A comprehensive first-principle study of borophene-based nano gas sensor with gold electrodes

Yueyue Tian , Houping Yang , Junjun Li , Shunbo Hu , Shixun Cao , Wei Ren , Yin Wang

Front. Phys. ›› 2022, Vol. 17 ›› Issue (1) : 13501

PDF (1682KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (1) : 13501 DOI: 10.1007/s11467-021-1094-5
RESEARCH ARTICLE

A comprehensive first-principle study of borophene-based nano gas sensor with gold electrodes

Author information +
History +
PDF (1682KB)

Abstract

Using density functional theory combined with nonequilibrium Green’s function method, the transport properties of borophene-based nano gas sensors with gold electrodes are calculated, and comprehensive understandings regarding the effects of gas molecules, MoS2 substrate and gold electrodes to the transport properties of borophene are made. Results show that borophene-based sensors can be used to detect and distinguish CO, NO, NO2 and NH3 gas molecules, MoS2 substrate leads to a nonlinear behavior on the current-voltage characteristic, and gold electrodes provide charges to borophene and form a potential barrier, which reduced the current values compared to the current of the systems without gold electrodes. Our studies not only provide useful information on the computationally design of borophene-based gas sensors, but also help understand the transport behaviors and underlying physics of 2D metallic materials with metal electrodes.

Graphical abstract

Keywords

quantum transport / borophene / gold electrodes / heterostructure

Cite this article

Download citation ▾
Yueyue Tian, Houping Yang, Junjun Li, Shunbo Hu, Shixun Cao, Wei Ren, Yin Wang. A comprehensive first-principle study of borophene-based nano gas sensor with gold electrodes. Front. Phys., 2022, 17(1): 13501 DOI:10.1007/s11467-021-1094-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, A survey on gas sensing technology, Sensors (Basel) 12(7), 9635 (2012)

[2]

Z. Yunusa, M. N. Hamidon, A. Kaiser, and Z. Awang, Gas sensors: A review, Sensors & Transducers 168(4), 61 (2014)

[3]

X. Zhang, Q. Chen, J. Tang, W. Hu, and J. Zhang, Ad-sorption of SF6 decomposed gas on anatase (101) and (001) surfaces with oxygen defect: A density functional theory study, Sci. Rep. 4, 4762 (2014)

[4]

S. Cui, H. Pu, S. A. Wells, Z. Wen, S. Mao, J. Chang, M. C. Hersam, and J. Chen, Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors, Nat. Commun. 6(1), 8632 (2015)

[5]

B. Cho, J. Yoon, S. K. Lim, A. R. Kim, D. H. Kim, S. G. Park, J. D. Kwon, Y. J. Lee, K. H. Lee, B. H. Lee, H. C. Ko, and M. G. Hahm, Chemical sensing of 2D graphene/MoS2 heterostructure device, ACS Appl. Mater. Interfaces 7(30), 16775 (2015)

[6]

Y. Zhao, J. G. Song, G. H. Ryu, K. Y. Ko, W. J. Woo, Y. Kim, D. Kim, J. H. Lim, S. Lee, Z. Lee, J. Park, and H. Kim, Low-temperature synthesis of 2D MoS2 on a plastic substrate for a flexible gas sensor, Nanoscale 10(19), 9338 (2018)

[7]

J. Mao, Y. Wang, Z. Zheng, and D. Deng, The rise of two-dimensional MoS2 for catalysis, Front. Phys. 13(4), 138118 (2018)

[8]

Z. Q. Wang, T. Y. , H. Q. Wang, Y. P. Feng, and J. C. Zheng, Review of borophene and its potential applications, Front. Phys. 14(3), 33403 (2019)

[9]

X. M. Huang, L. Z. Liu, S. Zhou, and J. J. Zhao, Phys-ical properties and device applications of graphene oxide, Front. Phys. 15(3), 33301 (2020)

[10]

V. Shukla, J. Wärnå, N. K. Jena, A. Grigoriev, and R. Ahuja, Toward the realization of 2D borophene based gas sensor, J. Phys. Chem. C 121(48), 26869 (2017)

[11]

S. Ma, D. Yuan, Z. Jiao, T. Wang, and X. Dai, Monolayer Sc2CO2: A promising candidate as a SO2 gas sensor or capturer, J. Phys. Chem. C 121(43), 24077 (2017)

[12]

D. J. Late, T. Doneux, and M. Bougouma, Single-layer MoSe2 based NH3 gas sensor, Appl. Phys. Lett. 105(23), 233103 (2014)

[13]

H. Mu, Z. Zhang, X. Zhao, F. Liu, K. Wang, and H. Xie, High sensitive formaldehyde graphene gas sensor modified by atomic layer deposition zinc oxide films, Appl. Phys. Lett. 105(3), 033107 (2014)

[14]

C. W. Chen, S. C. Hung, M. D. Yang, C. W. Yeh, C. H. Wu, G. C. Chi, F. P. S. J. Ren, and S. J. Pearton, Oxygen sensors made by monolayer graphene under room temperature, Appl. Phys. Lett. 99(24), 243502 (2011)

[15]

G. Lu, L. E. Ocola, and J. Chen, Gas detection using low-temperature reduced graphene oxide sheets, Appl. Phys. Lett. 94(8), 083111 (2009)

[16]

M. González-Garnica, A. Galdámez-Martínez, F. Malagón, C. D. Ramos, G. Santana, R. Abolhassani, P. Kumar Panda, A. Kaushik, Y. K. Mishra, T. V. K. Karthik, and A. Dutt, One dimensional Au-ZnO hybrid nanostruc-tures based CO2 detection: Growth mechanism and role of the seed layer on sensing performance, Sens. Actuators B Chem. 337, 129765 (2021)

[17]

R. Malik, V. K. Tomer, Y. K. Mishra, and L. Lin, Func-tional gas sensing nanomaterials: A panoramic view, Appl. Phys. Rev. 7(2), 021301 (2020)

[18]

H. Wang, Q. Li, Y. Gao, F. Miao, X. F. Zhou, and X. G. Wan, Strain effects on borophene: Ideal strength, negative Possion’s ratio and phonon instability, New J. Phys. 18(7), 073016 (2016)

[19]

B. Peng, H. Zhang, H. Shao, Z. Ning, Y. Xu, G. Ni, H. Lu, D. W. Zhang, and H. Zhu, Stability and strength of atomically thin borophene from first principles calcu-lations, Mater. Res. Lett. 5(6), 399 (2017)

[20]

Z. Zhang, Y. Yang, E. S. Penev, and B. I. Yakobson, Elas-ticity, flexibility, and ideal strength of borophenes, Adv. Funct. Mater. 27(9), 1605059 (2017)

[21]

M. Gao, Q. Z. Li, X. W. Yan, and J. Wang, Prediction of phonon-mediated superconductivity in borophene, Phys. Rev. B 95(2), 024505 (2017)

[22]

B. Peng, H. Zhang, H. Shao, Y. Xu, R. Zhang, and H. Zhu, The electronic, optical, and thermodynamic prop-erties of borophene from first-principles calculations, J. Mater. Chem. C 4(16), 3592 (2016)

[23]

B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, and K. Wu, Experimental realization of two-dimensional boron sheets, Nat. Chem. 8(6), 563 (2016)

[24]

B. Feng, J. Zhang, R.Y. Liu, T. Iimori, C. Lian, H. Li, L. Chen, K. Wu, S. Meng, F. Komori, and I. Matsuda, Direct evidence of metallic bands in a monolayer boron sheet, Phys. Rev. B 94(4), 041408 (2016)

[25]

X. Wu, J. Dai, Y. Zhao, Z. Zhuo, J. Yang, and X. C. Zeng, Two-dimensional boron monolayer sheets, ACS Nano 6(8), 7443 (2012)

[26]

L. Kou, T. Frauenheim, and C. Chen, Phosphorene as a superior gas sensor: Selective adsorption and distinct I–Vresponse, J. Phys. Chem. Lett. 5(15), 2675 (2014)

[27]

A. S. Kootenaei and G. Ansari, B36 borophene as an elec-tronic sensor for formaldehyde: Quantum chemical analy-sis, Phys. Lett. A 380(34), 2664 (2016)

[28]

J. Shen, Z. Yang, Y. Wang, L. C. Xu, R. Liu, and X. Liu, The gas sensing performance of borophene/MoS2 het-erostructure, Appl. Surf. Sci. 504, 144412 (2020)

[29]

M. Chen, Z. Yu, Y. Wang, Y. Xie, J. Wang, and H. Guo, Nonequilibrium spin injection in monolayer black phosphor-rus, Phys. Chem. Chem. Phys. 18(3), 1601 (2016)

[30]

M. Chen, Z. Yu, Y. Xie, and Y. Wang, Spin-polarized quantum transport properties through flexible phosphor-rene, Appl. Phys. Lett. 109(14), 142409 (2016)

[31]

Y. Xie, M. Chen, Z. Wu, Y. Hu, Y. Wang, J. Wang, and H. Guo, Two-dimensional photogalvanic spin-battery, Phys. Rev. Appl. 10(3), 034005 (2018)

[32]

G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47(1), 558 (1993)

[33]

S. Mehdi Aghaei, M. M. Monshi, I. Torres, S. M. J. Zeidi, and I. Calizo, DFT study of adsorption behavior of NO, CO, NO2, and NH3 molecules on graphene-like BC3: A search for highly sensitive molecular sensor, Appl. Surf. Sci. 427, 326 (2018)

[34]

J. Taylor, H. Guo, and J. Wang, Ab initiomodeling of quantum transport properties of molecular electronic de-vices, Phys. Rev. B 63(24), 245407 (2001)

[35]

J. Taylor, H. Guo, and J. Wang, Ab initiomodeling of open systems: Charge transfer, electron conduction, and molecular switching of a 60C device, Phys. Rev. B 63(12), 121104 (2001)

[36]

J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, The SIESTA method for ab initio order-N materials simulation, J. Phys.: Con-dens. Matter 14(11), 2745 (2002)

[37]

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)

[38]

N. Troullier and J. L. Martins, Efficient pseudopoten-tials for plane-wave calculations, Phys. Rev. B 43(3), 1993 (1991)

[39]

B. Cho, J. Yoon, M. G. Hahm, D. H. Kim, A. R. Kim, Y. H. Kahng, S. W. Park, Y. J. Lee, S. G. Park, J. D. Kwon, C. S. Kim, M. Song, Y. Jeong, K. S. Nam, and H. C. Ko, Graphene-based gas sensor: Metal decoration effect and application to a flexible device, J. Mater. Chem. C 2(27), 5280 (2014)

[40]

D. J. Oliver, J. Maassen, M. El Ouali, W. Paul, T. Hage-dorn, Y. Miyahara, Y. Qi, H. Guo, and P. Grütter, Con-ductivity of an atomically defined metallic interface, Proc. Natl. Acad. Sci. USA 109(47), 19097 (2012)

[41]

Q. Wu, L. Shen, Z. Bai, M. Zeng, M. Yang, Z. Huang, and Y. P. Feng, Efficient spin injection into graphene through a tunnel barrier: Overcoming the spin-conductance mis-match, Phys. Rev. Appl. 2(4), 044008 (2014)

[42]

J. Kang, W. Liu, D. Sarkar, D. Jena, and K. Baner-jee, Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors, Phys. Rev. X 4(3), 031005 (2014)

[43]

A. I. Ayesh, A. F. Abu-Hani, S. T. Mahmoud, and Y. Haik, Selective H2S sensor based on CuO nanoparticles embedded in organic membranes, Sens. Actuators B Chem. 231, 593 (2016)

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1682KB)

Supplementary files

Supplementary Material

816

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/