Diverse magnetism in stable and metastable structures of CrTe

Na Kang, Wenhui Wan, Yanfeng Ge, Yong Liu

PDF(2504 KB)
PDF(2504 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (6) : 63506. DOI: 10.1007/s11467-021-1088-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Diverse magnetism in stable and metastable structures of CrTe

Author information +
History +

Abstract

In this paper, we systematically investigated the structural and magnetic properties of CrTe by combining particle swarm optimization algorithm and first-principles calculations. By considering the electronic correlation effect, we predicted the ground-state structure of CrTe to be NiAs-type (space group P63/mmc) structure at ambient pressure, consistent with the experimental observation. Moreover, we found two extra meta-stable Cmcaand R3 ¯m structures which have negative formation enthalpy and stable phonon dispersion at ambient pressure. The Cmcastructure is a layered antiferromagnetic metal. The cleaved energy of a single layer is 0.464 J/m2 , indicating the possible synthesis of CrTe monolayer. The R3 ¯m structure is a ferromagnetic half-metal. When external pressure is applied, the ground-state structure of CrTe transitions from P63/mmc structure to R3 ¯m structure at a pressure of 34 GPa, then to R3 ¯m structure at 42 GPa. We thought these results help to motivate experimental studies of the CrTe compounds in the application of spintronics.

Graphical abstract

Keywords

CrTe / meta-stable structure / antiferromagnetic metal / ferromagnetic half-metal

Cite this article

Download citation ▾
Na Kang, Wenhui Wan, Yanfeng Ge, Yong Liu. Diverse magnetism in stable and metastable structures of CrTe. Front. Phys., 2021, 16(6): 63506 https://doi.org/10.1007/s11467-021-1088-3

References

[1]
A. Brataas, A. D. Kent, and H. Ohno, Current-induced torques in magnetic materials, Nat. Mater. 11(5), 372 (2012)
CrossRef ADS Google scholar
[2]
A. S. Núñez, R. A. Duine, P. Haney, and A. H. Mac-Donald, Theory of spin torques and giant magnetoresistance in antiferromagnetic metals, Phys. Rev. B 73(21), 214426 (2006)
CrossRef ADS Google scholar
[3]
B. G. Park, J. Wunderlich, X. Martí, V. Holý, Y. Kurosaki, M. Yamada, H. Yamamoto, A. Nishide, J. Hayakawa, H. Takahashi, A. B. Shick, and T. Jungwirth, A spin-valvelike magnetoresistance of an antiferromagnet-based tunnel junction, Nat. Mater. 10(5), 347 (2011)
CrossRef ADS Google scholar
[4]
E. V. Gomonay and V. M. Loktev, Spintronics of antiferromagnetic systems, Low Temp. Phys. 40(1), 17 (2014)
CrossRef ADS Google scholar
[5]
Y. Wang, C. Song, J. Zhang, and F. Pan, Spintronic materials and devices based on antiferromagnetic metals, Prog. Nat. Sci. 27(2), 208 (2017)
CrossRef ADS Google scholar
[6]
N. V. Baranov, N. V. Selezneva, and V. A. Kazant sev, Magnetism and superconductivity of transition metal chalcogenides, Phys. Met. Metallogr. 119(13), 1301 (2018)
CrossRef ADS Google scholar
[7]
W. Zhang, P. K. J. Wong, R. Chua, and A. T. S. Wee, in: Spintronic 2D Materials, Materials Today, edited by W. Liu and Y. Xu, Elsevier, 2020, pp 227–251
CrossRef ADS Google scholar
[8]
M. A. Mc Guire, Cleavable magnetic materials from van der Waals layered transition metal halides and chalcogenides, J. Appl. Phys. 128(11), 110901 (2020)
CrossRef ADS Google scholar
[9]
H. Ipser, K. L. Komarek, and K. O. Klepp, Transition metal-chalcogen systems viii: The Cr–Te phase diagram, J. Less Common Met. 92(2), 265 (1983)
CrossRef ADS Google scholar
[10]
T. Kanomata, Y. Sugawara, T. Kaneko, K. Kamishima, H. Aruga Katori, and T. Goto, Giant magnetovolume effect of CrTe, J. Alloys Compd. 297(1–2), 5 (2000)
CrossRef ADS Google scholar
[11]
M. Wang, L. Kang, J. Su, L. Zhang, H. Dai, H. Cheng, X. Han, T. Zhai, Z. Liu, and J. Han, Two-dimensional ferromagnetism in CrTe flakes down to atomically thin layers, Nanoscale 12(31), 16427 (2020)
CrossRef ADS Google scholar
[12]
M. G. Sreenivasan, J. F. Bi, K. L. Teo, and T. Liew, Systematic investigation of structural and magnetic properties in molecular beam epitaxial growth of metastable zincblende CrTe toward half-metallicity, J. Appl. Phys. 103(4), 043908 (2008)
CrossRef ADS Google scholar
[13]
T. Eto, M. Ishizuka, S. Endo, T. Kanomata, and T. Kikegawa, Pressure-induced structural phase transition in a ferromagnet CrTe, J. Alloys Compd. 315(1–2), 16 (2001)
CrossRef ADS Google scholar
[14]
M. A. Mc Guire, V. O. Garlea, S. Kc, V. R. Cooper, J. Yan, H. Cao, and B. C. Sales, Antiferromagnetism in the van der Waals layered spin-lozenge semiconductor CrTe3, Phys. Rev. B 95(14), 144421 (2017)
CrossRef ADS Google scholar
[15]
Z. Charifi, D. Guendouz, H. Baaziz, F. Soyalp, and B. Hamad, Ab-initioinvestigations of the structural, electronic, magnetic and mechanical properties of CrX (X= As, Sb, Se, and Te) transition metal pnictides and chalcogenides, Phys. Scr. 94(1), 015701 (2019)
CrossRef ADS Google scholar
[16]
J. Dijkstra, H. H. Weitering, C. F. Bruggen, C. Haas, and R. A. Groot, Band-structure calculations, and magnetic and transport properties of ferromagnetic chromium tellurides (CrTe, Cr3Te4, Cr2Te3), J. Phys.: Condens. Matter 1(46), 9141 (1989)
CrossRef ADS Google scholar
[17]
V. Kanchana, G. Vaitheeswaran, and M. Rajagopalan, Pressure-induced structural and magnetic phase transition in ferromagnetic CrTe, J. Magn. Magn. Mater. 250, 353(2002)
CrossRef ADS Google scholar
[18]
W. H. Xie, Y. Q. Xu, B. G. Liu, and D. G. Pettifor, Half-metallic ferromagnetism and structural stability of zincblende phases of the transition-metal chalcogenides, Phys. Rev. Lett. 91(3), 037204 (2003)
CrossRef ADS Google scholar
[19]
T. Block and W. Tremel, Large magnetoresistance at room temperature in the off-stochiometric chalcogenide Cr0.92Te, J. Alloys Compd. 422(1–2), 12 (2006)
CrossRef ADS Google scholar
[20]
Y. Liu, S. K. Bose, and J. Kudrnovský, First-principles theoretical studies of half-metallic ferromagnetism in CrTe, Phys. Rev. B 82(9), 094435 (2010)
CrossRef ADS Google scholar
[21]
A. Belkadi, K. O. Obodo, Y. Zaoui, H. Moulkhalwa, L. Beldi, and B. Bouhafs, First-principles studies of structural, electronic and magnetic properties of the CrS, CrSe and CrTe compounds, SPIN 08(04), 1850019 (2018)
CrossRef ADS Google scholar
[22]
H. Moulkhalwa, Y. Zaoui, K. O. Obodo, A. Belkadi, L. Beldi, and B. Bouhafs, Half-metallic and halfsemiconductor gaps in Cr-based chalcogenides: DFT+U calculations, J. Supercond. Nov. Magn. 32(3), 635 (2019)
CrossRef ADS Google scholar
[23]
Y. Wang, J. Lv, L. Zhu, and Y. Ma, CALYPSO: A method for crystal structure prediction, Comput. Phys. Commun. 183(10), 2063 (2012)
CrossRef ADS Google scholar
[24]
Y. Wang, J. Lv, L. Zhu, and Y. Ma, Crystal structure prediction via particle-swarm optimization, Phys. Rev. B 82(9), 094116 (2010)
CrossRef ADS Google scholar
[25]
B. Gao, P. Gao, S. Lu, J. Lv, Y. Wang, and Y. Ma, Interface structure prediction via CALYPSO method, Sci. Bull. (Beijing) 64(5), 301 (2019)
CrossRef ADS Google scholar
[26]
A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Kseno-fontov, and S. I. Shylin, Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system, Nature 525(7567), 73 (2015)
CrossRef ADS Google scholar
[27]
F. Peng, Y. Sun, C. J. Pickard, R. J. Needs, Q. Wu, and Y. Ma, Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature superconductivity, Phys. Rev. Lett. 119(10), 107001 (2017)
CrossRef ADS Google scholar
[28]
Y. Nishihara, Y. Yamaguchi, M. Tokumoto, K. Takeda, and K. Fukamichi, Superconductivity and magnetism of bcc Cr–Ru alloys, Phys. Rev. B 34(5), 3446 (1986)
CrossRef ADS Google scholar
[29]
A. J. Bradley, The crystal structures of the rhombohedral forms of selenium and tellurium, Lond. Edinb. Dublin Philos. Mag. J. Sci. 48(285), 477 (2009)
CrossRef ADS Google scholar
[30]
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef ADS Google scholar
[31]
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
CrossRef ADS Google scholar
[32]
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
CrossRef ADS Google scholar
[33]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef ADS Google scholar
[34]
H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12), 5188 (1976)
CrossRef ADS Google scholar
[35]
W. E. Pickett, S. C. Erwin, and E. C. Ethridge, Reformulation of the LDA+U method for a local-orbital basis, Phys. Rev. B 58(3), 1201 (1998)
CrossRef ADS Google scholar
[36]
M. Cococcioni and S. de-Gironcoli, Linear response approach to the calculation of the effective interaction parameters in the LDA+U method, Phys. Rev. B 71(3), 035105 (2005)
CrossRef ADS Google scholar
[37]
A. Togo and I. Tanaka, First principles phonon calculations in materials science, Scr. Mater. 108, 1 (2015)
CrossRef ADS Google scholar
[38]
S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27(15), 1787 (2006)
CrossRef ADS Google scholar
[39]
P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G. K. H. Madsen, and L. D. Marks, WIEN2k: An APW+LO program for calculating the properties of solids, J. Chem. Phys. 152(7), 074101 (2020)
CrossRef ADS Google scholar
[40]
K. Choudhary, Q. Zhang, A. C. Reid, S. Chowdhury, N. Van Nguyen, Z. Trautt, M. W. Newrock, F. Y. Congo, and F. Tavazza, Computational screening of high-performance optoelectronic materials using OptB88vdW and TB-mBJ formalisms, Sci. Data 5(1), 180082 (2018)
CrossRef ADS Google scholar
[41]
F. Mouhat and F. X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B 90(22), 224104 (2014)
CrossRef ADS Google scholar
[42]
Z. J. Wu, E. J. Zhao, H. P. Xiang, X. F. Hao, X. J. Liu, and J. Meng, Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles, Phys. Rev. B 76(5), 054115 (2007)
CrossRef ADS Google scholar
[43]
T. Björkman, A. Gulans, A. V. Krasheninnikov, and R. M. Nieminen, van der Waals bonding in layered compounds from advanced density-functional first-principles calculations, Phys. Rev. Lett. 108(23), 235502 (2012)
CrossRef ADS Google scholar
[44]
K. Nakada, H. Shimizu, and H. Yamada, Electronic structure and magnetism of CrTe with NiAs-type structure, J. Magn. Magn. Mater. 272–276, 464 (2004)
CrossRef ADS Google scholar
[45]
I. Benabdelkader, H. Bendaoud, K. O. Obodo, L. Beldi, and B. Bouhafs, An ab initio study on the transition path of carbon dioxide at high pressure: Evidence for a new intermediate P4 ¯m2 phase, Comput. Condens. Matter 21, e00429 (2019)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(2504 KB)

Accesses

Citations

Detail

Sections
Recommended

/