Thermal transport in lithium-ion battery: A micro perspective for thermal management
Changqing Xiang, Cheng-Wei Wu, Wu-Xing Zhou, Guofeng Xie, Gang Zhang
Thermal transport in lithium-ion battery: A micro perspective for thermal management
In recent years, lithium ion (Li-ion) batteries have served as significant power sources in portable electronic devices and electric vehicles because of their high energy density and rate capability. There are growing concerns towards the safety of Li-ion batteries, in which thermal conductivities of anodes, cathodes, electrolytes and separator play key roles for determining the thermal energy transport in Li-ion battery. In this review, we summarize the state-of-the-art studies on the thermal conductivities of commonly used anodes, cathodes, electrolytes and separator in Li-ion batteries, including both theoretical and experimental reports. First, the thermal conductivities of anodes and cathodes are discussed, and the effects of delithiation degree and temperature of materials are also discussed. Then, we review the thermal conductivities of commonly used electrolytes, especially on solid electrolytes. Finally, the basic concept of interfacial thermal conductance and simulation methods are presented, as well as the interfacial thermal conductance between separator and cathodes. This perspective review would provide atomic perspective knowledge to understand thermal transport in Li-ion battery, which will be beneficial to the thermal management and temperature control in electrochemical energy storage devices.
lithium ion batteries / thermal management / phonon transport / interfacial thermal transport / amorphous materials
[1] |
M. Armand and J. M. Tarascon, Building better batteries, Nature 451(7179), 652 (2008)
CrossRef
ADS
Google scholar
|
[2] |
V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Challenges in the development of advanced Liion batteries: A review, Energy Environ. Sci. 4(9), 3243 (2011)
CrossRef
ADS
Google scholar
|
[3] |
J. B. Goodenough and K. S. Park, The Li-ion rechargeable battery: A perspective, J. Am. Chem. Soc. 135(4), 1167 (2013)
CrossRef
ADS
Google scholar
|
[4] |
J. M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature 414(6861), 359 (2001)
CrossRef
ADS
Google scholar
|
[5] |
K. Shah, V. Vishwakarma, and A. Jain, Measurement of multiscale thermal transport phenomena in Li-ion cells: A review, J. Electrochem. En. Conv. Stor.
CrossRef
ADS
Google scholar
|
[6] |
T. M. Bandhauer, S. Garimella, and T. F. Fuller, A critical review of thermal issues in lithium-ion batteries, J. Electrochem. Soc. 158(3), R1 (2011)
CrossRef
ADS
Google scholar
|
[7] |
V. Ramadesigan, P. W. C. Northrop, S. De, S. Santhanagopalan, R. D. Braatz, and V. R. Subramanian, Modeling and simulation of lithium-ion batteries from a systems engineering perspective, J. Electrochem. Soc. 159(3), R31 (2012)
CrossRef
ADS
Google scholar
|
[8] |
P. Goli, S. Legedza, A. Dhar, R. Salgado, J. Renteria, and A. A. Balandin, Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries, J. Power Sources 248, 37 (2014)
CrossRef
ADS
Google scholar
|
[9] |
L. Fransson, T. Eriksson, K. Edström, T. Gustafsson, and J. O. Thomas, Influence of carbon black and binder on Li-ion batteries, J. Power Sources 101(1), 1 (2001)
CrossRef
ADS
Google scholar
|
[10] |
H. Maleki, J. R. Selman, R. B. Dinwiddie, and H. Wang, High thermal conductivity negative electrode material for lithium-ion batteries, J. Power Sources 94(1), 26 (2001)
CrossRef
ADS
Google scholar
|
[11] |
A. A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater. 10(8), 569 (2011)
CrossRef
ADS
Google scholar
|
[12] |
D. L. Nika, A. S. Askerov, and A. A. Balandin, Anomalous size dependence of the thermal conductivity of graphene ribbons, Nano Lett. 12(6), 3238 (2012)
CrossRef
ADS
Google scholar
|
[13] |
D. L. Nika and A. A. Balandin, Two-dimensional phonon transport in graphene, J. Phys.: Condens. Matter 24(23), 233203 (2012)
CrossRef
ADS
Google scholar
|
[14] |
K. M. F. Shahil and A. A. Balandin, Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials, Solid State Commun. 152(15), 1331 (2012)
CrossRef
ADS
Google scholar
|
[15] |
S. Berber, Y. K. Kwon, and D. Tománek, Unusually high thermal conductivity of carbon nanotubes, Phys. Rev. Lett. 84(20), 4613 (2000)
CrossRef
ADS
Google scholar
|
[16] |
P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, Thermal transport measurements of individual multiwalled nanotubes, Phys. Rev. Lett. 87(21), 215502 (2001)
CrossRef
ADS
Google scholar
|
[17] |
B. Koo, P. Goli, A. V. Sumant, P. C. dos Santos Claro, T. Rajh, C. S. Johnson, A. A. Balandin, and E. V. Shevchenko, Toward lithium ion batteries with enhanced thermal conductivity, ACS Nano 8(7), 7202 (2014)
CrossRef
ADS
Google scholar
|
[18] |
E. Lee, R. A. Salgado, B. Lee, A. V. Sumant, T. Rajh, C. Johnson, A. A. Balandin, and E. V. Shevchenko, Design of lithium cobalt oxide electrodes with high thermal conductivity and electrochemical performance using carbon nanotubes and diamond particles, Carbon 129, 702 (2018)
CrossRef
ADS
Google scholar
|
[19] |
P. Goli, S. Legedza, A. Dhar, R. Salgado, J. Renteria, and A. A. Balandin, Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries, J. Power Sources 248, 37 (2014)
CrossRef
ADS
Google scholar
|
[20] |
J. L. He, L. Zhang, and L. Liu, Thermal transport in monocrystalline and polycrystalline lithium cobalt oxide, Phys. Chem. Chem. Phys. 21(23), 12192 (2019)
CrossRef
ADS
Google scholar
|
[21] |
N. Mattila and A. J. Karttunen, Lattice thermal conductivity of NaCoO2 and LiCoO2 intercalation materials studied by hybrid density functional theory, Mater. Res. Express 7(7), 075502 (2020)
CrossRef
ADS
Google scholar
|
[22] |
H. Yang, C. N. Savory, B. J. Morgan, D. O. Scanlon, J. M. Skelton, and A. Walsh, Chemical trends in the lattice thermal conductivity of Li(Ni, Mn, Co)O2 (NMC) battery cathodes, Chem. Mater. 32(17), 7542 (2020)
CrossRef
ADS
Google scholar
|
[23] |
T. L. Feng, A. O′ Hara, and S. T. Pantelides, Quantum prediction of ultra-low thermal conductivity in lithium intercalation materials, Nano Energy 75, 104916 (2020)
CrossRef
ADS
Google scholar
|
[24] |
J. Cho, M. D. Losego, H. G. Zhang, H. Kim, J. M. Zuo, I. Petrov, D. G. Cahill, and P. V. Braun, Electrochemically tunable thermal conductivity of lithium cobalt oxide, Nat. Commun. 5(1), 4035 (2014)
CrossRef
ADS
Google scholar
|
[25] |
X. Qian, X. Gu, M. S. Dresselhaus, and R. G. Yang, Anisotropic tuning of graphite thermal conductivity by lithium intercalation, J. Phys. Chem. Lett. 7(22), 4744 (2016)
CrossRef
ADS
Google scholar
|
[26] |
H. Li, X. Huang, L. Chen, G. W. Zhou, Z. Zhang, D. P. Yu, Y. J. Mo, and N. Pei, The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature, Solid State Ion. 135(1–4), 181 (2000)
CrossRef
ADS
Google scholar
|
[27] |
P. Limthongkul, Y. I. Jang, N. J. Dudney, and Y. M. Chi-ang, Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage, Acta Mater. 51(4), 1103 (2003)
CrossRef
ADS
Google scholar
|
[28] |
T. D. Hatchard and J. R. Dahn, In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon, J. Electrochem. Soc. 151(6), A838 (2004)
CrossRef
ADS
Google scholar
|
[29] |
S. Q. Hu, Z. W. Zhang, Z. T. Wang, K. Y. Zeng, Y. Cheng, J. Chen, and G. Zhang, Significant reduction in thermal conductivity of lithium cobalt oxide cathode upon charging: Propagating and non-propagating thermal energy transport, ES Energy Environ. 1, 74 (2018)
|
[30] |
G. Chen, Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons, Oxford University Press, 2005
|
[31] |
R. E. Peierls and R. H. Dalitz, Selected Scientific Papers of Sir Rudolf Peierls: With Commentary, World Scientific 15, 1997
CrossRef
ADS
Google scholar
|
[32] |
R. E. Peierls, Quantum Theory of Solids, Oxford University Press, London, England, 1955, p. 108
|
[33] |
P. G. Klemens and F. E. Simon, The thermal conductivity of dielectric solids at low temperatures (Theoretical), Proc. R. Soc. Lond. A 208(1092), 108 (1951)
CrossRef
ADS
Google scholar
|
[34] |
J. Callaway, Model for lattice thermal conductivity at low temperatures, Phys. Rev. 113(4), 1046 (1959)
CrossRef
ADS
Google scholar
|
[35] |
A. Einstein, über den Einfluß der Schwerkraft auf die Ausbreitung des Lichtes, Ann. Phys. 340(10), 898 (1911)
CrossRef
ADS
Google scholar
|
[36] |
D. G. Cahill, S. K. Watson, and R. O. Pohl, Lower limit to the thermal conductivity of disordered crystals, Phys. Rev. B 46(10), 6131 (1992)
CrossRef
ADS
Google scholar
|
[37] |
P. B. Allen and J. L. Feldman, Thermal conductivity of disordered harmonic solids, Phys. Rev. B 48(17), 12581 (1993)
CrossRef
ADS
Google scholar
|
[38] |
M. T. Agne, R. Hanus, and G. J. Snyder, Minimum thermal conductivity in the context of diffuson-mediated thermal transport, Energy Environ. Sci. 11(3), 609 (2018)
CrossRef
ADS
Google scholar
|
[39] |
A. Abdullaev, A. Mukanova, T. Yakupov, A. Mentbayeva, Z. Bakenov, and Z. Utegulov, Nanoscale thermal transport and elastic properties of lithiated amorphous Si thin films, Mater. Today Proc. 25, 88 (2020)
CrossRef
ADS
Google scholar
|
[40] |
J. He, L. Zhang, and L. Liu, Thermal transport in monocrystalline and polycrystalline lithium cobalt oxide, Phys. Chem. Chem. Phys. 21(23), 12192 (2019)
CrossRef
ADS
Google scholar
|
[41] |
V. Vishwakarma, C. Waghela, Z. Wei, R. Prasher, S. C. Nagpure, J. L. Li, F. Q. Liu, C. Daniel, and A. Jain, Heat transfer enhancement in a lithium-ion cell through improved material-level thermal transport, J. Power Sources 300, 123 (2015)
CrossRef
ADS
Google scholar
|
[42] |
Y. Yang, X. P. Huang, Z. Y. Cao, and G. Chen, Thermally conductive separator with hierarchical nano/microstructures for improving thermal management of batteries, Nano Energy 22, 301 (2016)
CrossRef
ADS
Google scholar
|
[43] |
S. Randau, D. A. Weber, O. Kötz, R. Koerver, P. Braun, A. Weber, E. Ivers-Tiffée, T. Adermann, J. Kulisch, W. G. Zeier, F. H. Richter, and J. Janek, Benchmarking the performance of all-solid-state lithium batteries, Nat. Energy 52(3), 259 (2020)
CrossRef
ADS
Google scholar
|
[44] |
P. Knauth, Inorganic solid Li ion conductors: An overview, Solid State Ion. 180(14–16), 911 (2009)
CrossRef
ADS
Google scholar
|
[45] |
K. Takada, Progress and prospective of solid-state lithium batteries, Acta Mater. 61(3), 759 (2013)
CrossRef
ADS
Google scholar
|
[46] |
C. Sun, J. Liu, Y. Gong, D. P. Wilkinson, and J. J. Zhang, Recent advances in all-solid-state rechargeable lithium batteries, Nano Energy 33, 363 (2017)
CrossRef
ADS
Google scholar
|
[47] |
C. W. Sun, J. Liu, Y. D. Gong, D. P. Wilkinson, and J. J. Zhang, Recent advances in all-solid-state rechargeable lithium batteries, Nano Energy 159, 363 (2017)
CrossRef
ADS
Google scholar
|
[48] |
V. Vishwakarma and A. Jain, Enhancement of thermal transport in gel polymer electrolytes with embedded BN/Al2O3 nano- and micro-particles, J. Power Sources 362, 219 (2017)
CrossRef
ADS
Google scholar
|
[49] |
H. Meng, X. X. Yu, H. Feng, Z. G. Xue, and N. Yang, Superior thermal conductivity of poly (ethylene oxide) for solid-state electrolytes: A molecular dynamics study, Int. J. Heat Mass Transf. 137, 1241 (2019)
CrossRef
ADS
Google scholar
|
[50] |
D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. H. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Ma-han, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, Nanoscale thermal transport (II): 2003–2012, Appl. Phys. Rev. 1(1), 011305 (2014)
CrossRef
ADS
Google scholar
|
[51] |
W. A. Little, The transport of heat between dissimilar solids at low temperatures, Can. J. Phys. 37(3), 334 (1959)
CrossRef
ADS
Google scholar
|
[52] |
E. T. Swartz and R. O. Pohl, Thermal resistance at interfaces, Appl. Phys. Lett. 51(26), 2200 (1987)
CrossRef
ADS
Google scholar
|
[53] |
R. M. Costescu, M. A. Wall, and D. G. Cahill, Thermal conductance of epitaxial interfaces, Phys. Rev. B 67(5), 054302 (2003)
CrossRef
ADS
Google scholar
|
[54] |
E. T. Swartz and R. O. Pohl, Thermal boundary resistance, Rev. Mod. Phys. 61(3), 605 (1989)
CrossRef
ADS
Google scholar
|
[55] |
P. E. Hopkins, Thermal transport across solid interfaces with nanoscale imperfections: Effects of roughness, disorder, dislocations, and bonding on thermal boundary conductance, ISRN Mech. Eng. 2013, 682586 (2013)
CrossRef
ADS
Google scholar
|
[56] |
N. Mingo and L. Yang, Phonon transport in nanowires coated with an amorphous material: An atomistic Green’s function approach, Phys. Rev. B 68(24), 245406 (2003)
CrossRef
ADS
Google scholar
|
[57] |
J. S. Wang, J. Wang, and J. T. Lü, Quantum thermal transport in nanostructures, Eur. Phys. J. B 62(4), 381 (2008)
CrossRef
ADS
Google scholar
|
[58] |
Z. Tian, K. Esfarjani, and G. Chen, Enhancing phonon transmission across a Si/Ge interface by atomic roughness: First-principles study with the Green’s function method, Phys. Rev. B 86(23), 235304 (2012)
CrossRef
ADS
Google scholar
|
[59] |
W. Zhang, T. S. Fisher, and N. Mingo, Simulation of interfacial phonon transport in Si–Ge heterostructures using an atomistic Green’s function method, J. Heat Transfer 129(4), 483 (2007)
CrossRef
ADS
Google scholar
|
[60] |
Y. Q. Cai, J. Lan, G. Zhang, and Y. W. Zhang, Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2, Phys. Rev. B 89(3), 035438 (2014)
CrossRef
ADS
Google scholar
|
[61] |
Z. Y. Ong, Y. Cai, G. Zhang, and Y. W. Zhang, Strong thermal transport anisotropy and strain modulation in single-layer phosphorene, J. Phys. Chem. C 118(43), 25272 (2014)
CrossRef
ADS
Google scholar
|
[62] |
Y. Y. Zhang, D. K. Ma, Y. Zang, X. J. Wang, and N. Yang, A modified theoretical model to accurately account for interfacial roughness in predicting the interfacial thermal conductance, Front. Energy Res. 6, 48 (2018)
CrossRef
ADS
Google scholar
|
[63] |
W. Lv and A. Henry, Direct calculation of modal contributions to thermal conductivity via Green–Kubo modal analysis, New J. Phys.
CrossRef
ADS
Google scholar
|
[64] |
T. L. Feng, W. J. Yao, Z. Y.Wang, J. J. Shi, C. Li, B. Y. Cao, and X. L. Ruan, Spectral analysis of nonequilibrium molecular dynamics: Spectral phonon temperature and local nonequilibrium in thin films and across interfaces, Phys. Rev. B 95(19), 195202 (2017)
CrossRef
ADS
Google scholar
|
[65] |
D. Ma, A. Arora, S.Deng, G. Xie, J. Shiomi, and N. Yang, Quantifying phonon particle and wave transport in silicon nanophononic metamaterial with cross junction, Materials Today Physics 8, 56 (2019)
CrossRef
ADS
Google scholar
|
[66] |
A. Giri and P. E. Hopkins, A review of experimental and computational advances in thermal boundary conductance and nanoscale thermal transport across solid interfaces, Adv. Funct. Mater. 30(8), 1903857 (2020)
CrossRef
ADS
Google scholar
|
[67] |
A. Dhakane, V. Varshney, J. Liu, H. Heinz, and A. Jain, Molecular dynamics simulations of separator-cathode interfacial thermal transport in a Li-ion cell, Surf. Interfaces 21, 100674 (2020)
CrossRef
ADS
Google scholar
|
[68] |
W. X. Zhou, Y. Cheng, K. Q. Chen, G. F. Xie, T. Wang, and G. Zhang, Thermal conductivity of amorphous materials, Adv. Funct. Mater. 30(8), 1903829 (2020)
CrossRef
ADS
Google scholar
|
[69] |
J. N. Reimers and J. R. Dahn, Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2, J. Electrochem. Soc. 139(8), 2091 (1992)
CrossRef
ADS
Google scholar
|
[70] |
M. Malik, M. Mathew, I. Dincer, M. A. Rosen, J. McGrory, and M. Fowler, Experimental investigation and thermal modelling of a series connected LiFePO4 battery pack, Int. J. Therm. Sci.
CrossRef
ADS
Google scholar
|
[71] |
M. Xu, Z. Zhang, X. Wang, L. Jia, and L. Yang, A pseudo three-dimensional electrochemical–thermal model of a prismatic LiFePO4 battery during discharge process, Energy 80, 303 (2015)
CrossRef
ADS
Google scholar
|
[72] |
L. C. Wei, Z. Lu, F. Cao, L. Y. Zhang, X. Yang, X. L. Yu, and L. W. Jin, A comprehensive study on thermal conductivity of the lithium‐ion battery, Int. J. Energy Res. 44(12), 9466 (2020)
CrossRef
ADS
Google scholar
|
[73] |
J. L. He, L. Zhang, and L. Liu, Improving thermal conduction across cathode/electrolyte interfaces in solidstate lithium-ion batteries by hierarchical hydrogenbond network, Mater. Des. 194, 108927 (2020)
CrossRef
ADS
Google scholar
|
[74] |
X. S. Li, F. He, and L. Ma, Thermal management of cylindrical batteries investigated using wind tunnel testing and computational fluid dynamics simulation, J. Power Sources 238, 395 (2013)
CrossRef
ADS
Google scholar
|
[75] |
L. W. Fan, J. M. Khodadadi, and A. A. Pesaran, A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles, J. Power Sources 238, 301 (2013)
CrossRef
ADS
Google scholar
|
[76] |
B. Zhao, L. Jiang, X. L. Zeng, K. Zhang, M. M. F. Yuen, J. B. Xu, X. Z. Fu, R. Sun, and C. P. Wong, A highly thermally conductive electrode for lithium ion batteries, J. Mater. Chem. A 4(38), 14595 (2016)
CrossRef
ADS
Google scholar
|
[77] |
U. S. Kim, C. B. Shin, and C. S. Kim, Modeling for the scale-up of a lithium-ion polymer battery, J. Power Sources 189(1), 841 (2009)
CrossRef
ADS
Google scholar
|
[78] |
Y. Wang, Z. X. Lu, A. K. Roy, and X. L. Ruan, Effect of interlayer on interfacial thermal transport and hot electron cooling in metal-dielectric systems: An electronphonon coupling perspective, J. Appl. Phys. 119(6), 065103 (2016)
CrossRef
ADS
Google scholar
|
[79] |
L. F. Zhang, J. T. Lü, J. S. Wang, and B. W. Li, Thermal transport across metal–insulator interface via electron– phonon interaction, J. Phys.: Condens. Matter 25(44), 445801 (2013)
CrossRef
ADS
Google scholar
|
[80] |
J. Lombard, F. Detcheverry, and S. Merabia, Influence of the electron–phonon interfacial conductance on the thermal transport at metal/dielectric interfaces, J. Phys.: Condens. Matter 27(1), 015007 (2015)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |