Geometric heat pump: Controlling thermal transport with time-dependent modulations
Zi Wang, Luqin Wang, Jiangzhi Chen, Chen Wang, Jie Ren
Geometric heat pump: Controlling thermal transport with time-dependent modulations
The second law of thermodynamics dictates that heat simultaneously flows from the hot to cold bath on average. To go beyond this picture, a range of works in the past decade show that, other than the average dynamical heat flux determined by instantaneous thermal bias, a non-trivial flux contribution of intrinsic geometric origin is generally present in temporally driven systems. This additional heat flux provides a free lunch for the pumped heat and could even drive heat against the bias. We review here the emergence and development of this so called “geometric heat pump”, originating from the topological geometric phase effect, and cover various quantum and classical transport systems with different internal dynamics. The generalization from the adiabatic to the non-adiabatic regime and the application of control theory are also discussed. Then, we briefly discuss the symmetry restriction on the heat pump effect, such as duality, supersymmetry and time-reversal symmetry. Finally, we examine open problems concerning the geometric heat pump process and elucidate their prospective significance in devising thermal machines with high performance.
geometric phase / heat pump / stochastic heat transport / non-adiabatic control
[1] |
P. W. Brouwer, Scattering approach to parametric pump-ing, Phys. Rev. B 58(16), R10135 (1998)
CrossRef
ADS
Google scholar
|
[2] |
P. Hänggi and F. Marchesoni, Artificial Brownian motors: Controlling transport on the nanoscale, Rev. Mod. Phys. 81(1), 387 (2009)
CrossRef
ADS
Google scholar
|
[3] |
I. L. Aleiner and A. V. Andreev, Adiabatic charge pumping in almost open dots, Phys. Rev. Lett. 81(6), 1286 (1998)
CrossRef
ADS
Google scholar
|
[4] |
T. H. Oosterkamp, L. P. Kouwenhoven, A. E. A. Koolen, N. C. van der Vaart, and C. J. P. M. Harmans, Photon sidebands of the ground state and first excited state of a quantum dot, Phys. Rev. Lett. 78(8), 1536 (1997)
CrossRef
ADS
Google scholar
|
[5] |
F. Grossmann, T. Dittrich, P. Jung, and P. Hänggi, Co-herent destruction of tunneling, Phys. Rev. Lett. 67(4), 516 (1991)
CrossRef
ADS
Google scholar
|
[6] |
S. Rahav, J. Horowitz, and C. Jarzynski, Directed flow in nonadiabatic stochastic pumps, Phys. Rev. Lett. 101(14), 140602 (2008)
CrossRef
ADS
Google scholar
|
[7] |
M. Braun and G. Burkard, Nonadiabatic two-parameter charge and spin pumping in a quantum dot, Phys. Rev. Lett. 101(3), 036802 (2008)
CrossRef
ADS
Google scholar
|
[8] |
F. Cavaliere, M. Governale, and J. König, Nonadiabatic pumping through interacting quantum dots, Phys. Rev. Lett. 103(13), 136801 (2009)
CrossRef
ADS
Google scholar
|
[9] |
V. Y. Chernyak and N. A. Sinitsyn, Pumping restriction theorem for stochastic networks, Phys. Rev. Lett. 101(16), 160601 (2008)
CrossRef
ADS
Google scholar
|
[10] |
J. Ren, V. Chernyak, and N. Sinitsyn, Duality and fluctuation relations for statistics of currents on cyclic graphs, J. Stat. Mech. 2011(05), P05011 (2011)
CrossRef
ADS
Google scholar
|
[11] |
S. Asban and S. Rahav, No-pumping theorem for many particle stochastic pumps, Phys. Rev. Lett. 112(5), 050601 (2014)
CrossRef
ADS
Google scholar
|
[12] |
M. V. Berry, Quantal phase factors accompanying adia-batic changes, Proc. Math. Phys. Eng. Sci. 392, 45 (1984)
CrossRef
ADS
Google scholar
|
[13] |
D. J. Thouless, Quantization of particle transport, Phys. Rev. B 27(10), 6083 (1983)
CrossRef
ADS
Google scholar
|
[14] |
S. Nakajima, T. Tomita, S. Taie, T. Ichinose, H. Ozawa, L. Wang, M. Troyer, and Y. Takahashi, Topological Thou-less pumping of ultracold fermions, Nat. Phys. 12(4), 296 (2016)
CrossRef
ADS
Google scholar
|
[15] |
N. A. Sinitsyn and I. Nemenman, Universal geometric the-ory of mesoscopic stochastic pumps and reversible ratchets, Phys. Rev. Lett. 99(22), 220408 (2007)
CrossRef
ADS
Google scholar
|
[16] |
N. Sinitsyn, The stochastic pump effect and geometric phases in dissipative and stochastic systems, J. Phys. A Math. Theor. 42(19), 193001 (2009)
CrossRef
ADS
Google scholar
|
[17] |
C. Chamon, E. R. Mucciolo, L. Arrachea, and R. B. Capaz, Heat pumping in nanomechanical systems, Phys. Rev. Lett. 106(13), 135504 (2011)
CrossRef
ADS
Google scholar
|
[18] |
R. Marathe, A. M. Jayannavar, and A. Dhar, Two simple models of classical heat pumps, Phys. Rev. E 75(3), 030103 (2007)
CrossRef
ADS
Google scholar
|
[19] |
D. Segal, Stochastic pumping of heat: Approaching the Carnot efficiency, Phys. Rev. Lett. 101(26), 260601 (2008)
CrossRef
ADS
Google scholar
|
[20] |
J. Ren and B. Li, Emergence and control of heat current from strict zero thermal bias, Phys. Rev. E 81(2), 021111 (2010)
CrossRef
ADS
Google scholar
|
[21] |
J. Ren, P. Hänggi, and B. Li, Berry-phase-induced heat pumping and its impact on the fluctuation theorem, Phys. Rev. Lett. 104(17), 170601 (2010)
CrossRef
ADS
Google scholar
|
[22] |
J. Ren, S. Liu, and B. Li, Geometric heat flux for classical thermal transport in interacting open systems, Phys. Rev. Lett. 108(21), 210603 (2012)
CrossRef
ADS
Google scholar
|
[23] |
T. Chen, X. B. Wang, and J. Ren, Dynamic control of quantum geometric heat flux in a nonequilibrium spin-boson model, Phys. Rev. B 87(14), 144303 (2013)
CrossRef
ADS
Google scholar
|
[24] |
C. Wang, J. Ren, and J. Cao, Unifying quantum heat transfer in a nonequilibrium spin-boson model with full counting statistics, Phys. Rev. A 95(2), 023610 (2017)
CrossRef
ADS
Google scholar
|
[25] |
J. Ohkubo, The stochastic pump current and the nonadiabatic geometrical phase, J. Stat. Mech. 2008(02), P02011 (2008)
CrossRef
ADS
Google scholar
|
[26] |
C. Uchiyama, Nonadiabatic effect on the quantum heat flux control, Phys. Rev. E 89(5), 052108 (2014)
CrossRef
ADS
Google scholar
|
[27] |
D. Guéry-Odelin, A. Ruschhaupt, A. Kiely, E. Tor-rontegui, S. Martínez-Garaot, and J. G. Muga, Shortcuts to adiabaticity: Concepts, methods, and applications, Rev. Mod. Phys. 91(4), 045001 (2019)
CrossRef
ADS
Google scholar
|
[28] |
D. d’Alessandro, Introduction to Quantum Control and Dynamics, CRC Press, 2007
|
[29] |
K. Funo, N. Lambert, F. Nori, and C. Flindt, Shortcuts to adiabatic pumping in classical stochastic systems, Phys. Rev. Lett. 124(15), 150603 (2020)
CrossRef
ADS
Google scholar
|
[30] |
K. Takahashi, K. Fujii, Y. Hino, and H. Hayakawa, Nona-diabatic control of geometric pumping, Phys. Rev. Lett. 124(15), 150602 (2020)
CrossRef
ADS
Google scholar
|
[31] |
A. Kamenev, Field Theory of Non-Equilibrium Systems, Cambridge University Press, 2011
|
[32] |
L. S. Levitov and G. B. Lesovik, Charge distribution in quantum shot noise, JETP Lett. 58, 230 (1993)
|
[33] |
P. L. Kelley and W. H. Kleiner, Theory of electromagnetic field measurement and photoelectron counting, Phys. Rev. 136(2A), A316 (1964)
CrossRef
ADS
Google scholar
|
[34] |
C. W. Gardiner and P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Op-tics, Springer Science & Business Media, 2004
|
[35] |
D. Andrieux and P. Gaspard, A fluctuation theorem for currents and non-linear response coefficients, J. Stat. Mech. 2007(02), P02006 (2007)
CrossRef
ADS
Google scholar
|
[36] |
P. Stegmann, J. König, and S. Weiss, Coherent dynamics in stochastic systems revealed by full counting statistics, Phys. Rev. B 98(3), 035409 (2018)
CrossRef
ADS
Google scholar
|
[37] |
M. Esposito, U. Harbola, and S. Mukamel, Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems, Rev. Mod. Phys. 81(4), 1665 (2009)
CrossRef
ADS
Google scholar
|
[38] |
M. Campisi, P. Hänggi, and P. Talkner, Quantum fluctuation relations: Foundations and applications, Rev. Mod. Phys. 83(3), 771 (2011)
CrossRef
ADS
Google scholar
|
[39] |
R. J. Harris and G. M. Schütz, Fluctuation theorems for stochastic dynamics, J. Stat. Mech. 2007(07), P07020 (2007)
CrossRef
ADS
Google scholar
|
[40] |
P. Talkner, E. Lutz, and P. Hänggi, Fluctuation theorems: Work is not an observable, Phys. Rev. E 75(5), 050102 (2007)
CrossRef
ADS
Google scholar
|
[41] |
W. De Roeck and C. Maes, Quantum version of free-energy–irreversible-work relations, Phys. Rev. E 69(2), 026115 (2004)
CrossRef
ADS
Google scholar
|
[42] |
M. Esposito and S. Mukamel, Fluctuation theorems for quantum master equations, Phys. Rev. E 73(4), 046129 (2006)
CrossRef
ADS
Google scholar
|
[43] |
P. Talkner and P. Hänggi, Statistical mechanics and ther-modynamics at strong coupling: Quantum and classical, Rev. Mod. Phys. 92(4), 041002 (2020)
CrossRef
ADS
Google scholar
|
[44] |
M. Silaev, T. T. Heikkilä, and P. Virtanen, Lindblad-equation approach for the full counting statistics of work and heat in driven quantum systems, Phys. Rev. E 90(2), 022103 (2014)
CrossRef
ADS
Google scholar
|
[45] |
C. W. Gardiner,
|
[46] |
S. Larocque, E. Pinsolle, C. Lupien, and B. Reulet, Shot noise of a temperature-biased tunnel junction, Phys. Rev. Lett. 125(10), 106801 (2020)
CrossRef
ADS
Google scholar
|
[47] |
O. Maillet, P. A. Erdman, V. Cavina, B. Bhandari, E. T. Mannila, J. T. Peltonen, A. Mari, F. Taddei, C. Jarzyn-ski, V. Giovannetti, and J. P. Pekola, Optimal probabilis-tic work extraction beyond the free energy difference with a single-electron device, Phys. Rev. Lett. 122(15), 150604 (2019)
CrossRef
ADS
Google scholar
|
[48] |
Y. Aharonov and J. Anandan, Phase change during a cyclic quantum evolution, Phys. Rev. Lett. 58(16), 1593 (1987)
CrossRef
ADS
Google scholar
|
[49] |
R. Resta, The insulating state of matter: A geometrical theory, Eur. Phys. J. B 79(2), 121 (2011)
CrossRef
ADS
Google scholar
|
[50] |
J. Ren, The third way of thermal-electric conversion be-yond Seebeck and pyroelectric effects, arXiv: 1402.3645 (2014)
CrossRef
ADS
Google scholar
|
[51] |
N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, Phononics: Manipulating heat flow with electronic analogs and beyond, Rev. Mod. Phys. 84(3), 1045 (2012)
CrossRef
ADS
Google scholar
|
[52] |
M. Josefsson, A. Svilans, A. M. Burke, E. A. Hoffmann, S. Fahlvik, C. Thelander, M. Leijnse, and H. Linke, A quantum-dot heat engine operating close to the thermo-dynamic efficiency limits, Nat. Nanotechnol. 13(10), 920 (2018)
CrossRef
ADS
Google scholar
|
[53] |
S. Seah, S. Nimmrichter, and V. Scarani, Maxwell’s lesser demon: A quantum engine driven by pointer measure-ments, Phys. Rev. Lett. 124(10), 100603 (2020)
CrossRef
ADS
Google scholar
|
[54] |
P. Abiuso and M. Perarnau-Llobet, Optimal cycles for low-dissipation heat engines, Phys. Rev. Lett. 124(11), 110606 (2020)
CrossRef
ADS
Google scholar
|
[55] |
A. Marcos-Vicioso, C. Löpez-Jurado, M. Ruiz-Garcia, and R. Sánchez, Thermal rectification with interacting elec-tronic channels: Exploiting degeneracy, quantum super-positions, and interference, Phys. Rev. B 98(3), 035414 (2018)
CrossRef
ADS
Google scholar
|
[56] |
W. Nie, G. Li, X. Li, A. Chen, Y. Lan, and S. Y. Zhu, Berry-phase-like effect of thermo-phonon transport in optomechanics, Phys. Rev. A 102(4), 043512 (2020)
CrossRef
ADS
Google scholar
|
[57] |
H. Touchette, The large deviation approach to statistical mechanics, Phys. Rep. 478(1–3), 1 (2009)
CrossRef
ADS
Google scholar
|
[58] |
A. Dhar, Heat transport in low-dimensional systems, Adv. Phys. 57(5), 457 (2008)
CrossRef
ADS
Google scholar
|
[59] |
D. Torrent, O. Poncelet, and J. C. Batsale, Nonrecipro-cal thermal material by spatiotemporal modulation, Phys. Rev. Lett. 120(12), 125501 (2018)
CrossRef
ADS
Google scholar
|
[60] |
D. Segal and A. Nitzan, Molecular heat pump, Phys. Rev. E 73(2), 026109 (2006)
CrossRef
ADS
Google scholar
|
[61] |
L. Arrachea, E. R. Mucciolo, C. Chamon, and R. B. Capaz, Microscopic model of a phononic refrigerator, Phys. Rev. B 86(12), 125424 (2012)
CrossRef
ADS
Google scholar
|
[62] |
N. Li and B. Li, Temperature dependence of thermal con-ductivity in 1D nonlinear lattices, EPL 78(3), 34001 (2007)
CrossRef
ADS
Google scholar
|
[63] |
H. Li, L. J. Fernández-Alcázar, F. Ellis, B. Shapiro, and T. Kottos, Adiabatic thermal radiation pumps for thermal photonics, Phys. Rev. Lett. 123(16), 165901 (2019)
CrossRef
ADS
Google scholar
|
[64] |
B. Bhandari, P. T. Alonso, F. Taddei, F. von Oppen, R. Fazio, and L. Arrachea, Geometric properties of adiabatic quantum thermal machines, Phys. Rev. B 102(15), 155407 (2020)
CrossRef
ADS
Google scholar
|
[65] |
L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-relativistic Theory, Vol. 3, Elsevier, 2013
|
[66] |
J. Ohkubo and T. Eggel, Noncyclic and nonadiabatic ge-ometric phase for counting statistics, J. Phys. A Math. Theor. 43(42), 425001 (2010)
CrossRef
ADS
Google scholar
|
[67] |
T. Harada and S. I. Sasa, Equality connecting energy dissi-pation with a violation of the fluctuation-response relation, Phys. Rev. Lett. 95(13), 130602 (2005)
CrossRef
ADS
Google scholar
|
[68] |
E. Lippiello, M. Baiesi, and A. Sarracino, Nonequilib-rium fluctuation-dissipation theorem and heat production, Phys. Rev. Lett. 112(14), 140602 (2014)
CrossRef
ADS
Google scholar
|
[69] |
A. del Campo, Shortcuts to adiabaticity by counterdia-batic driving, Phys. Rev. Lett. 111(10), 100502 (2013)
CrossRef
ADS
Google scholar
|
[70] |
M. Kolodrubetz, D. Sels, P. Mehta, and A. Polkovnikov, Geometry and non-adiabatic response in quantum and classical systems, Phys. Rep. 697, 1 (2017)
CrossRef
ADS
Google scholar
|
[71] |
H. Risken, in: The Fokker–Planck Equation, Springer, 1996
CrossRef
ADS
Google scholar
|
[72] |
J. Kurchan, Fluctuation theorem for stochastic dynamics, J. Phys. Math. Gen. 31(16), 3719 (1998)
CrossRef
ADS
Google scholar
|
[73] |
M. Carrega, P. Solinas, A. Braggio, M. Sassetti, and U. Weiss, Functional integral approach to time-dependent heat exchange in open quantum systems: General method and applications, New J. Phys. 17(4), 045030 (2015)
CrossRef
ADS
Google scholar
|
[74] |
H. Xu, D. Mason, L. Jiang, and J. G. E. Harris, Topo-logical energy transfer in an optomechanical system with exceptional points, Nature 537(7618), 80 (2016)
CrossRef
ADS
Google scholar
|
[75] |
C. Wang, L. Q. Wang, and J. Ren, Managing quantum heat transfer in a nonequilibrium qubit-phonon hybrid system with coherent phonon states, Chin. Phys. Lett. 38(1), 010501 (2021)
CrossRef
ADS
Google scholar
|
[76] |
S. K. Giri and H. P. Goswami, Geometric phase-like effects in a quantum heat engine, Phys. Rev. E 96(5), 052129 (2017)
CrossRef
ADS
Google scholar
|
[77] |
Y. Hino and H. Hayakawa, Geometrical Formulation of Adiabatic Pumping as a Heat Engine, Phys. Rev. Research 3(1), 013187 (2021)
CrossRef
ADS
Google scholar
|
[78] |
K. Brandner and K. Saito, Thermodynamic geometry of microscopic heat engines, Phys. Rev. Lett. 124(4), 040602 (2020)
CrossRef
ADS
Google scholar
|
[79] |
T. Sagawa and H. Hayakawa, Geometrical expression of excess entropy production, Phys. Rev. E 84(5), 051110 (2011)
CrossRef
ADS
Google scholar
|
[80] |
N. Shiraishi, K. Saito, and H. Tasaki, Universal tradeoff relation between power and efficiency for heat engines, Phys. Rev. Lett. 117(19), 190601 (2016)
CrossRef
ADS
Google scholar
|
[81] |
J. M. Horowitz and T. R. Gingrich, Thermodynamic uncertainty relations constrain non-equilibrium fluctuations, Nat. Phys. 16(1), 15 (2020)
CrossRef
ADS
Google scholar
|
[82] |
K. Sekimoto, Microscopic heat from the energetics of stochastic phenomena, Phys. Rev. E 76(6), 060103 (2007)
CrossRef
ADS
Google scholar
|
[83] |
R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II: Nonequilibrium Statistical Mechanics, Vol. 31, Springer Science & Business Media, 2012
|
/
〈 | 〉 |