Geometric heat pump: Controlling thermal transport with time-dependent modulations

Zi Wang, Luqin Wang, Jiangzhi Chen, Chen Wang, Jie Ren

PDF(1357 KB)
PDF(1357 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (1) : 13201. DOI: 10.1007/s11467-021-1095-4
TOPICAL REVIEW
TOPICAL REVIEW

Geometric heat pump: Controlling thermal transport with time-dependent modulations

Author information +
History +

Abstract

The second law of thermodynamics dictates that heat simultaneously flows from the hot to cold bath on average. To go beyond this picture, a range of works in the past decade show that, other than the average dynamical heat flux determined by instantaneous thermal bias, a non-trivial flux contribution of intrinsic geometric origin is generally present in temporally driven systems. This additional heat flux provides a free lunch for the pumped heat and could even drive heat against the bias. We review here the emergence and development of this so called “geometric heat pump”, originating from the topological geometric phase effect, and cover various quantum and classical transport systems with different internal dynamics. The generalization from the adiabatic to the non-adiabatic regime and the application of control theory are also discussed. Then, we briefly discuss the symmetry restriction on the heat pump effect, such as duality, supersymmetry and time-reversal symmetry. Finally, we examine open problems concerning the geometric heat pump process and elucidate their prospective significance in devising thermal machines with high performance.

Graphical abstract

Keywords

geometric phase / heat pump / stochastic heat transport / non-adiabatic control

Cite this article

Download citation ▾
Zi Wang, Luqin Wang, Jiangzhi Chen, Chen Wang, Jie Ren. Geometric heat pump: Controlling thermal transport with time-dependent modulations. Front. Phys., 2022, 17(1): 13201 https://doi.org/10.1007/s11467-021-1095-4

References

[1]
P. W. Brouwer, Scattering approach to parametric pump-ing, Phys. Rev. B 58(16), R10135 (1998)
CrossRef ADS Google scholar
[2]
P. Hänggi and F. Marchesoni, Artificial Brownian motors: Controlling transport on the nanoscale, Rev. Mod. Phys. 81(1), 387 (2009)
CrossRef ADS Google scholar
[3]
I. L. Aleiner and A. V. Andreev, Adiabatic charge pumping in almost open dots, Phys. Rev. Lett. 81(6), 1286 (1998)
CrossRef ADS Google scholar
[4]
T. H. Oosterkamp, L. P. Kouwenhoven, A. E. A. Koolen, N. C. van der Vaart, and C. J. P. M. Harmans, Photon sidebands of the ground state and first excited state of a quantum dot, Phys. Rev. Lett. 78(8), 1536 (1997)
CrossRef ADS Google scholar
[5]
F. Grossmann, T. Dittrich, P. Jung, and P. Hänggi, Co-herent destruction of tunneling, Phys. Rev. Lett. 67(4), 516 (1991)
CrossRef ADS Google scholar
[6]
S. Rahav, J. Horowitz, and C. Jarzynski, Directed flow in nonadiabatic stochastic pumps, Phys. Rev. Lett. 101(14), 140602 (2008)
CrossRef ADS Google scholar
[7]
M. Braun and G. Burkard, Nonadiabatic two-parameter charge and spin pumping in a quantum dot, Phys. Rev. Lett. 101(3), 036802 (2008)
CrossRef ADS Google scholar
[8]
F. Cavaliere, M. Governale, and J. König, Nonadiabatic pumping through interacting quantum dots, Phys. Rev. Lett. 103(13), 136801 (2009)
CrossRef ADS Google scholar
[9]
V. Y. Chernyak and N. A. Sinitsyn, Pumping restriction theorem for stochastic networks, Phys. Rev. Lett. 101(16), 160601 (2008)
CrossRef ADS Google scholar
[10]
J. Ren, V. Chernyak, and N. Sinitsyn, Duality and fluctuation relations for statistics of currents on cyclic graphs, J. Stat. Mech. 2011(05), P05011 (2011)
CrossRef ADS Google scholar
[11]
S. Asban and S. Rahav, No-pumping theorem for many particle stochastic pumps, Phys. Rev. Lett. 112(5), 050601 (2014)
CrossRef ADS Google scholar
[12]
M. V. Berry, Quantal phase factors accompanying adia-batic changes, Proc. Math. Phys. Eng. Sci. 392, 45 (1984)
CrossRef ADS Google scholar
[13]
D. J. Thouless, Quantization of particle transport, Phys. Rev. B 27(10), 6083 (1983)
CrossRef ADS Google scholar
[14]
S. Nakajima, T. Tomita, S. Taie, T. Ichinose, H. Ozawa, L. Wang, M. Troyer, and Y. Takahashi, Topological Thou-less pumping of ultracold fermions, Nat. Phys. 12(4), 296 (2016)
CrossRef ADS Google scholar
[15]
N. A. Sinitsyn and I. Nemenman, Universal geometric the-ory of mesoscopic stochastic pumps and reversible ratchets, Phys. Rev. Lett. 99(22), 220408 (2007)
CrossRef ADS Google scholar
[16]
N. Sinitsyn, The stochastic pump effect and geometric phases in dissipative and stochastic systems, J. Phys. A Math. Theor. 42(19), 193001 (2009)
CrossRef ADS Google scholar
[17]
C. Chamon, E. R. Mucciolo, L. Arrachea, and R. B. Capaz, Heat pumping in nanomechanical systems, Phys. Rev. Lett. 106(13), 135504 (2011)
CrossRef ADS Google scholar
[18]
R. Marathe, A. M. Jayannavar, and A. Dhar, Two simple models of classical heat pumps, Phys. Rev. E 75(3), 030103 (2007)
CrossRef ADS Google scholar
[19]
D. Segal, Stochastic pumping of heat: Approaching the Carnot efficiency, Phys. Rev. Lett. 101(26), 260601 (2008)
CrossRef ADS Google scholar
[20]
J. Ren and B. Li, Emergence and control of heat current from strict zero thermal bias, Phys. Rev. E 81(2), 021111 (2010)
CrossRef ADS Google scholar
[21]
J. Ren, P. Hänggi, and B. Li, Berry-phase-induced heat pumping and its impact on the fluctuation theorem, Phys. Rev. Lett. 104(17), 170601 (2010)
CrossRef ADS Google scholar
[22]
J. Ren, S. Liu, and B. Li, Geometric heat flux for classical thermal transport in interacting open systems, Phys. Rev. Lett. 108(21), 210603 (2012)
CrossRef ADS Google scholar
[23]
T. Chen, X. B. Wang, and J. Ren, Dynamic control of quantum geometric heat flux in a nonequilibrium spin-boson model, Phys. Rev. B 87(14), 144303 (2013)
CrossRef ADS Google scholar
[24]
C. Wang, J. Ren, and J. Cao, Unifying quantum heat transfer in a nonequilibrium spin-boson model with full counting statistics, Phys. Rev. A 95(2), 023610 (2017)
CrossRef ADS Google scholar
[25]
J. Ohkubo, The stochastic pump current and the nonadiabatic geometrical phase, J. Stat. Mech. 2008(02), P02011 (2008)
CrossRef ADS Google scholar
[26]
C. Uchiyama, Nonadiabatic effect on the quantum heat flux control, Phys. Rev. E 89(5), 052108 (2014)
CrossRef ADS Google scholar
[27]
D. Guéry-Odelin, A. Ruschhaupt, A. Kiely, E. Tor-rontegui, S. Martínez-Garaot, and J. G. Muga, Shortcuts to adiabaticity: Concepts, methods, and applications, Rev. Mod. Phys. 91(4), 045001 (2019)
CrossRef ADS Google scholar
[28]
D. d’Alessandro, Introduction to Quantum Control and Dynamics, CRC Press, 2007
[29]
K. Funo, N. Lambert, F. Nori, and C. Flindt, Shortcuts to adiabatic pumping in classical stochastic systems, Phys. Rev. Lett. 124(15), 150603 (2020)
CrossRef ADS Google scholar
[30]
K. Takahashi, K. Fujii, Y. Hino, and H. Hayakawa, Nona-diabatic control of geometric pumping, Phys. Rev. Lett. 124(15), 150602 (2020)
CrossRef ADS Google scholar
[31]
A. Kamenev, Field Theory of Non-Equilibrium Systems, Cambridge University Press, 2011
[32]
L. S. Levitov and G. B. Lesovik, Charge distribution in quantum shot noise, JETP Lett. 58, 230 (1993)
[33]
P. L. Kelley and W. H. Kleiner, Theory of electromagnetic field measurement and photoelectron counting, Phys. Rev. 136(2A), A316 (1964)
CrossRef ADS Google scholar
[34]
C. W. Gardiner and P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Op-tics, Springer Science & Business Media, 2004
[35]
D. Andrieux and P. Gaspard, A fluctuation theorem for currents and non-linear response coefficients, J. Stat. Mech. 2007(02), P02006 (2007)
CrossRef ADS Google scholar
[36]
P. Stegmann, J. König, and S. Weiss, Coherent dynamics in stochastic systems revealed by full counting statistics, Phys. Rev. B 98(3), 035409 (2018)
CrossRef ADS Google scholar
[37]
M. Esposito, U. Harbola, and S. Mukamel, Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems, Rev. Mod. Phys. 81(4), 1665 (2009)
CrossRef ADS Google scholar
[38]
M. Campisi, P. Hänggi, and P. Talkner, Quantum fluctuation relations: Foundations and applications, Rev. Mod. Phys. 83(3), 771 (2011)
CrossRef ADS Google scholar
[39]
R. J. Harris and G. M. Schütz, Fluctuation theorems for stochastic dynamics, J. Stat. Mech. 2007(07), P07020 (2007)
CrossRef ADS Google scholar
[40]
P. Talkner, E. Lutz, and P. Hänggi, Fluctuation theorems: Work is not an observable, Phys. Rev. E 75(5), 050102 (2007)
CrossRef ADS Google scholar
[41]
W. De Roeck and C. Maes, Quantum version of free-energy–irreversible-work relations, Phys. Rev. E 69(2), 026115 (2004)
CrossRef ADS Google scholar
[42]
M. Esposito and S. Mukamel, Fluctuation theorems for quantum master equations, Phys. Rev. E 73(4), 046129 (2006)
CrossRef ADS Google scholar
[43]
P. Talkner and P. Hänggi, Statistical mechanics and ther-modynamics at strong coupling: Quantum and classical, Rev. Mod. Phys. 92(4), 041002 (2020)
CrossRef ADS Google scholar
[44]
M. Silaev, T. T. Heikkilä, and P. Virtanen, Lindblad-equation approach for the full counting statistics of work and heat in driven quantum systems, Phys. Rev. E 90(2), 022103 (2014)
CrossRef ADS Google scholar
[45]
C. W. Gardiner, , Handbook of Stochastic Methods, Vol. 3, Springer Berlin, 1985
[46]
S. Larocque, E. Pinsolle, C. Lupien, and B. Reulet, Shot noise of a temperature-biased tunnel junction, Phys. Rev. Lett. 125(10), 106801 (2020)
CrossRef ADS Google scholar
[47]
O. Maillet, P. A. Erdman, V. Cavina, B. Bhandari, E. T. Mannila, J. T. Peltonen, A. Mari, F. Taddei, C. Jarzyn-ski, V. Giovannetti, and J. P. Pekola, Optimal probabilis-tic work extraction beyond the free energy difference with a single-electron device, Phys. Rev. Lett. 122(15), 150604 (2019)
CrossRef ADS Google scholar
[48]
Y. Aharonov and J. Anandan, Phase change during a cyclic quantum evolution, Phys. Rev. Lett. 58(16), 1593 (1987)
CrossRef ADS Google scholar
[49]
R. Resta, The insulating state of matter: A geometrical theory, Eur. Phys. J. B 79(2), 121 (2011)
CrossRef ADS Google scholar
[50]
J. Ren, The third way of thermal-electric conversion be-yond Seebeck and pyroelectric effects, arXiv: 1402.3645 (2014)
CrossRef ADS Google scholar
[51]
N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, Phononics: Manipulating heat flow with electronic analogs and beyond, Rev. Mod. Phys. 84(3), 1045 (2012)
CrossRef ADS Google scholar
[52]
M. Josefsson, A. Svilans, A. M. Burke, E. A. Hoffmann, S. Fahlvik, C. Thelander, M. Leijnse, and H. Linke, A quantum-dot heat engine operating close to the thermo-dynamic efficiency limits, Nat. Nanotechnol. 13(10), 920 (2018)
CrossRef ADS Google scholar
[53]
S. Seah, S. Nimmrichter, and V. Scarani, Maxwell’s lesser demon: A quantum engine driven by pointer measure-ments, Phys. Rev. Lett. 124(10), 100603 (2020)
CrossRef ADS Google scholar
[54]
P. Abiuso and M. Perarnau-Llobet, Optimal cycles for low-dissipation heat engines, Phys. Rev. Lett. 124(11), 110606 (2020)
CrossRef ADS Google scholar
[55]
A. Marcos-Vicioso, C. Löpez-Jurado, M. Ruiz-Garcia, and R. Sánchez, Thermal rectification with interacting elec-tronic channels: Exploiting degeneracy, quantum super-positions, and interference, Phys. Rev. B 98(3), 035414 (2018)
CrossRef ADS Google scholar
[56]
W. Nie, G. Li, X. Li, A. Chen, Y. Lan, and S. Y. Zhu, Berry-phase-like effect of thermo-phonon transport in optomechanics, Phys. Rev. A 102(4), 043512 (2020)
CrossRef ADS Google scholar
[57]
H. Touchette, The large deviation approach to statistical mechanics, Phys. Rep. 478(1–3), 1 (2009)
CrossRef ADS Google scholar
[58]
A. Dhar, Heat transport in low-dimensional systems, Adv. Phys. 57(5), 457 (2008)
CrossRef ADS Google scholar
[59]
D. Torrent, O. Poncelet, and J. C. Batsale, Nonrecipro-cal thermal material by spatiotemporal modulation, Phys. Rev. Lett. 120(12), 125501 (2018)
CrossRef ADS Google scholar
[60]
D. Segal and A. Nitzan, Molecular heat pump, Phys. Rev. E 73(2), 026109 (2006)
CrossRef ADS Google scholar
[61]
L. Arrachea, E. R. Mucciolo, C. Chamon, and R. B. Capaz, Microscopic model of a phononic refrigerator, Phys. Rev. B 86(12), 125424 (2012)
CrossRef ADS Google scholar
[62]
N. Li and B. Li, Temperature dependence of thermal con-ductivity in 1D nonlinear lattices, EPL 78(3), 34001 (2007)
CrossRef ADS Google scholar
[63]
H. Li, L. J. Fernández-Alcázar, F. Ellis, B. Shapiro, and T. Kottos, Adiabatic thermal radiation pumps for thermal photonics, Phys. Rev. Lett. 123(16), 165901 (2019)
CrossRef ADS Google scholar
[64]
B. Bhandari, P. T. Alonso, F. Taddei, F. von Oppen, R. Fazio, and L. Arrachea, Geometric properties of adiabatic quantum thermal machines, Phys. Rev. B 102(15), 155407 (2020)
CrossRef ADS Google scholar
[65]
L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-relativistic Theory, Vol. 3, Elsevier, 2013
[66]
J. Ohkubo and T. Eggel, Noncyclic and nonadiabatic ge-ometric phase for counting statistics, J. Phys. A Math. Theor. 43(42), 425001 (2010)
CrossRef ADS Google scholar
[67]
T. Harada and S. I. Sasa, Equality connecting energy dissi-pation with a violation of the fluctuation-response relation, Phys. Rev. Lett. 95(13), 130602 (2005)
CrossRef ADS Google scholar
[68]
E. Lippiello, M. Baiesi, and A. Sarracino, Nonequilib-rium fluctuation-dissipation theorem and heat production, Phys. Rev. Lett. 112(14), 140602 (2014)
CrossRef ADS Google scholar
[69]
A. del Campo, Shortcuts to adiabaticity by counterdia-batic driving, Phys. Rev. Lett. 111(10), 100502 (2013)
CrossRef ADS Google scholar
[70]
M. Kolodrubetz, D. Sels, P. Mehta, and A. Polkovnikov, Geometry and non-adiabatic response in quantum and classical systems, Phys. Rep. 697, 1 (2017)
CrossRef ADS Google scholar
[71]
H. Risken, in: The Fokker–Planck Equation, Springer, 1996
CrossRef ADS Google scholar
[72]
J. Kurchan, Fluctuation theorem for stochastic dynamics, J. Phys. Math. Gen. 31(16), 3719 (1998)
CrossRef ADS Google scholar
[73]
M. Carrega, P. Solinas, A. Braggio, M. Sassetti, and U. Weiss, Functional integral approach to time-dependent heat exchange in open quantum systems: General method and applications, New J. Phys. 17(4), 045030 (2015)
CrossRef ADS Google scholar
[74]
H. Xu, D. Mason, L. Jiang, and J. G. E. Harris, Topo-logical energy transfer in an optomechanical system with exceptional points, Nature 537(7618), 80 (2016)
CrossRef ADS Google scholar
[75]
C. Wang, L. Q. Wang, and J. Ren, Managing quantum heat transfer in a nonequilibrium qubit-phonon hybrid system with coherent phonon states, Chin. Phys. Lett. 38(1), 010501 (2021)
CrossRef ADS Google scholar
[76]
S. K. Giri and H. P. Goswami, Geometric phase-like effects in a quantum heat engine, Phys. Rev. E 96(5), 052129 (2017)
CrossRef ADS Google scholar
[77]
Y. Hino and H. Hayakawa, Geometrical Formulation of Adiabatic Pumping as a Heat Engine, Phys. Rev. Research 3(1), 013187 (2021)
CrossRef ADS Google scholar
[78]
K. Brandner and K. Saito, Thermodynamic geometry of microscopic heat engines, Phys. Rev. Lett. 124(4), 040602 (2020)
CrossRef ADS Google scholar
[79]
T. Sagawa and H. Hayakawa, Geometrical expression of excess entropy production, Phys. Rev. E 84(5), 051110 (2011)
CrossRef ADS Google scholar
[80]
N. Shiraishi, K. Saito, and H. Tasaki, Universal tradeoff relation between power and efficiency for heat engines, Phys. Rev. Lett. 117(19), 190601 (2016)
CrossRef ADS Google scholar
[81]
J. M. Horowitz and T. R. Gingrich, Thermodynamic uncertainty relations constrain non-equilibrium fluctuations, Nat. Phys. 16(1), 15 (2020)
CrossRef ADS Google scholar
[82]
K. Sekimoto, Microscopic heat from the energetics of stochastic phenomena, Phys. Rev. E 76(6), 060103 (2007)
CrossRef ADS Google scholar
[83]
R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II: Nonequilibrium Statistical Mechanics, Vol. 31, Springer Science & Business Media, 2012

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(1357 KB)

Accesses

Citations

Detail

Sections
Recommended

/