Asymmetric conductivity of the Kondo effect in cold atomic systems

Yanting Cheng, Xin Chen, Ren Zhang

PDF(655 KB)
PDF(655 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (1) : 12502. DOI: 10.1007/s11467-021-1091-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Asymmetric conductivity of the Kondo effect in cold atomic systems

Author information +
History +

Abstract

Motivated by recent theoretical and experimental advances in quantum simulations using alkaline earth (AE) atoms, we put forward a proposal to detect the Kondo physics in a cold atomic system. It has been demonstrated that the intrinsic spin-exchange interaction in AE atoms can be significantly enhanced near a confinement-induced resonance (CIR), which facilitates the simulation of Kondo physics. Since the Kondo effect appears only for antiferromagnetic coupling, we find that the conductivity of such system exhibits an asymmetry across a resonance of spin-exchange interaction. The asymmetric conductivity can serve as the smoking gun evidence for Kondo physics in the cold atom context. When an extra magnetic field ramps up, the spin-exchange process near Fermi surface is suppressed by Zeeman energy and the conductivity becomes more and more symmetric. Our results can be verified in the current experimental setup.

Graphical abstract

Keywords

Kondo effect / alkaline earth atom / confinement induced resonance

Cite this article

Download citation ▾
Yanting Cheng, Xin Chen, Ren Zhang. Asymmetric conductivity of the Kondo effect in cold atomic systems. Front. Phys., 2022, 17(1): 12502 https://doi.org/10.1007/s11467-021-1091-8

References

[1]
I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80(3), 885 (2008)
CrossRef ADS Google scholar
[2]
N. Goldman, J. C. Budich, and P. Zoller, Topological quantum matter with ultracold gases in optical lattices, Nat. Phys. 12, 639 (2016)
CrossRef ADS Google scholar
[3]
C. Gross and I. Bloch, Quantum simulations with ultracold atoms in optical lattices, Science 357(6355), 995 (2017)
CrossRef ADS Google scholar
[4]
B. Paredes, C. Tejedor, and J. I. Cirac, Fermionic atoms in optical superlattices, Phys. Rev. A 71(6), 063608 (2005)
CrossRef ADS Google scholar
[5]
J. Silva-Valencia and A. M. C. Souza, Superfluid-to-Mott insulator transition of bosons with local three-body inter-actions, Eur. Phys. J. B 85(5), 161 (2012)
CrossRef ADS Google scholar
[6]
D. Yu, J. S. Pan, X. J. Liu, W. Zhang, and W. Yi, Topological superradiant state in Fermi gases with cavity induced spin–orbit coupling, Front. Phys. 13(1), 136701 (2018)
CrossRef ADS Google scholar
[7]
C. A. Regal, M. Greiner, and D. S. Jin, Observation of resonance condensation of fermionic atom pairs, Phys. Rev. Lett. 92(4), 040403 (2004)
CrossRef ADS Google scholar
[8]
M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, A. J. Kerman, and W. Ketterle, Condensation of pairs of fermionic atoms near a Feshbach resonance, Phys. Rev. Lett. 92(12), 120403 (2004)
CrossRef ADS Google scholar
[9]
J. Kinast, S. L. Hemmer, M. E. Gehm, A. Turlapov, and J. E. Thomas, Evidence for superfluidity in a resonantly interacting Fermi gas, Phys. Rev. Lett. 92(15), 150402 (2004)
CrossRef ADS Google scholar
[10]
T. Bourdel, L. Khaykovich, J. Cubizolles, J. Zhang, F. Chevy, M. Teichmann, L. Tarruell, S. J. J. M. F. Kokkel-mans, and C. Salomon, Experimental study of the BECBCS crossover region in 6Li, Phys. Rev. Lett. 93(5), 050401 (2004)
CrossRef ADS Google scholar
[11]
C. Chin, M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, J. H. Denschlag, and R. Grimm, Observation of the pairing gap in a strongly interacting Fermi gas, Science 305(5687), 1128 (2004)
CrossRef ADS Google scholar
[12]
G. B. Partridge, K. E. Strecker, R. I. Kamar, M. W. Jack, and R. G. Hulet, Molecular probe of pairing in the BECBCS crossover, Phys. Rev. Lett. 95(2), 020404 (2005)
CrossRef ADS Google scholar
[13]
M. W. Zwierlein, J. R. Abo-Shaeer, A. Schirotzek, C. H. Schunck, and W. Ketterle, Vortices and superfluidity in a strongly interacting Fermi gas, Nature 435, 1047 (2005)
CrossRef ADS Google scholar
[14]
G. M. Falco, R. A. Duine, and H. T. C. Stoof, Molecular Kondo resonance in atomic Fermi gases, Phys. Rev. Lett. 92(14), 140402 (2004)
CrossRef ADS Google scholar
[15]
A. V. Gorshkov, M. Hermele, V. Gurarie, C. Xu, P. S. Julienne, J. Ye, P. Zoller, E. Demler, M. D. Lukin, and A. M. Rey, Two-orbital SU(N)magnetism with ultracold alkaline-earth atoms, Nat. Phys. 6(4), 289 (2010)
CrossRef ADS Google scholar
[16]
M. Foss-Feig, M. Hermele, and A. M. Rey, Probing the Kondo lattice model with alkaline-earth-metal atoms, Phys. Rev. A 81(5), 051603 (2010)
CrossRef ADS Google scholar
[17]
J. Bauer, C. Salomon, and E. Demler, Realizing a Kondocorrelated state with ultracold atoms, Phys. Rev. Lett. 111(21), 215304 (2013)
CrossRef ADS Google scholar
[18]
Y. Nishida, SU(3) orbital Kondo effect with ultracold atoms, Phys. Rev. Lett. 111(13), 135301 (2013)
CrossRef ADS Google scholar
[19]
L. Isaev and A. M. Rey, Heavy-fermion valence-bond liquids in ultracold atoms: Cooperation of the Kondo effect and geometric frustration, Phys. Rev. Lett. 115(16), 165302 (2015)
CrossRef ADS Google scholar
[20]
I. Kuzmenko, T. Kuzmenko, Y. Avishai, and K. Kikoin, Model for overscreened Kondo effect in ultracold Fermi gas, Phys. Rev. B 91(16), 165131 (2015)
CrossRef ADS Google scholar
[21]
Y. Nishida, Transport measurement of the orbital Kondo effect with ultracold atoms, Phys. Rev. A 93(1), 011606 (2016)
CrossRef ADS Google scholar
[22]
R. Zhang, D. Zhang, Y. Cheng, W. Chen, P. Zhang, and H. Zhai, Kondo effect in alkaline-earth-metal atomic gases with confinement-induced resonances, Phys. Rev. A 93(4), 043601 (2016)
CrossRef ADS Google scholar
[23]
I. Kuzmenko, T. Kuzmenko, Y. Avishai, and G. B. Jo, Multipolar Kondo effect in a 1S03P2 mixture of 173Yb atoms, Phys. Rev. B 97(7), 075124 (2018)
CrossRef ADS Google scholar
[24]
Y. Cheng, R. Zhang, P. Zhang, and H. Zhai, Enhancing Kondo coupling in alkaline-earth-metal atomic gases with confinement-induced resonances in mixed dimensions, Phys. Rev. A 96(6), 063605 (2017)
CrossRef ADS Google scholar
[25]
J. Yao, H. Zhai, and R. Zhang, Efimov-enhanced Kondo effect in alkali-metal and alkaline-earth-metal atomic gas mixtures, Phys. Rev. A 99(1), 010701 (2019)
CrossRef ADS Google scholar
[26]
M. Nakagawa and N. Kawakami, Laser-induced Kondo effect in ultracold alkaline-earth fermions, Phys. Rev. Lett. 115(16), 165303 (2015)
CrossRef ADS Google scholar
[27]
M. Nakagawa, N. Kawakami, and M. Ueda, NonHermitian Kondo effect in ultracold alkaline-earth atoms, Phys. Rev. Lett. 121(20), 203001 (2018)
CrossRef ADS Google scholar
[28]
M. Kanász-Nagy, Y. Ashida, T. Shi, C. P. Moca, T. N. Ikeda, S. Fölling, J. I. Cirac, G. Zaránd, and E. A. Dem-ler, Exploring the anisotropic Kondo model in and out of equilibrium with alkaline-earth atoms, Phys. Rev. B 97, 155156 (2018)
CrossRef ADS Google scholar
[29]
Y. Zhong, Y. Liu, and H. G. Luo, Simulating heavy fermion physics in optical lattice: Periodic Anderson model with harmonic trapping potential, Front. Phys. 12(5), 127502 (2017)
CrossRef ADS Google scholar
[30]
P. W. Anderson, A poor man’s derivation of scaling laws for the Kondo problem, J. Phys. C 3(12), 2436 (1970)
CrossRef ADS Google scholar
[31]
J. Kondo, Resistance minimum in dilute magnetic alloys, Prog. Theor. Phys. 32(1), 37 (1964)
CrossRef ADS Google scholar
[32]
Z. W. Barber, J. E. Stalnaker, N. D. Lemke, N. Poli, C. W. Oates, T. M. Fortier, S. A. Diddams, L. Hollberg, C. W. Hoyt, A. V. Taichenachev, and V. I. Yudin, Optical lattice induced light shifts in an Yb atomic clock, Phys. Rev. Lett. 100(10), 103002 (2008)
CrossRef ADS Google scholar
[33]
V. A. Dzuba and A. Derevianko, Dynamic polarizabilities and related properties of clock states of the ytterbium atom, J. Phys. At. Mol. Opt. Phys. 43(7), 074011 (2010)
CrossRef ADS Google scholar
[34]
G. Cappellini, M. Mancini, G. Pagano, P. Lombardi, L. Livi, M. Siciliani de Cumis, P. Cancio, M. Pizzocaro, D. Calonico, F. Levi, C. Sias, J. Catani, M. Inguscio, and L. Fallani, Direct observation of coherent interorbital spin-exchange dynamics, Phys. Rev. Lett. 113(12), 120402 (2014)
CrossRef ADS Google scholar
[35]
F. Scazza, C. Hofrichter, M. Höfer, P. C. De Groot, I. Bloch, and S. Fölling, Observation of two-orbital spinexchange interactions with ultracold SU(N)-symmetric fermions, Nat. Phys. 10(10), 779 (2014)
CrossRef ADS Google scholar
[36]
K. Ono, Y. Amano, T. Higomoto, Y. Saito, and Y. Taka-hashi, Observation of spin-exchange dynamics between itinerant and localized 171Yb atoms, Phys. Rev. A 103(4), L041303 (2021)
CrossRef ADS Google scholar
[37]
K. Ono, J. Kobayashi, Y. Amano, K. Sato, and Y. Taka-hashi, Antiferromagnetic interorbital spin-exchange interaction of 171Yb, Phys. Rev. A 99(3), 032707 (2019)
CrossRef ADS Google scholar
[38]
L. Riegger, N. Darkwah Oppong,M. Höfer, D. R. Fernan-des, I. Bloch, and S. Fölling, Localized magnetic moments with tunable spin exchange in a gas of ultracold fermions, Phys. Rev. Lett. 120(14), 143601 (2018)
CrossRef ADS Google scholar
[39]
R. Zhang and P. Zhang, Control of spin-exchange interaction between alkali-earth-metal atoms via confinementinduced resonances in a quasi-(1+0)-dimensional system, Phys. Rev. A 98(4), 043627 (2018)
CrossRef ADS Google scholar
[40]
R. Zhang, Y. Cheng, P. Zhang, and H. Zhai, Controlling the interaction of ultracold alkaline-earth atoms, Nat. Rev. Phys. 2(4), 213 (2020)
CrossRef ADS Google scholar
[41]
S. Goto and I. Danshita, Quasiexact Kondo dynamics of fermionic alkaline-earth-like atoms at finite temperatures, Phys. Rev. Lett. 123(14), 143002 (2019)
CrossRef ADS Google scholar
[42]
A. C. Hewson, The Kondo Problem to Heavy Fermions, Cambridge Studies in Magnetism, Cambridge University Press, 1993
CrossRef ADS Google scholar
[43]
M. V. Sadovskii, Diagrammatics: Lectures on Selected Problems in Condensed Matter Theory, edited by Michael V. Sadovskii, World Scientific, 2006
CrossRef ADS Google scholar
[44]
A. Furusaki and N. Nagaosa, Kondo effect in a TomonagaLuttinger liquid, Phys. Rev. Lett. 72(6), 892 (1994)
CrossRef ADS Google scholar
[45]
Y. Ashida, T. Shi, M. C. Bañuls, J. I. Cirac, and E. Dem-ler, Solving quantum impurity problems in and out of equilibrium with the variational approach, Phys. Rev. Lett. 121(2), 026805 (2018)
CrossRef ADS Google scholar
[46]
Y. Ashida, T. Shi, M. C. Bañuls, J. I. Cirac, and E. Dem-ler, Variational principle for quantum impurity systems in and out of equilibrium: Application to Kondo problems, Phys. Rev. B 98(2), 024103 (2018)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(655 KB)

Accesses

Citations

Detail

Sections
Recommended

/