Asymmetric conductivity of the Kondo effect in cold atomic systems
Yanting Cheng, Xin Chen, Ren Zhang
Asymmetric conductivity of the Kondo effect in cold atomic systems
Motivated by recent theoretical and experimental advances in quantum simulations using alkaline earth (AE) atoms, we put forward a proposal to detect the Kondo physics in a cold atomic system. It has been demonstrated that the intrinsic spin-exchange interaction in AE atoms can be significantly enhanced near a confinement-induced resonance (CIR), which facilitates the simulation of Kondo physics. Since the Kondo effect appears only for antiferromagnetic coupling, we find that the conductivity of such system exhibits an asymmetry across a resonance of spin-exchange interaction. The asymmetric conductivity can serve as the smoking gun evidence for Kondo physics in the cold atom context. When an extra magnetic field ramps up, the spin-exchange process near Fermi surface is suppressed by Zeeman energy and the conductivity becomes more and more symmetric. Our results can be verified in the current experimental setup.
Kondo effect / alkaline earth atom / confinement induced resonance
[1] |
I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80(3), 885 (2008)
CrossRef
ADS
Google scholar
|
[2] |
N. Goldman, J. C. Budich, and P. Zoller, Topological quantum matter with ultracold gases in optical lattices, Nat. Phys. 12, 639 (2016)
CrossRef
ADS
Google scholar
|
[3] |
C. Gross and I. Bloch, Quantum simulations with ultracold atoms in optical lattices, Science 357(6355), 995 (2017)
CrossRef
ADS
Google scholar
|
[4] |
B. Paredes, C. Tejedor, and J. I. Cirac, Fermionic atoms in optical superlattices, Phys. Rev. A 71(6), 063608 (2005)
CrossRef
ADS
Google scholar
|
[5] |
J. Silva-Valencia and A. M. C. Souza, Superfluid-to-Mott insulator transition of bosons with local three-body inter-actions, Eur. Phys. J. B 85(5), 161 (2012)
CrossRef
ADS
Google scholar
|
[6] |
D. Yu, J. S. Pan, X. J. Liu, W. Zhang, and W. Yi, Topological superradiant state in Fermi gases with cavity induced spin–orbit coupling, Front. Phys. 13(1), 136701 (2018)
CrossRef
ADS
Google scholar
|
[7] |
C. A. Regal, M. Greiner, and D. S. Jin, Observation of resonance condensation of fermionic atom pairs, Phys. Rev. Lett. 92(4), 040403 (2004)
CrossRef
ADS
Google scholar
|
[8] |
M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, A. J. Kerman, and W. Ketterle, Condensation of pairs of fermionic atoms near a Feshbach resonance, Phys. Rev. Lett.
CrossRef
ADS
Google scholar
|
[9] |
J. Kinast, S. L. Hemmer, M. E. Gehm, A. Turlapov, and J. E. Thomas, Evidence for superfluidity in a resonantly interacting Fermi gas, Phys. Rev. Lett. 92(15), 150402 (2004)
CrossRef
ADS
Google scholar
|
[10] |
T. Bourdel, L. Khaykovich, J. Cubizolles, J. Zhang, F. Chevy, M. Teichmann, L. Tarruell, S. J. J. M. F. Kokkel-mans, and C. Salomon, Experimental study of the BECBCS crossover region in 6Li, Phys. Rev. Lett.
CrossRef
ADS
Google scholar
|
[11] |
C. Chin, M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, J. H. Denschlag, and R. Grimm, Observation of the pairing gap in a strongly interacting Fermi gas, Science 305(5687), 1128 (2004)
CrossRef
ADS
Google scholar
|
[12] |
G. B. Partridge, K. E. Strecker, R. I. Kamar, M. W. Jack, and R. G. Hulet, Molecular probe of pairing in the BECBCS crossover, Phys. Rev. Lett. 95(2), 020404 (2005)
CrossRef
ADS
Google scholar
|
[13] |
M. W. Zwierlein, J. R. Abo-Shaeer, A. Schirotzek, C. H. Schunck, and W. Ketterle, Vortices and superfluidity in a strongly interacting Fermi gas, Nature 435, 1047 (2005)
