Enhanced photogalvanic effect in the two-dimensional MgCl2/ZnBr2 vertical heterojunction by inhomogenous tensile stress
Liyu Qian, Juan Zhao, Yiqun Xie
Enhanced photogalvanic effect in the two-dimensional MgCl2/ZnBr2 vertical heterojunction by inhomogenous tensile stress
The photogalvanic effect (PGE) occurring in noncentrosymmetric materials enables the generation of a dc photocurrent at zero bias with a high polarization sensitivity, which makes it very attractive in photodetection. However, the magnitude of the PGE photocurrent is usually small, leading to a low photoresponsivity, and therefore hampers its practical application in photodetection. Here, we propose an approach to largely enhancing the PGE photocurrent by applying an inhomogenous me-chanical stretch, based on quantum transport simulations. We model a two-dimensional photodetector consisting of the wide-bandgap MgCl2/ZnBr2 vertical van der Waals heterojunction with the noncen-trosymmetric C3v symmetry. Polarization-sensitive PGE photocurrent is generated under the vertical illumination of linearly polarized light. By applying inhomogenous mechanical stretch on the lattice, the photocurrent can be largely increased by up to 3 orders of magnitude due to the significantly in-creased device asymmetry. Our results propose an effective way to enhance the PGE by inhomogenous mechanical strain, showing the potential of the MgCl2/ZnBr2 vertical heterojunction in the low-power UV photodetection.
photogalvanic effect / mechanical stretch / polarization-sensitive / vertical heterojunction / ultraviolet photodetection
[1] |
H. Chen, H. Liu, Z. Zhang, K. Hu, and X. Fang, Nanos-tructured photodetectors: From ultraviolet to terahertz, Adv. Mater. 28(3), 403 (2016)
CrossRef
ADS
Google scholar
|
[2] |
Q. Zhang, X. Li, Z. He, M. Xu, C. Jin, and X. Zhou, 2D semiconductors towards high-performance ultraviolet photodetection, J. Phys. D 52(30), 303002 (2019)
CrossRef
ADS
Google scholar
|
[3] |
D. Guo, Y. Su, H. Shi, P. Li, N. Zhao, J. Ye, S. Wang, A. Liu, Z. Chen, C. Li, and W. Tang, Self-powered ul-traviolet photodetector with superhigh photoresponsivity (3.05 A/W) based on the GaN/Sn:Ga2O3 pn Junction, ACS Nano 12(12), 12827 (2018)
CrossRef
ADS
Google scholar
|
[4] |
W. Zheng, R. Lin, Y. Zhu, Z. Zhang, X. Ji, and F. Huang, Vacuum ultraviolet photodetection in two-dimensional ox-ides, ACS Appl. Mater. Interfaces 10(24), 20696 (2018)
CrossRef
ADS
Google scholar
|
[5] |
W. Zheng, R. Lin, Z. Zhang, and F. Huang, Vacuumultraviolet photodetection in few-layered h-BN, ACS Appl. Mater. Interfaces 10(32), 27116 (2018)
CrossRef
ADS
Google scholar
|
[6] |
Y. Gao, S. Lei, T. Kang, L.Fei, C. L. Mak, J. Yuan, M. Zhang, S. Li, Q. Bao, Z. Zeng, Z. Wang, H. Gu, and K. Zhang, Bias-switchable negative and positive photo-conductivity in 2D FePS3 ultraviolet photodetectors, Nan-otechnology 29(24), 244001 (2018)
CrossRef
ADS
Google scholar
|
[7] |
H. Kan, W. Zheng, R. C. Lin, M. Li, C. Fu, H. B. Sun, M. Dong, C. H. Xu, J. T. Luo, Y. Q. Fu, and F. Huang, Ul-trafast photovoltaic-type deep ultraviolet photodetectors using hybrid zero-/two-dimensional heterojunctions, ACS Appl. Mater. Interfaces 11(8), 8412 (2019)
CrossRef
ADS
Google scholar
|
[8] |
Y. Gao, Y. Zhang, and D. Xiao, Tunable layer circular photogalvanic effect in twisted bilayers, Phys. Rev. Lett. 124(7), 077401 (2020)
CrossRef
ADS
Google scholar
|
[9] |
R. von Baltz and W. Kraut, Theory of the bulk photo-voltaic effect in pure crystals, Phys. Rev. B 23(10), 5590 (1981)
CrossRef
ADS
Google scholar
|
[10] |
V. I. Belinicher, Space-oscillating photocurrent in crystals without symmetry center, Phys. Lett. A 66(3), 213 (1978)
CrossRef
ADS
Google scholar
|
[11] |
S. D. Ganichev and W. Prettl, Spin photocurrents in quan-tum wells, J. Phys.: Condens. Matter 15(20), R935 (2003)
CrossRef
ADS
Google scholar
|
[12] |
X. Tao, P. Jiang, H. Hao, X. Zheng, L. Zhang, and Z. Zeng, Pure spin current generation via photogalvanic effect with spatial inversion symmetry, Phys. Rev. B 102(8), 081402 (2020)
CrossRef
ADS
Google scholar
|
[13] |
M. M. Ramin Moayed, F. Li, P. Beck, J. C. Schober, and C. Klinke, Anisotropic circular photogalvanic effect in col-loidal tin sulfide nanosheets, Nanoscale 12(11), 6256 (2020)
CrossRef
ADS
Google scholar
|
[14] |
M. Chen, K. Lee, J. Li, L. Cheng, Q. Wang, K. Cai, E. E. M. Chia, H. Chang, and H.Yang, Anisotropic picosecond spin-photocurrent from Weyl semimetal WTe2, ACS Nano 14(3), 3539 (2020)
CrossRef
ADS
Google scholar
|
[15] |
C. Guo, Y. Hu, G. Chen, D. Wei, L. Zhang, Z. Chen, W. Guo, H. Xu, C. N. Kuo, C. S. Lue, X. Bo, X. Wan, L. Wang, A. Politano, X. Chen, and W. Lu, Anisotropic ultrasensitive PdTe2-based phototransistor for room-temperature long-wavelength detection, Sci. Adv. 6(36), eabb6500 (2020)
CrossRef
ADS
Google scholar
|
[16] |
Y. Luo, Y. Hu, and Y. Xie, Highly polarization-sensitive, visible-blind and self-powered ultraviolet photodetection based on two-dimensional wide bandgap semiconductors: A theoretical prediction, J. Mater. Chem. A 7(48), 27503 (2019)
CrossRef
ADS
Google scholar
|
[17] |
Y. Peng, X. T. Liu, Z. H. Sun, C. M. Ji, L. N. Li, Z. Y. Wu, S. S. Wang, Y. P. Yao, M. C. Hong, and J. H. Luo, Exploiting the bulk photovoltaic effect in a 2D trilayered hybrid ferroelectric for highly sensitive polarized light de-tection, Angew. Chem. Int. Ed.
CrossRef
ADS
Google scholar
|
[18] |
Y. J. Zhang, T. Ideue, M. Onga, F. Qin, R. Suzuki, A. Zak, R. Tenne, J. H. Smet, and Y. Iwasa, Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes, Nature 570(7761), 349 (2019)
CrossRef
ADS
Google scholar
|
[19] |
J. E. Spanier, V. M. Fridkin, A. M. Rappe, A. R. Akba-shev, A. Polemi, Y. Qi, Z.Gu, S. M. Young, C. J. Haw-ley, D. Imbrenda, G. Xiao, A. L. Bennett-Jackson, and C. L. Johnson, Power conversion efficiency exceeding the Shockley–Queisser limit in a ferroelectric insulator, Nat. Photonics 10(9), 611 (2016)
CrossRef
ADS
Google scholar
|
[20] |
J. Li and P. M. Haney, Circular photogalvanic effect in organometal halide perovskite CH3NH3PbI3, Appl. Phys. Lett. 109(19), 193903 (2016)
CrossRef
ADS
Google scholar
|
[21] |
M. M. Yang, D. J. Kim, and M. Alexe, Flexo-photovoltaic effect, Science360(6391), 904 (2018)
CrossRef
ADS
Google scholar
|
[22] |
H. Zou, C. Zhang, H. Xue, Z. Wu, and Z. L. Wang, Boost-ing the solar cell efficiency by flexo-photovoltaic effect? ACS Nano 13(11), 12259 (2019)
CrossRef
ADS
Google scholar
|
[23] |
S. Nadupalli, J. Kreisel, and T. Granzow, Increasing bulk photovoltaic current by strain tuning, Sci. Adv. 5(3), eaau9199 (2019)
CrossRef
ADS
Google scholar
|
[24] |
J. Zhao, Y. Hu, Y. Xie, L. Zhang, and Y. Wang, Largely enhanced photogalvanic effects in a phosphorene photode-tector by strain-increased device asymmetry, Phys. Rev. Appl. 14(6), 064003 (2020)
CrossRef
ADS
Google scholar
|
[25] |
N. Mounet, M. Gibertini, P. Schwaller, D. Campi, A. Merkys, A. Marrazzo, T. Sohier, I. E. Castelli, A. Cepel-lotti, G. Pizzi, and N. Marzari, Two-dimensional materials from high-throughput computational exfoliation of experi-mentally known compounds, Nat. Nanotechnol. 13(3), 246 (2018)
CrossRef
ADS
Google scholar
|
[26] |
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef
ADS
Google scholar
|
[27] |
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
CrossRef
ADS
Google scholar
|
[28] |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef
ADS
Google scholar
|
[29] |
J. Taylor, H. Guo, and J. Wang, Ab initio modeling of quantum transport properties of molecular electronic de-vices, Phys. Rev. B 63(24), 245407 (2001)
CrossRef
ADS
Google scholar
|
[30] |
L. E. Henrickson, Nonequilibrium photocurrent model-ing in resonant tunneling photodetectors, J. Appl. Phys. 91(10), 6273 (2002)
CrossRef
ADS
Google scholar
|
[31] |
Y. Xie, M. Chen, Z. Wu, Y. Hu, Y. Wang, J. Wang, and H. Guo, Two-dimensional photogalvanic spin-battery, Phys. Rev. Appl. 10(3), 034005 (2018)
CrossRef
ADS
Google scholar
|
[32] |
Y. Xie, L. Zhang, Y. Zhu, L. Liu, and H. Guo, Photogal-vanic effect in monolayer black phosphorus, Nanotechnol-ogy 26(45), 455202 (2015)
CrossRef
ADS
Google scholar
|
[33] |
J. Chen, L. Zhang, L. Zhang, X. Zheng, L. Xiao, S. Jia, and J. Wang, Photogalvanic effect induced fully spin polar-ized current and pure spin current in zigzag SiC nanorib-bons, Phys. Chem. Chem. Phys. 20, 26744 (2018)
CrossRef
ADS
Google scholar
|
[34] |
L. Zhang, K. Gong, J. Chen, L. Liu, Y. Zhu, D. Xiao, and H. Guo, Generation and transport of valley polarized current in transition metal dichalcogenides, Phys. Rev. B 90, 195428 (2014)
CrossRef
ADS
Google scholar
|
[35] |
V. I. Belinicher and B. I. Sturman, The photogalvanic ef-fect in media lacking a center of symmetry, Sov. Phys. Usp. 23(3), 199 (1980)
CrossRef
ADS
Google scholar
|
[36] |
S. D. Ganichev, H. Ketterl, W. Prettl, E. L. Ivchenko, and L. E. Vorobjev, Circular photogalvanic effect induced by monopolar spin orientation in p-GaAs/AlGaAs multiple-quantum wells, Appl. Phys. Lett. 77(20), 3146 (2000)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |