[59] |
A. Mehmood, S. Qamar, and S. Qamar, Force sensing in a dissipative optomechanical system in the presence of parametric amplifier’s pump phase noise, Phys. Scr.94(9), 095502 (2019)
CrossRef
ADS
Google scholar
|
[60] |
W. J. Gu, Y. Y. Wang, Z. Yi, W. X. Yang, and L. H. Sun, Force measurement in squeezed dissipative optomechanics in the presence of laser phase noise, Opt. Express 28(8), 12460 (2020)
CrossRef
ADS
Google scholar
|
[61] |
A. Pontin, C. Biancofiore, E. Serra, A. Borrielli, F. S. Cataliotti, F. Marino, G. A. Prodi, M. Bonaldi, F. Marin, and D. Vitali, Frequency-noise cancellation in optomechanical systems for ponderomotive squeezing, Phys. Rev. A 89(3), 033810 (2014)
CrossRef
ADS
Google scholar
|
[62] |
F. Farman and A. R. Bahrampour, Effect of laser phase noise on the fidelity of optomechanical quantum memory, Phys. Rev. A91(3), 033828 (2015)
CrossRef
ADS
Google scholar
|
[63] |
M. Abdi, S. Barzanjeh, P. Tombesi, and D. Vitali, Effect of phase noise on the generation of stationary entanglement in cavity optomechanics, Phys. Rev. A 84(3), 032325 (2011)
CrossRef
ADS
Google scholar
|
[64] |
R. Ghobadi, A. R. Bahrampour, and C. Simon, Optomechanical entanglement in the presence of laser phase noise, Phys. Rev. A 84(6), 063827 (2011)
CrossRef
ADS
Google scholar
|
[65] |
R. Ahmed and S. Qamar, Effects of laser phase noise on optomechanical entanglement in the presence of a nonlinear Kerr downconverter, Phys. Scr.94(8), 085102 (2019)
CrossRef
ADS
Google scholar
|
[66] |
X. B. Yan, Enhanced output entanglement with reservoir engineering, Phys. Rev. A96(5), 053831 (2017)
CrossRef
ADS
Google scholar
|
[67] |
X. B. Yan, Z. J. Deng, X. D. Tian, and J. H. Wu, Entanglement optimization of filtered output fields in cavity optomechanics, Opt. Express 27(17), 24393 (2019)
CrossRef
ADS
Google scholar
|
[68] |
D. Zhang and Q. Zheng, Effect of phase noise on the stationary entanglement of an optomechanical system with Kerr medium, Chin. Phys. Lett.30(2), 024213 (2013)
CrossRef
ADS
Google scholar
|
[69] |
D. Zhang, X. P. Zhang, and Q. Zheng, Enhancing stationary optomechanical entanglement with the Kerr medium, Chin. Phys. B 22(6), 064206 (2013)
CrossRef
ADS
Google scholar
|
[70] |
T. Kumar, A. B. Bhattacherjee, and ManMohan, Dynamics of a movable micromirror in a nonlinear optical cavity, Phys. Rev. A 81(1), 013835 (2010)
CrossRef
ADS
Google scholar
|
[71] |
S. Huang and A. Chen, Fano resonance and amplification in a quadratically coupled optomechanical system with a Kerr medium, Phys. Rev. A 101(2), 023841 (2020)
CrossRef
ADS
Google scholar
|
[72] |
J. S. Zhang, M. C. Li, and A. X. Chen, Enhancing quadratic optomechanical coupling via a nonlinear medium and lasers, Phys. Rev. A 99(1), 013843 (2019)
CrossRef
ADS
Google scholar
|
[73] |
X. Y. Lü, J. Q. Liao, L. Tian, and F. Nori, Steady-state mechanical squeezing in an optomechanical system via Duffing nonlinearity, Phys. Rev. A91(1), 013834 (2015)
CrossRef
ADS
Google scholar
|
[74] |
V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, Photonic chip-based optical frequency comb using soliton Cherenkov radiation, Science351(6271), 357 (2016)
CrossRef
ADS
Google scholar
|
[75] |
Z. R. Gong, H. Ian, Y. X. Liu, C. P. Sun, and F. Nori, Effective Hamiltonian approach to the Kerr nonlinearity in an optomechanical system, Phys. Rev. A 80(6), 065801 (2009)
CrossRef
ADS
Google scholar
|
[76] |
R. W. Boyd, Nonlinear Optics, 3rd Ed., Academic Press, 2008
|
[77] |
K. J. Vahala, Optical microcavities, Nature424(6950), 839 (2003)
CrossRef
ADS
Google scholar
|
[78] |
M. Asjad, S. Zippilli, and D. Vitali, Suppression of Stokes scattering and improved optomechanical cooling with squeezed light, Phys. Rev. A 94(5), 051801 (2016)
CrossRef
ADS
Google scholar
|
[79] |
J. B. Clark, F. Lecocq, R. W. Simmonds, J. Aumentado, and J. D. Teufel, Sideband cooling beyond the quantum backaction limit with squeezed light, Nature541(7636), 191 (2017)
CrossRef
ADS
Google scholar
|
[80] |
D. Felinto, C. W. Chou, J. Laurat, E. W. Schomburg, H. de Riedmatten, and H. J. Kimble, Conditional control of the quantum states of remote atomic memories for quantum networking, Nat. Phys.2(12), 844 (2006)
CrossRef
ADS
Google scholar
|
[81] |
V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, Storing optical information as a mechanical excitation in a silica optomechanical resonator, Phys. Rev. Lett.107(13), 133601 (2011)
CrossRef
ADS
Google scholar
|
[82] |
Y. D. Wang and A. A. Clerk, Using dark modes for highfidelity optomechanical quantum state transfer, New J.Phys.14(10), 105010 (2012)
CrossRef
ADS
Google scholar
|
[83] |
E. X. DeJesus and C. Kaufman, Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations, Phys. Rev. A 35(12), 5288 (1987)
CrossRef
ADS
Google scholar
|
[84] |
S. Mahajan and A. Bhattacherjee, Controllable nonlinear effects in a hybrid optomechanical semiconductor microcavity containing a quantum dot and Kerr medium, J.Mod. Opt. 66(6), 652 (2019)
CrossRef
ADS
Google scholar
|
[85] |
V. Bhatt, P. Jha, and A. Bhattacherjee, Effect of second-order nonlinearity on quantum coherent oscillations in a quantum dot embedded in a doubly resonantsemiconductor micro-cavity, Optik (Stuttg.) 198, 163167 (2019)
CrossRef
ADS
Google scholar
|
[86] |
S. Mahajan, T. Kumar, A. Bhattacherjee, and ManMo-han, Ground-state cooling of a mechanical oscillator and detection of a weak force using a Bose-Einstein condensate, Phys. Rev. A 87(1), 013621 (2013)
CrossRef
ADS
Google scholar
|
[87] |
G. Vidal and R. F. Werner, Computable measure of entanglement, Phys. Rev. A65(3), 032314 (2002)
CrossRef
ADS
Google scholar
|
[88] |
X. Y. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, and F. Nori, Squeezed optomechanics with phase-matched amplification and dissipation, Phys. Rev. Lett.114(9), 093602 (2015)
CrossRef
ADS
Google scholar
|
[89] |
T. S. Yin, X. Y. Lü, L. L. Zheng, M. Wang, S. Li, and Y. Wu, Nonlinear effects in modulated quantum optomechanics, Phys. Rev. A 95(5), 053861 (2017)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |