Strain engineering of ion migration in LiCoO2
Jia-Jing Li, Yang Dai, Jin-Cheng Zheng
Strain engineering of ion migration in LiCoO2
Strain engineering is a powerful approach for tuning various properties of functional materials. The influences of lattice strain on the Li-ion migration energy barrier of lithium-ions in layered LiCoO2 have been systemically studied using lattice dynamics simulations, analytical function and neural network method. We have identified two Li-ion migration paths, oxygen dumbbell hop (ODH), and tetrahedral site hop (TSH) with different concentrations of local defects. We found that Li-ion migration energy barriers increased with the increase of pressure for both ODH and TSH cases, while decreased significantly with applied tensile uniaxial c-axis strain for ODH and TSH cases or compressive in-plane strain for TSH case. Our work provides the complete strain-map for enhancing the diffusivity of Liion in LiCoO2, and therefore, indicates a new way to achieve better rate performance through strain engineering.
LiCoO2 / strain engineering / migration energy barrier / lithium-ion battery
[1] |
K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, LixCoO2 (0<x≤1): A new cathode material for batteries of high energy density, Mater. Res. Bull. 15(6), 783 (1980)
CrossRef
ADS
Google scholar
|
[2] |
J. M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature 414, 359 (2001)
CrossRef
ADS
Google scholar
|
[3] |
J. B. Goodenough and Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater. 22(3), 587 (2010)
CrossRef
ADS
Google scholar
|
[4] |
L. J. Wu, K. W. Nam, X. J. Wang, Y. N. Zhou, J. C. Zheng, X. Q. Yang, and Y. M. Zhu, Structural origin of overcharge-induced thermal instability of Ni-containing layered-cathodes for high-energy-density lithium batteries, Chem. Mater. 23(17), 3953 (2011)
CrossRef
ADS
Google scholar
|
[5] |
D. H. Wu and Z. Zhou, Recent progress of computational investigation on anode materials in Li ion batteries, Front. Phys. 6(2), 197 (2011)
CrossRef
ADS
Google scholar
|
[6] |
J. B. Goodenough, Evolution of strategies for modern rechargeable batteries, Acc. Chem. Res. 46(5), 1053 (2013)
CrossRef
ADS
Google scholar
|
[7] |
C. Y. Ouyang and L. Q. Chen, Physics towards next generation Li secondary batteries materials: A short review from computational materials design perspective, Sci. China: Phys. Mech. Astron. 56(12), 2278 (2013)
CrossRef
ADS
Google scholar
|
[8] |
N. Liu, W. Y. Li, M. Pasta, and Y. Cui, Nanomaterials for electrochemical energy storage, Front. Phys. 9(3), 323 (2014),
CrossRef
ADS
Google scholar
|
[9] |
Y. Wu, J. P. Wang, K. L. Jiang, and S. S. Fan, Applications of carbon nanotubes in high performance lithium ion batteries, Front. Phys. 9(3), 351 (2014)
CrossRef
ADS
Google scholar
|
[10] |
R. Q. Lin, E. Y. Hu, M. J. Liu, Y. Wang, H. Cheng, J. P. Wu, J. C. Zheng, Q. Wu, S. M. Bak, X. Tong, R. Zhang, W. L. Yang, K. A. Persson, X. Q. Yu, X. Q. Yang, and H. L. Xin, Anomalous metal segregation in lithium-rich material provides design rules for stable cathode in lithium-ion battery, Nat. Commun. 10(1), 1650 (2019)
CrossRef
ADS
Google scholar
|
[11] |
S. Li, Y. F. Dong, D. D. Wang, W. Chen, L. Huang, C. W. Shi, and L. Q. Mai, Hierarchical nanowires for highperformance electrochemical energy storage, Front. Phys. 9(3), 303 (2014)
CrossRef
ADS
Google scholar
|
[12] |
Z. Q. Wang, T. Y. Lü, H. Q. Wang, Y. P. Feng, and J. C. Zheng, Review of borophene and its potential applications, Front. Phys. 14(3), 33403 (2019)
CrossRef
ADS
Google scholar
|
[13] |
Y. Liang, et al., A review of rechargeable batteries for portable electronic devices, InfoMat. 1, 6 (2019)
CrossRef
ADS
Google scholar
|
[14] |
Y. Wang, Q. H. Zhang, Z. C. Xue, L. F. Yang, J. Y. Wang, F. Q. Meng, Q. H. Li, H. Y. Pan, J. N. Zhang, Z. Jiang, W. L. Yang, X. Q. Yu, L. Gu, and H. Li, An in situ formed surface coating layer enabling LiCoO2 with stable 4.6 V highvoltage cycle performances, Adv. Energy Mater. 10(28), 2001413 (2020)
CrossRef
ADS
Google scholar
|
[15] |
Y. S. Hong, X. J. Huang, C. X. Wei, J. Y. Wang, J. N. Zhang, H. F. Yan, Y. S. Chu, P. Pianetta, R. J. Xiao, X. Q. Yu, Y. J. Liu, and H. Li, Hierarchical defect engineering for LiCoO2 through low-solubility trace element doping, Chem 6(10), 2759 (2020)
CrossRef
ADS
Google scholar
|
[16] |
J. N. Zhang, Q. H. Li, C. Y. Ouyang, X. Q. Yu, M. Y. Ge, X. J. Huang, E. Y. Hu, C. Ma, S. F. Li, R. J. Xiao, W. L. Yang, Y. Chu, Y. J. Liu, H. G. Yu, X. Q. Yang, X. J. Huang, L. Q. Chen, and H. Li, Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V, Nat. Energy 4(7), 594 (2019)
CrossRef
ADS
Google scholar
|
[17] |
H. Zeng, M. Wu, H. Q. Wang, J. C. Zheng, and J. Y. Kang, Tuning the magnetic and electronic properties of strontium titanate by carbon doping, Front. Phys. 16(4), 43501 (2021)
CrossRef
ADS
Google scholar
|
[18] |
L. Wang, B. Chen, Jun Ma, G. Cui, and L. Chen, Reviving lithium cobalt oxide-based lithium secondary batteriestoward a higher energy density, Chem. Soc. Rev. 47, 6505 (2018)
CrossRef
ADS
Google scholar
|
[19] |
F. H. Ning, S. Li, B. Xu, and C. Y. Ouyang, Strain tuned Li diffusion in LiCoO2 material for Li ion batteries: A first principles study, Solid State Ionics 263, 46 (2014)
CrossRef
ADS
Google scholar
|
[20] |
L. M. Wu and J. Zhang, Ab initiostudy of anisotropic mechanical properties of LiCoO2 during lithium intercalation and deintercalation process, J. Appl. Phys. 118(22), 225101 (2015)
CrossRef
ADS
Google scholar
|
[21] |
P. Stein, A. Moradabadi, M. Diehm, B. X. Xu, and K. Albe, The influence of anisotropic surface stresses and bulk stresses on defect thermodynamics in LiCoO2 nanoparticles, Acta Mater. 159, 225 (2018)
CrossRef
ADS
Google scholar
|
[22] |
J. C. Zheng and J. W. Davenport, Ferromagnetism and stability of half-metallic MnSb and MnBi in the strained zinc-blende structure: Predictions from full potential and pseudopotential calculations, Phys. Rev. B 69(14), 144415 (2004)
CrossRef
ADS
Google scholar
|
[23] |
J. C. Zheng and Y. M. Zhu, Searching for a higher superconducting transition temperature in strained MgB2, Phys. Rev. B 73(2), 024509 (2006)
CrossRef
ADS
Google scholar
|
[24] |
N. Wei, L. Q. Xu, H. Q. Wang, and J. C. Zheng, Strain engineering of thermal conductivity in graphene sheets and nanoribbons: A demonstration of magic flexibility, Nanotechnology 22(10), 105705 (2011)
CrossRef
ADS
Google scholar
|
[25] |
T. Y. Lu, X. X. Liao, H. Q. Wang, and J. C. Zheng, Tuning the indirect-direct band gap transition of SiC, GeC and SnC monolayer in a graphene-like honeycomb structure by strain engineering: A quasiparticle GW study, J. Mater. Chem. 22(19), 10062 (2012)
CrossRef
ADS
Google scholar
|
[26] |
H. Cheng and J.-C. Zheng, Ab initio study of anisotropic mechanical and electronic properties of strained carbonnitride nanosheet with interlayer bonding, Front. Phys. 16(4), 43505 (2021)
CrossRef
ADS
Google scholar
|
[27] |
J. D. Gale and A. L. Rohl, The general utility lattice program (GULP), Mol. Simul. 29(5), 291 (2003)
CrossRef
ADS
Google scholar
|
[28] |
C. R. A. Catlow, I. D. Faux, and M. J. Norgett, Shell and breathing shell model calculations for defect formation energies and volumes in magnesium oxide, J. Phys. C: Solid State Phys. 9(3), 419 (1976)
CrossRef
ADS
Google scholar
|
[29] |
U. Schroder, A new model for lattice-dynamics (breathing shell-model), Solid State Commun. 88(11–12), 1049 (1993)
CrossRef
ADS
Google scholar
|
[30] |
C. A. J. Fisher, M. S. Islam, and H. Moriwake, Atomic level investigations of lithium ion battery cathode materials, J. Phys. Soc. Jpn. 79, 59 (2010)
CrossRef
ADS
Google scholar
|
[31] |
N. F. Mott and M. J. N. Littleton, Conduction in polar crystals (I): Electrolytic conduction in solid salts, Trans. Faraday Soc. 34(5), 485 (1938)
CrossRef
ADS
Google scholar
|
[32] |
A. L. Samuel, Some studies in machine learning using the game of checkers, IBM J. Res. Dev. 3(3), 210 (1959)
CrossRef
ADS
Google scholar
|
[33] |
T. M. Mitchell, Machine Learning, New York: McGraw-Hill, 1997
|
[34] |
J. C. Zheng, J. Y. Chen, J. W. Shuai, S. H. Cai, and R. Z. Wang, Storage capacity of the Hopfield neural network, Physica A 246(3–4), 313 (1997)
CrossRef
ADS
Google scholar
|
[35] |
J. W. Shuai, J. C. Zheng, Z. X. Chen, R. T. Liu, and B. X. Wu, The three-dimensional rotation neural network, Physica A 238(1), 23 (1997)
CrossRef
ADS
Google scholar
|
[36] |
B. Meredig, A. Agrawal, S. Kirklin, J. E. Saal, J. W. Doak, A. Thompson, K. Zhang, A. Choudhary, and C. Wolverton, Combinatorial screening for new materials in unconstrained composition space with machine learning, Phys. Rev. B 89(9), 094104 (2014)
CrossRef
ADS
Google scholar
|
[37] |
Y. L. Ouyang, C. Q. Yu, G. Yan, and J. Chen, Machine learning approach for the prediction and optimization of thermal transport properties, Front. Phys. 16(4), 43200 (2021)
CrossRef
ADS
Google scholar
|
[38] |
V. Deringer, Modelling and understanding battery materials with machine-learning-driven atomistic simulations, J. Phys.: Energy 2(4), 041003 (2020)
CrossRef
ADS
Google scholar
|
[39] |
S. Q. Li, J. W. Li, H. W. He, and H. X. Wang, Lithium-ion battery modeling based on big data, Energy Procedia 159, 168 (2019)
CrossRef
ADS
Google scholar
|
[40] |
M. Dahbi, I. Saadoune, and J. M. Amarilla, LixNi0.7Co0.3O2 electrode material: Structural, physical and electrochemical investigations, Electrochimica Acta 53(16), 5266 (2008)
CrossRef
ADS
Google scholar
|
[41] |
H. Gabrisch, R. Yazami, and B. Fultz, The character of dislocations in LiCoO2, Electrochem. Solid-State Lett. 5(6), A111 (2002)
CrossRef
ADS
Google scholar
|
[42] |
Y. I. Jang, B. J. Neudecker, and N. J. Dudney, Lithium diffusion in LixCoO2 (0.45 < x < 0.7) intercalation cathodes, Electrochem. Solid-State Lett. 4(6), A74 (2001)
CrossRef
ADS
Google scholar
|
[43] |
D. C. Li, Z. H. Peng, H. B. Ren, W. Y. Guo, and Y. H. Zhou, Synthesis and characterization of LiNi1−xCoxO2 for lithium batteries by a novel method, Mater. Chem. Phys. 107(1), 171 (2008)
CrossRef
ADS
Google scholar
|
[44] |
C. W. Wang, X. L. Ma, L. Q. Zhou, J. G. Cheng, J. T. Sun, and Y. H. Zhou, Study on the rapid synthesis of LiNi1−xCoxO2 cathode material for lithium secondary battery, Electrochimica Acta 52(9), 3022 (2007)
CrossRef
ADS
Google scholar
|
[45] |
F. Xiong, H. J. Yan, Y. Chen, B. Xu, J. X. Le, and C. Y. Ouyang, The atomic and electronic structure changes upon delithiation of LiCoO2: From first principles calculations, Int. J. Electrochem. Sci. 7(10), 9390 (2012)
|
[46] |
M. Holzapfel, C. Haak, and A. Ott, Lithium-ion conductors of the system LiCo1−xFexO2, preparation and structural investigation, J. Solid State Chem. 156(2), 470 (2001)
CrossRef
ADS
Google scholar
|
[47] |
A. Van der Ven and G. Ceder, Lithium diffusion in layered LixCoO2, Electrochem. Solid-State Lett. 3(7), 301–304 (2000)
CrossRef
ADS
Google scholar
|
[48] |
A. Van der Ven and G. Ceder, Lithium diffusion mechanisms in layered intercalation compounds, J. Power Sources 97–98, 529 (2001)
CrossRef
ADS
Google scholar
|
[49] |
G. H. Vineyard, Frequency factors and isotope effects in solid state rate processes, J. Phys. Chem. Solids 3(1–2), 121 (1957)
CrossRef
ADS
Google scholar
|
[50] |
R. Kutner, Chemical diffusion in the lattice gas of noninteracting particles, Phys. Lett. A 81(4), 239 (1981)
CrossRef
ADS
Google scholar
|
[51] |
X. Gong, J. M. Huang, Y. Chen, M. S. Wu, and C. Y. Ouyang, Vibrational contribution to the thermodynamic properties of lithium ion batteries system: A first principles calculations, Int. J. Electrochem. Sci. 8(8), 10549 (2013)
|
[52] |
J. Sugiyama, K. Mukai, Y. Ikedo, H. Nozaki, M. Månsson, and I. Watanabe, Li diffusion in LixCoO2 probed by muonspin spectroscopy, Phys. Rev. Lett. 103(14), 147601 (2009)
CrossRef
ADS
Google scholar
|
[53] |
L. Wu, J.-C. Zheng, J. Zhou, Q. Li, J. Yang, and Y. Zhu, Nanostructures and defects in thermoelectric AgPb18SbTe20 single crystal, J. Appl. Phys. 105, 094317 (2009)
CrossRef
ADS
Google scholar
|
[54] |
J.-C. Zheng, L. Wu, Y. Zhu, and J. W. Davenport, On the sensitivity of electron and X-ray scattering factors to valence charge distributions, J. Appl. Cryst. 38, 648 (2005)
CrossRef
ADS
Google scholar
|
[55] |
J.-C. Zheng, L. Wu, and Y. Zhu, Aspherical electron scattering factors and their parameterizations for elements from H to Xe, J. Appl. Cryst. 42, 1043 (2009)
CrossRef
ADS
Google scholar
|
[56] |
J.-C. Zheng, A. I. Frenkel, L. Wu, J. Hanson, W. Ku, E. S. Bozin, S. J. L. Billinge, and Y. Zhu, Nanoscale disorder and local electronic properties of CaCu3Ti4O12: An integrated study of electron, neutron, and X-ray diffraction, X-ray absorption fine structure, and first-principles calculations, Phys. Rev. B 81, 144203 (2010)
CrossRef
ADS
Google scholar
|
[57] |
J.-C. Zheng and H. Q. Wang, Principles and applications of a comprehensive characterization method combining synchrotron radiation technology, transmission electron microscopy, and density functional theory, Scientia Sinica: Physica, Mechanica et Astronomica, 51(3), 030007 (2021) (in Chinese)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |