Diverse magnetism in stable and metastable structures of CrTe
Na Kang, Wenhui Wan, Yanfeng Ge, Yong Liu
Diverse magnetism in stable and metastable structures of CrTe
In this paper, we systematically investigated the structural and magnetic properties of CrTe by combining particle swarm optimization algorithm and first-principles calculations. By considering the electronic correlation effect, we predicted the ground-state structure of CrTe to be NiAs-type (space group P63/mmc) structure at ambient pressure, consistent with the experimental observation. Moreover, we found two extra meta-stable Cmcaand structures which have negative formation enthalpy and stable phonon dispersion at ambient pressure. The Cmcastructure is a layered antiferromagnetic metal. The cleaved energy of a single layer is 0.464 J/m2 , indicating the possible synthesis of CrTe monolayer. The structure is a ferromagnetic half-metal. When external pressure is applied, the ground-state structure of CrTe transitions from P63/mmc structure to structure at a pressure of 34 GPa, then to structure at 42 GPa. We thought these results help to motivate experimental studies of the CrTe compounds in the application of spintronics.
CrTe / meta-stable structure / antiferromagnetic metal / ferromagnetic half-metal
[1] |
A. Brataas, A. D. Kent, and H. Ohno, Current-induced torques in magnetic materials, Nat. Mater. 11(5), 372 (2012)
CrossRef
ADS
Google scholar
|
[2] |
A. S. Núñez, R. A. Duine, P. Haney, and A. H. Mac-Donald, Theory of spin torques and giant magnetoresistance in antiferromagnetic metals, Phys. Rev. B 73(21), 214426 (2006)
CrossRef
ADS
Google scholar
|
[3] |
B. G. Park, J. Wunderlich, X. Martí, V. Holý, Y. Kurosaki, M. Yamada, H. Yamamoto, A. Nishide, J. Hayakawa, H. Takahashi, A. B. Shick, and T. Jungwirth, A spin-valvelike magnetoresistance of an antiferromagnet-based tunnel junction, Nat. Mater. 10(5), 347 (2011)
CrossRef
ADS
Google scholar
|
[4] |
E. V. Gomonay and V. M. Loktev, Spintronics of antiferromagnetic systems, Low Temp. Phys. 40(1), 17 (2014)
CrossRef
ADS
Google scholar
|
[5] |
Y. Wang, C. Song, J. Zhang, and F. Pan, Spintronic materials and devices based on antiferromagnetic metals, Prog. Nat. Sci. 27(2), 208 (2017)
CrossRef
ADS
Google scholar
|
[6] |
N. V. Baranov, N. V. Selezneva, and V. A. Kazant sev, Magnetism and superconductivity of transition metal chalcogenides, Phys. Met. Metallogr. 119(13), 1301 (2018)
CrossRef
ADS
Google scholar
|
[7] |
W. Zhang, P. K. J. Wong, R. Chua, and A. T. S. Wee, in: Spintronic 2D Materials, Materials Today, edited by W. Liu and Y. Xu, Elsevier, 2020, pp 227–251
CrossRef
ADS
Google scholar
|
[8] |
M. A. Mc Guire, Cleavable magnetic materials from van der Waals layered transition metal halides and chalcogenides, J. Appl. Phys. 128(11), 110901 (2020)
CrossRef
ADS
Google scholar
|
[9] |
H. Ipser, K. L. Komarek, and K. O. Klepp, Transition metal-chalcogen systems viii: The Cr–Te phase diagram, J. Less Common Met. 92(2), 265 (1983)
CrossRef
ADS
Google scholar
|
[10] |
T. Kanomata, Y. Sugawara, T. Kaneko, K. Kamishima, H. Aruga Katori, and T. Goto, Giant magnetovolume effect of CrTe, J. Alloys Compd. 297(1–2), 5 (2000)
CrossRef
ADS
Google scholar
|
[11] |
M. Wang, L. Kang, J. Su, L. Zhang, H. Dai, H. Cheng, X. Han, T. Zhai, Z. Liu, and J. Han, Two-dimensional ferromagnetism in CrTe flakes down to atomically thin layers, Nanoscale 12(31), 16427 (2020)
CrossRef
ADS
Google scholar
|
[12] |
M. G. Sreenivasan, J. F. Bi, K. L. Teo, and T. Liew, Systematic investigation of structural and magnetic properties in molecular beam epitaxial growth of metastable zincblende CrTe toward half-metallicity, J. Appl. Phys. 103(4), 043908 (2008)
CrossRef
ADS
Google scholar
|
[13] |
T. Eto, M. Ishizuka, S. Endo, T. Kanomata, and T. Kikegawa, Pressure-induced structural phase transition in a ferromagnet CrTe, J. Alloys Compd. 315(1–2), 16 (2001)
CrossRef
ADS
Google scholar
|
[14] |
M. A. Mc Guire, V. O. Garlea, S. Kc, V. R. Cooper, J. Yan, H. Cao, and B. C. Sales, Antiferromagnetism in the van der Waals layered spin-lozenge semiconductor CrTe3, Phys. Rev. B 95(14), 144421 (2017)
CrossRef
ADS
Google scholar
|
[15] |
Z. Charifi, D. Guendouz, H. Baaziz, F. Soyalp, and B. Hamad, Ab-initioinvestigations of the structural, electronic, magnetic and mechanical properties of CrX (X= As, Sb, Se, and Te) transition metal pnictides and chalcogenides, Phys. Scr. 94(1), 015701 (2019)
CrossRef
ADS
Google scholar
|
[16] |
J. Dijkstra, H. H. Weitering, C. F. Bruggen, C. Haas, and R. A. Groot, Band-structure calculations, and magnetic and transport properties of ferromagnetic chromium tellurides (CrTe, Cr3Te4, Cr2Te3), J. Phys.: Condens. Matter 1(46), 9141 (1989)
CrossRef
ADS
Google scholar
|
[17] |
V. Kanchana, G. Vaitheeswaran, and M. Rajagopalan, Pressure-induced structural and magnetic phase transition in ferromagnetic CrTe, J. Magn. Magn. Mater. 250, 353(2002)
CrossRef
ADS
Google scholar
|
[18] |
W. H. Xie, Y. Q. Xu, B. G. Liu, and D. G. Pettifor, Half-metallic ferromagnetism and structural stability of zincblende phases of the transition-metal chalcogenides, Phys. Rev. Lett. 91(3), 037204 (2003)
CrossRef
ADS
Google scholar
|
[19] |
T. Block and W. Tremel, Large magnetoresistance at room temperature in the off-stochiometric chalcogenide Cr0.92Te, J. Alloys Compd. 422(1–2), 12 (2006)
CrossRef
ADS
Google scholar
|
[20] |
Y. Liu, S. K. Bose, and J. Kudrnovský, First-principles theoretical studies of half-metallic ferromagnetism in CrTe, Phys. Rev. B 82(9), 094435 (2010)
CrossRef
ADS
Google scholar
|
[21] |
A. Belkadi, K. O. Obodo, Y. Zaoui, H. Moulkhalwa, L. Beldi, and B. Bouhafs, First-principles studies of structural, electronic and magnetic properties of the CrS, CrSe and CrTe compounds, SPIN 08(04), 1850019 (2018)
CrossRef
ADS
Google scholar
|
[22] |
H. Moulkhalwa, Y. Zaoui, K. O. Obodo, A. Belkadi, L. Beldi, and B. Bouhafs, Half-metallic and halfsemiconductor gaps in Cr-based chalcogenides: DFT+U calculations, J. Supercond. Nov. Magn. 32(3), 635 (2019)
CrossRef
ADS
Google scholar
|
[23] |
Y. Wang, J. Lv, L. Zhu, and Y. Ma, CALYPSO: A method for crystal structure prediction, Comput. Phys. Commun. 183(10), 2063 (2012)
CrossRef
ADS
Google scholar
|
[24] |
Y. Wang, J. Lv, L. Zhu, and Y. Ma, Crystal structure prediction via particle-swarm optimization, Phys. Rev. B 82(9), 094116 (2010)
CrossRef
ADS
Google scholar
|
[25] |
B. Gao, P. Gao, S. Lu, J. Lv, Y. Wang, and Y. Ma, Interface structure prediction via CALYPSO method, Sci. Bull. (Beijing) 64(5), 301 (2019)
CrossRef
ADS
Google scholar
|
[26] |
A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Kseno-fontov, and S. I. Shylin, Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system, Nature 525(7567), 73 (2015)
CrossRef
ADS
Google scholar
|
[27] |
F. Peng, Y. Sun, C. J. Pickard, R. J. Needs, Q. Wu, and Y. Ma, Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature superconductivity, Phys. Rev. Lett. 119(10), 107001 (2017)
CrossRef
ADS
Google scholar
|
[28] |
Y. Nishihara, Y. Yamaguchi, M. Tokumoto, K. Takeda, and K. Fukamichi, Superconductivity and magnetism of bcc Cr–Ru alloys, Phys. Rev. B 34(5), 3446 (1986)
CrossRef
ADS
Google scholar
|
[29] |
A. J. Bradley, The crystal structures of the rhombohedral forms of selenium and tellurium, Lond. Edinb. Dublin Philos. Mag. J. Sci. 48(285), 477 (2009)
CrossRef
ADS
Google scholar
|
[30] |
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef
ADS
Google scholar
|
[31] |
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
CrossRef
ADS
Google scholar
|
[32] |
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
CrossRef
ADS
Google scholar
|
[33] |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef
ADS
Google scholar
|
[34] |
H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12), 5188 (1976)
CrossRef
ADS
Google scholar
|
[35] |
W. E. Pickett, S. C. Erwin, and E. C. Ethridge, Reformulation of the LDA+U method for a local-orbital basis, Phys. Rev. B 58(3), 1201 (1998)
CrossRef
ADS
Google scholar
|
[36] |
M. Cococcioni and S. de-Gironcoli, Linear response approach to the calculation of the effective interaction parameters in the LDA+U method, Phys. Rev. B 71(3), 035105 (2005)
CrossRef
ADS
Google scholar
|
[37] |
A. Togo and I. Tanaka, First principles phonon calculations in materials science, Scr. Mater. 108, 1 (2015)
CrossRef
ADS
Google scholar
|
[38] |
S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27(15), 1787 (2006)
CrossRef
ADS
Google scholar
|
[39] |
P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G. K. H. Madsen, and L. D. Marks, WIEN2k: An APW+LO program for calculating the properties of solids, J. Chem. Phys. 152(7), 074101 (2020)
CrossRef
ADS
Google scholar
|
[40] |
K. Choudhary, Q. Zhang, A. C. Reid, S. Chowdhury, N. Van Nguyen, Z. Trautt, M. W. Newrock, F. Y. Congo, and F. Tavazza, Computational screening of high-performance optoelectronic materials using OptB88vdW and TB-mBJ formalisms, Sci. Data 5(1), 180082 (2018)
CrossRef
ADS
Google scholar
|
[41] |
F. Mouhat and F. X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B 90(22), 224104 (2014)
CrossRef
ADS
Google scholar
|
[42] |
Z. J. Wu, E. J. Zhao, H. P. Xiang, X. F. Hao, X. J. Liu, and J. Meng, Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles, Phys. Rev. B 76(5), 054115 (2007)
CrossRef
ADS
Google scholar
|
[43] |
T. Björkman, A. Gulans, A. V. Krasheninnikov, and R. M. Nieminen, van der Waals bonding in layered compounds from advanced density-functional first-principles calculations, Phys. Rev. Lett. 108(23), 235502 (2012)
CrossRef
ADS
Google scholar
|
[44] |
K. Nakada, H. Shimizu, and H. Yamada, Electronic structure and magnetism of CrTe with NiAs-type structure, J. Magn. Magn. Mater. 272–276, 464 (2004)
CrossRef
ADS
Google scholar
|
[45] |
I. Benabdelkader, H. Bendaoud, K. O. Obodo, L. Beldi, and B. Bouhafs, An ab initio study on the transition path of carbon dioxide at high pressure: Evidence for a new intermediate P4 ¯m2 phase, Comput. Condens. Matter 21, e00429 (2019)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |