A comprehensive first-principle study of borophene-based nano gas sensor with gold electrodes

Yueyue Tian, Houping Yang, Junjun Li, Shunbo Hu, Shixun Cao, Wei Ren, Yin Wang

PDF(1682 KB)
PDF(1682 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (1) : 13501. DOI: 10.1007/s11467-021-1094-5
RESEARCH ARTICLE
RESEARCH ARTICLE

A comprehensive first-principle study of borophene-based nano gas sensor with gold electrodes

Author information +
History +

Abstract

Using density functional theory combined with nonequilibrium Green’s function method, the transport properties of borophene-based nano gas sensors with gold electrodes are calculated, and comprehensive understandings regarding the effects of gas molecules, MoS2 substrate and gold electrodes to the transport properties of borophene are made. Results show that borophene-based sensors can be used to detect and distinguish CO, NO, NO2 and NH3 gas molecules, MoS2 substrate leads to a nonlinear behavior on the current-voltage characteristic, and gold electrodes provide charges to borophene and form a potential barrier, which reduced the current values compared to the current of the systems without gold electrodes. Our studies not only provide useful information on the computationally design of borophene-based gas sensors, but also help understand the transport behaviors and underlying physics of 2D metallic materials with metal electrodes.

Graphical abstract

Keywords

quantum transport / borophene / gold electrodes / heterostructure

Cite this article

Download citation ▾
Yueyue Tian, Houping Yang, Junjun Li, Shunbo Hu, Shixun Cao, Wei Ren, Yin Wang. A comprehensive first-principle study of borophene-based nano gas sensor with gold electrodes. Front. Phys., 2022, 17(1): 13501 https://doi.org/10.1007/s11467-021-1094-5

References

[1]
X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, A survey on gas sensing technology, Sensors (Basel) 12(7), 9635 (2012)
CrossRef ADS Google scholar
[2]
Z. Yunusa, M. N. Hamidon, A. Kaiser, and Z. Awang, Gas sensors: A review, Sensors & Transducers 168(4), 61 (2014)
[3]
X. Zhang, Q. Chen, J. Tang, W. Hu, and J. Zhang, Ad-sorption of SF6 decomposed gas on anatase (101) and (001) surfaces with oxygen defect: A density functional theory study, Sci. Rep. 4, 4762 (2014)
CrossRef ADS Google scholar
[4]
S. Cui, H. Pu, S. A. Wells, Z. Wen, S. Mao, J. Chang, M. C. Hersam, and J. Chen, Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors, Nat. Commun. 6(1), 8632 (2015)
CrossRef ADS Google scholar
[5]
B. Cho, J. Yoon, S. K. Lim, A. R. Kim, D. H. Kim, S. G. Park, J. D. Kwon, Y. J. Lee, K. H. Lee, B. H. Lee, H. C. Ko, and M. G. Hahm, Chemical sensing of 2D graphene/MoS2 heterostructure device, ACS Appl. Mater. Interfaces 7(30), 16775 (2015)
CrossRef ADS Google scholar
[6]
Y. Zhao, J. G. Song, G. H. Ryu, K. Y. Ko, W. J. Woo, Y. Kim, D. Kim, J. H. Lim, S. Lee, Z. Lee, J. Park, and H. Kim, Low-temperature synthesis of 2D MoS2 on a plastic substrate for a flexible gas sensor, Nanoscale 10(19), 9338 (2018)
CrossRef ADS Google scholar
[7]
J. Mao, Y. Wang, Z. Zheng, and D. Deng, The rise of two-dimensional MoS2 for catalysis, Front. Phys. 13(4), 138118 (2018)
CrossRef ADS Google scholar
[8]
Z. Q. Wang, T. Y. Lü, H. Q. Wang, Y. P. Feng, and J. C. Zheng, Review of borophene and its potential applications, Front. Phys. 14(3), 33403 (2019)
CrossRef ADS Google scholar
[9]
X. M. Huang, L. Z. Liu, S. Zhou, and J. J. Zhao, Phys-ical properties and device applications of graphene oxide, Front. Phys. 15(3), 33301 (2020)
CrossRef ADS Google scholar
[10]
V. Shukla, J. Wärnå, N. K. Jena, A. Grigoriev, and R. Ahuja, Toward the realization of 2D borophene based gas sensor, J. Phys. Chem. C 121(48), 26869 (2017)
CrossRef ADS Google scholar
[11]
S. Ma, D. Yuan, Z. Jiao, T. Wang, and X. Dai, Monolayer Sc2CO2: A promising candidate as a SO2 gas sensor or capturer, J. Phys. Chem. C 121(43), 24077 (2017)
CrossRef ADS Google scholar
[12]
D. J. Late, T. Doneux, and M. Bougouma, Single-layer MoSe2 based NH3 gas sensor, Appl. Phys. Lett. 105(23), 233103 (2014)
CrossRef ADS Google scholar
[13]
H. Mu, Z. Zhang, X. Zhao, F. Liu, K. Wang, and H. Xie, High sensitive formaldehyde graphene gas sensor modified by atomic layer deposition zinc oxide films, Appl. Phys. Lett. 105(3), 033107 (2014)
CrossRef ADS Google scholar
[14]
C. W. Chen, S. C. Hung, M. D. Yang, C. W. Yeh, C. H. Wu, G. C. Chi, F. P. S. J. Ren, and S. J. Pearton, Oxygen sensors made by monolayer graphene under room temperature, Appl. Phys. Lett. 99(24), 243502 (2011)
CrossRef ADS Google scholar
[15]
G. Lu, L. E. Ocola, and J. Chen, Gas detection using low-temperature reduced graphene oxide sheets, Appl. Phys. Lett. 94(8), 083111 (2009)
CrossRef ADS Google scholar
[16]
M. González-Garnica, A. Galdámez-Martínez, F. Malagón, C. D. Ramos, G. Santana, R. Abolhassani, P. Kumar Panda, A. Kaushik, Y. K. Mishra, T. V. K. Karthik, and A. Dutt, One dimensional Au-ZnO hybrid nanostruc-tures based CO2 detection: Growth mechanism and role of the seed layer on sensing performance, Sens. Actuators B Chem. 337, 129765 (2021)
CrossRef ADS Google scholar
[17]
R. Malik, V. K. Tomer, Y. K. Mishra, and L. Lin, Func-tional gas sensing nanomaterials: A panoramic view, Appl. Phys. Rev. 7(2), 021301 (2020)
CrossRef ADS Google scholar
[18]
H. Wang, Q. Li, Y. Gao, F. Miao, X. F. Zhou, and X. G. Wan, Strain effects on borophene: Ideal strength, negative Possion’s ratio and phonon instability, New J. Phys. 18(7), 073016 (2016)
CrossRef ADS Google scholar
[19]
B. Peng, H. Zhang, H. Shao, Z. Ning, Y. Xu, G. Ni, H. Lu, D. W. Zhang, and H. Zhu, Stability and strength of atomically thin borophene from first principles calcu-lations, Mater. Res. Lett. 5(6), 399 (2017)
CrossRef ADS Google scholar
[20]
Z. Zhang, Y. Yang, E. S. Penev, and B. I. Yakobson, Elas-ticity, flexibility, and ideal strength of borophenes, Adv. Funct. Mater. 27(9), 1605059 (2017)
CrossRef ADS Google scholar
[21]
M. Gao, Q. Z. Li, X. W. Yan, and J. Wang, Prediction of phonon-mediated superconductivity in borophene, Phys. Rev. B 95(2), 024505 (2017)
CrossRef ADS Google scholar
[22]
B. Peng, H. Zhang, H. Shao, Y. Xu, R. Zhang, and H. Zhu, The electronic, optical, and thermodynamic prop-erties of borophene from first-principles calculations, J. Mater. Chem. C 4(16), 3592 (2016)
CrossRef ADS Google scholar
[23]
B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, and K. Wu, Experimental realization of two-dimensional boron sheets, Nat. Chem. 8(6), 563 (2016)
CrossRef ADS Google scholar
[24]
B. Feng, J. Zhang, R.Y. Liu, T. Iimori, C. Lian, H. Li, L. Chen, K. Wu, S. Meng, F. Komori, and I. Matsuda, Direct evidence of metallic bands in a monolayer boron sheet, Phys. Rev. B 94(4), 041408 (2016)
CrossRef ADS Google scholar
[25]
X. Wu, J. Dai, Y. Zhao, Z. Zhuo, J. Yang, and X. C. Zeng, Two-dimensional boron monolayer sheets, ACS Nano 6(8), 7443 (2012)
CrossRef ADS Google scholar
[26]
L. Kou, T. Frauenheim, and C. Chen, Phosphorene as a superior gas sensor: Selective adsorption and distinct I–Vresponse, J. Phys. Chem. Lett. 5(15), 2675 (2014)
CrossRef ADS Google scholar
[27]
A. S. Kootenaei and G. Ansari, B36 borophene as an elec-tronic sensor for formaldehyde: Quantum chemical analy-sis, Phys. Lett. A 380(34), 2664 (2016)
CrossRef ADS Google scholar
[28]
J. Shen, Z. Yang, Y. Wang, L. C. Xu, R. Liu, and X. Liu, The gas sensing performance of borophene/MoS2 het-erostructure, Appl. Surf. Sci. 504, 144412 (2020)
CrossRef ADS Google scholar
[29]
M. Chen, Z. Yu, Y. Wang, Y. Xie, J. Wang, and H. Guo, Nonequilibrium spin injection in monolayer black phosphor-rus, Phys. Chem. Chem. Phys. 18(3), 1601 (2016)
CrossRef ADS Google scholar
[30]
M. Chen, Z. Yu, Y. Xie, and Y. Wang, Spin-polarized quantum transport properties through flexible phosphor-rene, Appl. Phys. Lett. 109(14), 142409 (2016)
CrossRef ADS Google scholar
[31]
Y. Xie, M. Chen, Z. Wu, Y. Hu, Y. Wang, J. Wang, and H. Guo, Two-dimensional photogalvanic spin-battery, Phys. Rev. Appl. 10(3), 034005 (2018)
CrossRef ADS Google scholar
[32]
G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47(1), 558 (1993)
CrossRef ADS Google scholar
[33]
S. Mehdi Aghaei, M. M. Monshi, I. Torres, S. M. J. Zeidi, and I. Calizo, DFT study of adsorption behavior of NO, CO, NO2, and NH3 molecules on graphene-like BC3: A search for highly sensitive molecular sensor, Appl. Surf. Sci. 427, 326 (2018)
CrossRef ADS Google scholar
[34]
J. Taylor, H. Guo, and J. Wang, Ab initiomodeling of quantum transport properties of molecular electronic de-vices, Phys. Rev. B 63(24), 245407 (2001)
CrossRef ADS Google scholar
[35]
J. Taylor, H. Guo, and J. Wang, Ab initiomodeling of open systems: Charge transfer, electron conduction, and molecular switching of a 60C device, Phys. Rev. B 63(12), 121104 (2001)
CrossRef ADS Google scholar
[36]
J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, The SIESTA method for ab initio order-N materials simulation, J. Phys.: Con-dens. Matter 14(11), 2745 (2002)
CrossRef ADS Google scholar
[37]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef ADS Google scholar
[38]
N. Troullier and J. L. Martins, Efficient pseudopoten-tials for plane-wave calculations, Phys. Rev. B 43(3), 1993 (1991)
CrossRef ADS Google scholar
[39]
B. Cho, J. Yoon, M. G. Hahm, D. H. Kim, A. R. Kim, Y. H. Kahng, S. W. Park, Y. J. Lee, S. G. Park, J. D. Kwon, C. S. Kim, M. Song, Y. Jeong, K. S. Nam, and H. C. Ko, Graphene-based gas sensor: Metal decoration effect and application to a flexible device, J. Mater. Chem. C 2(27), 5280 (2014)
CrossRef ADS Google scholar
[40]
D. J. Oliver, J. Maassen, M. El Ouali, W. Paul, T. Hage-dorn, Y. Miyahara, Y. Qi, H. Guo, and P. Grütter, Con-ductivity of an atomically defined metallic interface, Proc. Natl. Acad. Sci. USA 109(47), 19097 (2012)
CrossRef ADS Google scholar
[41]
Q. Wu, L. Shen, Z. Bai, M. Zeng, M. Yang, Z. Huang, and Y. P. Feng, Efficient spin injection into graphene through a tunnel barrier: Overcoming the spin-conductance mis-match, Phys. Rev. Appl. 2(4), 044008 (2014)
CrossRef ADS Google scholar
[42]
J. Kang, W. Liu, D. Sarkar, D. Jena, and K. Baner-jee, Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors, Phys. Rev. X 4(3), 031005 (2014)
CrossRef ADS Google scholar
[43]
A. I. Ayesh, A. F. Abu-Hani, S. T. Mahmoud, and Y. Haik, Selective H2S sensor based on CuO nanoparticles embedded in organic membranes, Sens. Actuators B Chem. 231, 593 (2016)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(1682 KB)

Accesses

Citations

Detail

Sections
Recommended

/