Specific heat ratio effects of compressible Rayleigh–Taylor instability studied by discrete Boltzmann method

Lu Chen (陈璐), Huilin Lai (赖惠林), Chuandong Lin (林传栋), Demei Li (李德梅)

PDF(3287 KB)
PDF(3287 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (5) : 52500. DOI: 10.1007/s11467-021-1096-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Specific heat ratio effects of compressible Rayleigh–Taylor instability studied by discrete Boltzmann method

Author information +
History +

Abstract

Rayleigh–Taylor (RT) instability widely exists in nature and engineering fields. How to better understand the physical mechanism of RT instability is of great theoretical significance and practical value. At present, abundant results of RT instability have been obtained by traditional macroscopic methods. However, research on the thermodynamic non-equilibrium (TNE) effects in the process of system evolution is relatively scarce. In this paper, the discrete Boltzmann method based on non-equilibrium statistical physics is utilized to study the effects of the specific heat ratio on compressible RT instability. The evolution process of the compressible RT system with different specific heat ratios can be analyzed by the temperature gradient and the proportion of the non-equilibrium region. Firstly, as a result of the competition between the macroscopic magnitude gradient and the non-equilibrium region, the average TNE intensity first increases and then reduces, and it increases with the specific heat ratio decreasing; the specific heat ratio has the same effect on the global strength of the viscous stress tensor. Secondly, the moment when the total temperature gradient in y direction deviates from the fixed value can be regarded as a physical criterion for judging the formation of the vortex structure. Thirdly, under the competition between the temperature gradients and the contact area of the two fluids, the average intensity of the non-equilibrium quantity related to the heat flux shows diversity, and the influence of the specific heat ratio is also quite remarkable.

Graphical abstract

Keywords

discrete Boltzmann method / Rayleigh–Taylor instability / non-equilibrium effects / specific heat ratio effects / compressible fluid

Cite this article

Download citation ▾
Lu Chen (陈璐), Huilin Lai (赖惠林), Chuandong Lin (林传栋), Demei Li (李德梅). Specific heat ratio effects of compressible Rayleigh–Taylor instability studied by discrete Boltzmann method. Front. Phys., 2021, 16(5): 52500 https://doi.org/10.1007/s11467-021-1096-3

References

[1]
G. Dimonte, D. L. Youngs, A. Dimits, S. Weber, M. Marinak, S. Wunsch, C. Garasi, A. Robinson, M. J. Andrews, P. Ramaprabhu, A. C. Calder, B. Fryxell, J. Biello, L. Dursi, P. MacNeice, K. Olson, P. Ricker, R. Rosner, F. Timmes, H. Tufo, Y. N. Young, and M. Zingale, A comparative study of the turbulent Rayleigh–Taylor instability using high-resolution three-dimensional numerical simulations: The Alpha–Group Collaboration, Phys. Fluids 16(5), 1668 (2004)
CrossRef ADS Google scholar
[2]
Y. Ping, V. A. Smalyuk, P. Amendt, R. Tommasini, J. E. Field, S. Khan, D. Bennett, E. Dewald, F. Graziani, S. Johnson, O. L. Landen, A. G. MacPhee, A. Nikroo, J. Pino, S. Prisbrey, J. Ralph, R. Seugling, D. Strozzi, R. E. Tipton, Y. M. Wang, E. Loomis, E. Merritt, and D. Montgomery, Enhanced energy coupling for indirectly driven inertial confinement fusion, Nat. Phys. 15(2), 138 (2019)
CrossRef ADS Google scholar
[3]
J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen, and L. J. Suter, The physics basis for ignition using indirect-drive targets on the national ignition facility, Sci. China Phys. Mech. Astron. 11, 339 (2004)
CrossRef ADS Google scholar
[4]
S. Jacquemot, Inertial confinement fusion for energy: overview of the ongoing experimental, theoretical and numerical studies, Nucl. Fusion 57, 102024 (2017)
CrossRef ADS Google scholar
[5]
X. Ribeyre, V. T. Tikhonchuk, and S. Bouquet, Compressible Rayleigh–Taylor instabilities in supernova remnants, Phys. Fluids 16(12), 4661 (2004)
CrossRef ADS Google scholar
[6]
F. Fraschetti, R. Teyssier, J. Ballet, and A. Decourchelle, Simulation of the growth of the 3D Rayleigh–Taylor instability in supernova remnants using an expanding reference frame, Astron. Astrophys. 515, A104 (2010)
CrossRef ADS Google scholar
[7]
W. Hillebrandt, M. Kromer, F. K. Röpke, and A. J. Ruiter, Towards an understanding of type Ia supernovae from a synthesis of theory and observations, Front. Phys. 8(2), 116 (2013)
CrossRef ADS Google scholar
[8]
E. M. Agee, Some inferences of eddy viscosity associated with instabilities in the atmosphere, J. Atmos. Sci. 32(3), 642 (1974)
CrossRef ADS Google scholar
[9]
Y. F. Jiang, S. W. Davis, and J. M. Stone, Nonlinear evolution of Rayleigh–Taylor instability in a radiationsupported atmosphere, Astrophys. J. 763(2), 102 (2013)
CrossRef ADS Google scholar
[10]
G. A. Houseman and P. Molnar, Gravitational (Rayleigh–Taylor) instability of a layer with non-linear viscosity and convective thinning of continental lithosphere, Geophys. J. Int. 128(1), 125 (1997)
CrossRef ADS Google scholar
[11]
B. J. P. Kaus and T. W. Becker, Effects of elasticity on the Rayleigh–Taylor instability: Implications for large-scale geodynamics, Geophys. J. Int. 168(2), 843 (2007)
CrossRef ADS Google scholar
[12]
D. Ghosh, G. Maiti, and N. Mandal, Slab-parallel advection versus Rayleigh–Taylor instabilities in melt-rich layers in subduction zones: A criticality analysis, Phys. Earth Planet. Inter. 307, 106560 (2020)
CrossRef ADS Google scholar
[13]
L. Rayleigh, Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density, Proc. Lond. Math. Soc. 14(1), 170 (1882)
CrossRef ADS Google scholar
[14]
G. I. Taylor, The instability of liquid surfaces when accelerated in a direction perpendicular to their plane, Proc. R. Soc. Lond. A 201(1065), 192 (1950)
CrossRef ADS Google scholar
[15]
J. L. Barber, K. Kadau, T. C. Germann, P. S. Lomdahl, B. L. Holian, and B. J. Alder, Atomistic simulation of the Rayleigh–Taylor instability, J. Phys. Conf. Ser. 46, 58 (2006)
CrossRef ADS Google scholar
[16]
A. W. Cook and P. E. Dimotakis, Transition stages of Rayleigh–Taylor instability between miscible fluids, J. Fluid Mech. 443, 69 (2001)
CrossRef ADS Google scholar
[17]
H. Liang, X. Hu, X. Huang, and J. Xu, Direct numerical simulations of multi-mode immiscible Rayleigh–Taylor instability with high Reynolds numbers, Phys. Fluids 31(11), 112104 (2019)
CrossRef ADS Google scholar
[18]
D. L. Youngs, Application of monotone integrated large eddy simulation to Rayleigh–Taylor mixing, Philos. Trans. A Math., Phys. Eng. 367, 2971 (2009)
CrossRef ADS Google scholar
[19]
M. S. Shadloo, A. Zainali, and M. Yildiz, Simulation of single mode Rayleigh–Taylor instability by SPH method, Comput. Mech. 51(5), 699 (2013)
CrossRef ADS Google scholar
[20]
O. V. V. S. J. Reckinger, D. Livescu, and O. V. Vasilyev, Comprehensive numerical methodology for direct numerical simulations of compressible Rayleigh–Taylor instability, J. Comput. Phys. 313, 181 (2015)
CrossRef ADS Google scholar
[21]
J. Yang, J. K. H. G. Lee, and J. Kim, Side wall boundary effect on the Rayleigh–Taylor instability, Eur. J. Mech. BFluids 85, 361 (2021)
CrossRef ADS Google scholar
[22]
L. F. Wang, W. H. Ye, and Y. J. Li, Interface width effect on the classical Rayleigh–Taylor instability in the weakly nonlinear regime, Phys. Plasmas 17(5), 052305 (2010)
CrossRef ADS Google scholar
[23]
T. Wei and D. Livescu, Late-time quadratic growth in single-mode Rayleigh–Taylor instability, Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(4), 046405 (2012)
CrossRef ADS Google scholar
[24]
X. Bian, H. Aluie, D. Zhao, H. Zhang, and D. Livescu, Revisiting the late-time growth of single-mode Rayleigh–Taylor instability and the role of vorticity, Physica D 403, 132250 (2020)
CrossRef ADS Google scholar
[25]
A. G. Xu, G. Zhang, Y. B. Gan, F. Chen, and X. Yu, Lattice Boltzmann modeling and simulation of compressible flows, Front. Phys. 7(5), 582 (2012)
CrossRef ADS Google scholar
[26]
A. G. Xu, G. Zhang, and Y. J. Ying, Discrete Boltzmann modeling of compressible flows, in: Kinetic Theory, edited by G. Kyzas and A. Mitropoulos, InTech, Rijeka, Croatia, Ch. 02, 2018
[27]
A. G. Xu, J. Chen, J. H. Song, D. W. Chen, and Z. H. Chen, Progress of discrete Boltzmann study on multiphase complex flows, Acta Aerodyn. Sin. 39, 138 (2021) (in Chinese)
[28]
A. G. Xu, J. H. Song, F. Chen, K. Xie, and Y. J. Ying, Modeling and analysis methods for complex fields based on phase space, Chin. J. Comput. Phys. 38, available at https://kns.cnki.net/kcms/detail/11.2011.O4.20210524.1535.002.html (published online 2021) (in Chinese)
[29]
Y. B. Gan, A. G. Xu, G. Zhang, and S. Succi, Discrete Boltzmann modeling of multiphase flows: Hydrodynamic and thermodynamic nonequilibrium effects, Soft Matter 11(26), 5336 (2015)
CrossRef ADS Google scholar
[30]
A. G. Xu, G. Zhang, and Y. J. Ying, Progress of discrete Boltzmann modeling and simulation of combustion system, Acta Physica Sinica 64(18), 184701 (2015)
CrossRef ADS Google scholar
[31]
H. L. Lai, A. G. Xu, G. Zhang, Y. B. Gan, Y. Ying, and S. Succi, Nonequilibrium thermo-hydrodynamic effects on the Rayleigh–Taylor instability in compressible flows, Phys. Rev. E 94(2), 023106 (2016)
CrossRef ADS Google scholar
[32]
C. D. Lin, A. G. Xu, G. Zhang, and Y. Li, Doubledistribution-function discrete Boltzmann model for combustion, Combust. Flame 164, 137 (2016)
CrossRef ADS Google scholar
[33]
F. Chen, A. G. Xu, and G. Zhang, Viscosity, heat conductivity, and Prandtl number effects in the Rayleigh–Taylor instability, Front. Phys. 11(6), 114703 (2016)
CrossRef ADS Google scholar
[34]
C. D. Lin, A. G. Xu, G. C. Zhang, K. H. Luo, and Y. Li, Discrete Boltzmann modeling of Rayleigh–Taylor instability in two-component compressible flows, Phys. Rev. E 96(5), 053305 (2017)
CrossRef ADS Google scholar
[35]
A. G. Xu, G. C. Zhang, Y. D. Zhang, P. Wang, and Y. J. Ying, Discrete Boltzmann model for implosion and explosion related compressible flow with spherical symmetry, Front. Phys. 13(5), 135102 (2018)
CrossRef ADS Google scholar
[36]
F. Chen, A. G. Xu, and G. Zhang, Collaboration and competition between Richtmyer–Meshkov instability and Rayleigh–Taylor instability, Phys. Fluids 30(10), 102105 (2018)
CrossRef ADS Google scholar
[37]
Y. D. Zhang, A. G. Xu, G. C. Zhang, and Z. H. Chen, Discrete Boltzmann method with Maxwell-type boundary condition for slip flow, Commum. Theor. Phys. 69(1), 77 (2018)
CrossRef ADS Google scholar
[38]
Y. B. Gan, A. G. Xu, G. Zhang, Y. Zhang, and S. Succi, Discrete Boltzmann trans-scale modeling of high-speed compressible flows, Phys. Rev. E 97(5), 053312 (2018)
CrossRef ADS Google scholar
[39]
D. M. Li, H. L. Lai, A. G. Xu, G. C. Zhang, C. D. Lin, and Y. B. Gan, Discrete Boltzmann simulation of Rayleigh–Taylor instability in compressible flows, Acta Physica Sinica 67(8), 080501 (2018)
CrossRef ADS Google scholar
[40]
Y. B. Gan, A. G. Xu, G. C. Zhang, C. D. Lin, H. L. Lai, and Z. P. Liu, Nonequilibrium and morphological characterizations of Kelvin–Helmholtz instability in compressible flows, Front. Phys. 14(4), 43602 (2019)
CrossRef ADS Google scholar
[41]
Y. D. Zhang, A. G. Xu, G. Zhang, Z. Chen, and Y. Ying, A one-dimensional discrete Boltzmann model for detonation and an abnormal detonation phenomenon, Commum. Theor. Phys. 71(1), 117 (2019)
CrossRef ADS Google scholar
[42]
H. Y. Ye, H. L. Lai, D. M. Li, Y. B. Gan, C. D. Lin, L. Chen, and A. G. Xu, Knudsen number effects on twodimensional Rayleigh–Taylor instability in compressible fluid: Based on a discrete Boltzmann method, Entropy (Basel) 22(5), 500 (2020)
CrossRef ADS Google scholar
[43]
F. Chen, A. G. Xu, Y. D. Zhang, and Q. Zeng, Morphological and nonequilibrium analysis of coupled Rayleigh-Taylor-Kelvin-Helmholtz instability, Phys. Fluids 32(10), 104111 (2020)
CrossRef ADS Google scholar
[44]
C. D. Lin, K. H. Luo, A. G. Xu, Y. B. Gan, and H. L. Lai, Multiple relaxation-time discrete Boltzmann modeling of multicomponent mixture with nonequilibrium effects, Phys. Rev. E 103(1), 013305 (2021)
CrossRef ADS Google scholar
[45]
I. B. Bernstein and D. L. Book, Effect of compressibility on the Rayleigh–Taylor instability, Phys. Fluids 26(2), 453 (1982)
CrossRef ADS Google scholar
[46]
G. Fraley, Rayleigh–Taylor stability for a normal shock wave-density discontinuity interaction, Phys. Fluids 29(2), 376 (1986)
CrossRef ADS Google scholar
[47]
D. Livescu, Compressibility effects on the Rayleigh–Taylor instability growth between immiscible fluids, Phys. Fluids 16(1), 118 (2004)
CrossRef ADS Google scholar
[48]
M. A. Lafay, B. L. Creurer, and S. Gauthier, Compressibility effects on the Rayleigh–Taylor instability between miscible fluids, Europhys. Lett. 79(6), 64002 (2007)
CrossRef ADS Google scholar
[49]
Y. He, X. W. Hu, and Z. H. Jiang, Compressibility effects on the Rayleigh–Taylor instability growth rates, Chin. Phys. Lett. 25(3), 1015 (2008)
CrossRef ADS Google scholar
[50]
C. Xue and W. Ye, Destabilizing effect of compressibility on Rayleigh–Taylor instability for fluids with fixed density profile, Phys. Plasmas 17(4), 042705 (2010)
CrossRef ADS Google scholar
[51]
C. Y. Wang, Rayleigh–Taylor instabilities in type Ia supernova remnants undergoing cosmic ray particle acceleration-low adiabatic index solutions, Mon. Not. R. Astron. Soc. 415(1), 83 (2011)
CrossRef ADS Google scholar
[52]
Z. C. Hu and X. R. Zhang, Numerical simulations of the piston effect for near-critical fluids in spherical cells under small thermal disturbance, Int. J. Therm. Sci. 107, 131 (2016)
CrossRef ADS Google scholar
[53]
Y. Zhao, M. Xia, and Y. Cao, A study of bubble growth in the compressible Rayleigh–Taylor and Richtmyer-Meshkov instabilities, AIP Adv. 10(1), 015056 (2020)
CrossRef ADS Google scholar
[54]
Y. D. Zhang, A. G. Xu, G. C. Zhang, Z. H. Chen, and P. Wang, Discrete ellipsoidal statistical BGK model and Burnett equations, Front. Phys. 13(3), 135101 (2018)
CrossRef ADS Google scholar
[55]
A. Tamura, K. Okuyama, S. Takahashi, and M. Ohtsuka, Three-dimensional discrete-velocity BGK model for the incompressible Navier–Stokes equations, Comput. Fluids 40(1), 149 (2011)
CrossRef ADS Google scholar
[56]
Y. B. Gan, A. G. Xu, G. Zhang, and Y. Yang, Lattice BGK kinetic model for high-speed compressible flows: Hydrodynamic and nonequilibrium behaviors, Europhys. Lett. 103(2), 24003 (2013)
CrossRef ADS Google scholar
[57]
B. Yan, A. G. Xu, G. Zhang, Y. Ying, and H. Li, Lattice Boltzmann model for combustion and detonation, Front. Phys. 8(1), 94 (2013)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(3287 KB)

Accesses

Citations

Detail

Sections
Recommended

/