CrossRef
ADS
Google scholar
|
[14] |
G. M. Falco, R. A. Duine, and H. T. C. Stoof, Molecular Kondo resonance in atomic Fermi gases, Phys. Rev. Lett.
CrossRef
ADS
Google scholar
|
[15] |
A. V. Gorshkov, M. Hermele, V. Gurarie, C. Xu, P. S. Julienne, J. Ye, P. Zoller, E. Demler, M. D. Lukin, and A. M. Rey, Two-orbital SU(N)magnetism with ultracold alkaline-earth atoms, Nat. Phys. 6(4), 289 (2010)
CrossRef
ADS
Google scholar
|
[16] |
M. Foss-Feig, M. Hermele, and A. M. Rey, Probing the Kondo lattice model with alkaline-earth-metal atoms, Phys. Rev. A 81(5), 051603 (2010)
CrossRef
ADS
Google scholar
|
[17] |
J. Bauer, C. Salomon, and E. Demler, Realizing a Kondocorrelated state with ultracold atoms, Phys. Rev. Lett.
CrossRef
ADS
Google scholar
|
[18] |
Y. Nishida, SU(3) orbital Kondo effect with ultracold atoms, Phys. Rev. Lett.
CrossRef
ADS
Google scholar
|
[19] |
L. Isaev and A. M. Rey, Heavy-fermion valence-bond liquids in ultracold atoms: Cooperation of the Kondo effect and geometric frustration, Phys. Rev. Lett.
CrossRef
ADS
Google scholar
|
[20] |
I. Kuzmenko, T. Kuzmenko, Y. Avishai, and K. Kikoin, Model for overscreened Kondo effect in ultracold Fermi gas, Phys. Rev. B 91(16), 165131 (2015)
CrossRef
ADS
Google scholar
|
[21] |
Y. Nishida, Transport measurement of the orbital Kondo effect with ultracold atoms, Phys. Rev. A 93(1), 011606 (2016)
CrossRef
ADS
Google scholar
|
[22] |
R. Zhang, D. Zhang, Y. Cheng, W. Chen, P. Zhang, and H. Zhai, Kondo effect in alkaline-earth-metal atomic gases with confinement-induced resonances, Phys. Rev. A 93(4), 043601 (2016)
CrossRef
ADS
Google scholar
|
[23] |
I. Kuzmenko, T. Kuzmenko, Y. Avishai, and G. B. Jo, Multipolar Kondo effect in a 1S0−3P2 mixture of 173Yb atoms, Phys. Rev. B 97(7), 075124 (2018)
CrossRef
ADS
Google scholar
|
[24] |
Y. Cheng, R. Zhang, P. Zhang, and H. Zhai, Enhancing Kondo coupling in alkaline-earth-metal atomic gases with confinement-induced resonances in mixed dimensions, Phys. Rev. A 96(6), 063605 (2017)
CrossRef
ADS
Google scholar
|
[25] |
J. Yao, H. Zhai, and R. Zhang, Efimov-enhanced Kondo effect in alkali-metal and alkaline-earth-metal atomic gas mixtures, Phys. Rev. A 99(1), 010701 (2019)
CrossRef
ADS
Google scholar
|
[26] |
M. Nakagawa and N. Kawakami, Laser-induced Kondo effect in ultracold alkaline-earth fermions, Phys. Rev. Lett. 115(16), 165303 (2015)
CrossRef
ADS
Google scholar
|
[27] |
M. Nakagawa, N. Kawakami, and M. Ueda, NonHermitian Kondo effect in ultracold alkaline-earth atoms, Phys. Rev. Lett.
CrossRef
ADS
Google scholar
|
[28] |
M. Kanász-Nagy, Y. Ashida, T. Shi, C. P. Moca, T. N. Ikeda, S. Fölling, J. I. Cirac, G. Zaránd, and E. A. Dem-ler, Exploring the anisotropic Kondo model in and out of equilibrium with alkaline-earth atoms, Phys. Rev. B 97, 155156 (2018)
CrossRef
ADS
Google scholar
|
[29] |
Y. Zhong, Y. Liu, and H. G. Luo, Simulating heavy fermion physics in optical lattice: Periodic Anderson model with harmonic trapping potential, Front. Phys. 12(5), 127502 (2017)
CrossRef
ADS
Google scholar
|
[30] |
P. W. Anderson, A poor man’s derivation of scaling laws for the Kondo problem, J. Phys. C 3(12), 2436 (1970)
CrossRef
ADS
Google scholar
|
[31] |
J. Kondo, Resistance minimum in dilute magnetic alloys, Prog. Theor. Phys.
CrossRef
ADS
Google scholar
|
[32] |
Z. W. Barber, J. E. Stalnaker, N. D. Lemke, N. Poli, C. W. Oates, T. M. Fortier, S. A. Diddams, L. Hollberg, C. W. Hoyt, A. V. Taichenachev, and V. I. Yudin, Optical lattice induced light shifts in an Yb atomic clock, Phys. Rev. Lett.
CrossRef
ADS
Google scholar
|
[33] |
V. A. Dzuba and A. Derevianko, Dynamic polarizabilities and related properties of clock states of the ytterbium atom, J. Phys. At. Mol. Opt. Phys.
CrossRef
ADS
Google scholar
|
[34] |
G. Cappellini, M. Mancini, G. Pagano, P. Lombardi, L. Livi, M. Siciliani de Cumis, P. Cancio, M. Pizzocaro, D. Calonico, F. Levi, C. Sias, J. Catani, M. Inguscio, and L. Fallani, Direct observation of coherent interorbital spin-exchange dynamics, Phys. Rev. Lett.
CrossRef
ADS
Google scholar
|
[35] |
F. Scazza, C. Hofrichter, M. Höfer, P. C. De Groot, I. Bloch, and S. Fölling, Observation of two-orbital spinexchange interactions with ultracold SU(N)-symmetric fermions, Nat. Phys. 10(10), 779 (2014)
CrossRef
ADS
Google scholar
|
[36] |
K. Ono, Y. Amano, T. Higomoto, Y. Saito, and Y. Taka-hashi, Observation of spin-exchange dynamics between itinerant and localized 171Yb atoms, Phys. Rev. A 103(4), L041303 (2021)
CrossRef
ADS
Google scholar
|
[37] |
K. Ono, J. Kobayashi, Y. Amano, K. Sato, and Y. Taka-hashi, Antiferromagnetic interorbital spin-exchange interaction of 171Yb, Phys. Rev. A 99(3), 032707 (2019)
CrossRef
ADS
Google scholar
|
[38] |
L. Riegger, N. Darkwah Oppong,M. Höfer, D. R. Fernan-des, I. Bloch, and S. Fölling, Localized magnetic moments with tunable spin exchange in a gas of ultracold fermions, Phys. Rev. Lett. 120(14), 143601 (2018)
CrossRef
ADS
Google scholar
|
[39] |
R. Zhang and P. Zhang, Control of spin-exchange interaction between alkali-earth-metal atoms via confinementinduced resonances in a quasi-(1+0)-dimensional system, Phys. Rev. A 98(4), 043627 (2018)
CrossRef
ADS
Google scholar
|
[40] |
R. Zhang, Y. Cheng, P. Zhang, and H. Zhai, Controlling the interaction of ultracold alkaline-earth atoms, Nat. Rev. Phys. 2(4), 213 (2020)
CrossRef
ADS
Google scholar
|
[41] |
S. Goto and I. Danshita, Quasiexact Kondo dynamics of fermionic alkaline-earth-like atoms at finite temperatures, Phys. Rev. Lett. 123(14), 143002 (2019)
CrossRef
ADS
Google scholar
|
[42] |
A. C. Hewson, The Kondo Problem to Heavy Fermions, Cambridge Studies in Magnetism, Cambridge University Press, 1993
CrossRef
ADS
Google scholar
|
[43] |
M. V. Sadovskii, Diagrammatics: Lectures on Selected Problems in Condensed Matter Theory, edited by Michael V. Sadovskii, World Scientific, 2006
CrossRef
ADS
Google scholar
|
[44] |
A. Furusaki and N. Nagaosa, Kondo effect in a TomonagaLuttinger liquid, Phys. Rev. Lett. 72(6), 892 (1994)
CrossRef
ADS
Google scholar
|
[45] |
Y. Ashida, T. Shi, M. C. Bañuls, J. I. Cirac, and E. Dem-ler, Solving quantum impurity problems in and out of equilibrium with the variational approach, Phys. Rev. Lett. 121(2), 026805 (2018)
CrossRef
ADS
Google scholar
|
[46] |
Y. Ashida, T. Shi, M. C. Bañuls, J. I. Cirac, and E. Dem-ler, Variational principle for quantum impurity systems in and out of equilibrium: Application to Kondo problems, Phys. Rev. B 98(2), 024103 (2018)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |