Strain engineering of ion migration in LiCoO2

Jia-Jing Li, Yang Dai, Jin-Cheng Zheng

PDF(1763 KB)
PDF(1763 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (1) : 13503. DOI: 10.1007/s11467-021-1086-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Strain engineering of ion migration in LiCoO2

Author information +
History +

Abstract

Strain engineering is a powerful approach for tuning various properties of functional materials. The influences of lattice strain on the Li-ion migration energy barrier of lithium-ions in layered LiCoO2 have been systemically studied using lattice dynamics simulations, analytical function and neural network method. We have identified two Li-ion migration paths, oxygen dumbbell hop (ODH), and tetrahedral site hop (TSH) with different concentrations of local defects. We found that Li-ion migration energy barriers increased with the increase of pressure for both ODH and TSH cases, while decreased significantly with applied tensile uniaxial c-axis strain for ODH and TSH cases or compressive in-plane strain for TSH case. Our work provides the complete strain-map for enhancing the diffusivity of Liion in LiCoO2, and therefore, indicates a new way to achieve better rate performance through strain engineering.

Graphical abstract

Keywords

LiCoO2 / strain engineering / migration energy barrier / lithium-ion battery

Cite this article

Download citation ▾
Jia-Jing Li, Yang Dai, Jin-Cheng Zheng. Strain engineering of ion migration in LiCoO2. Front. Phys., 2022, 17(1): 13503 https://doi.org/10.1007/s11467-021-1086-5

References

[1]
K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, LixCoO2 (0<x≤1): A new cathode material for batteries of high energy density, Mater. Res. Bull. 15(6), 783 (1980)
CrossRef ADS Google scholar
[2]
J. M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature 414, 359 (2001)
CrossRef ADS Google scholar
[3]
J. B. Goodenough and Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater. 22(3), 587 (2010)
CrossRef ADS Google scholar
[4]
L. J. Wu, K. W. Nam, X. J. Wang, Y. N. Zhou, J. C. Zheng, X. Q. Yang, and Y. M. Zhu, Structural origin of overcharge-induced thermal instability of Ni-containing layered-cathodes for high-energy-density lithium batteries, Chem. Mater. 23(17), 3953 (2011)
CrossRef ADS Google scholar
[5]
D. H. Wu and Z. Zhou, Recent progress of computational investigation on anode materials in Li ion batteries, Front. Phys. 6(2), 197 (2011)
CrossRef ADS Google scholar
[6]
J. B. Goodenough, Evolution of strategies for modern rechargeable batteries, Acc. Chem. Res. 46(5), 1053 (2013)
CrossRef ADS Google scholar
[7]
C. Y. Ouyang and L. Q. Chen, Physics towards next generation Li secondary batteries materials: A short review from computational materials design perspective, Sci. China: Phys. Mech. Astron. 56(12), 2278 (2013)
CrossRef ADS Google scholar
[8]
N. Liu, W. Y. Li, M. Pasta, and Y. Cui, Nanomaterials for electrochemical energy storage, Front. Phys. 9(3), 323 (2014),
CrossRef ADS Google scholar
[9]
Y. Wu, J. P. Wang, K. L. Jiang, and S. S. Fan, Applications of carbon nanotubes in high performance lithium ion batteries, Front. Phys. 9(3), 351 (2014)
CrossRef ADS Google scholar
[10]
R. Q. Lin, E. Y. Hu, M. J. Liu, Y. Wang, H. Cheng, J. P. Wu, J. C. Zheng, Q. Wu, S. M. Bak, X. Tong, R. Zhang, W. L. Yang, K. A. Persson, X. Q. Yu, X. Q. Yang, and H. L. Xin, Anomalous metal segregation in lithium-rich material provides design rules for stable cathode in lithium-ion battery, Nat. Commun. 10(1), 1650 (2019)
CrossRef ADS Google scholar
[11]
S. Li, Y. F. Dong, D. D. Wang, W. Chen, L. Huang, C. W. Shi, and L. Q. Mai, Hierarchical nanowires for highperformance electrochemical energy storage, Front. Phys. 9(3), 303 (2014)
CrossRef ADS Google scholar
[12]
Z. Q. Wang, T. Y. Lü, H. Q. Wang, Y. P. Feng, and J. C. Zheng, Review of borophene and its potential applications, Front. Phys. 14(3), 33403 (2019)
CrossRef ADS Google scholar
[13]
Y. Liang, et al., A review of rechargeable batteries for portable electronic devices, InfoMat. 1, 6 (2019)
CrossRef ADS Google scholar
[14]
Y. Wang, Q. H. Zhang, Z. C. Xue, L. F. Yang, J. Y. Wang, F. Q. Meng, Q. H. Li, H. Y. Pan, J. N. Zhang, Z. Jiang, W. L. Yang, X. Q. Yu, L. Gu, and H. Li, An in situ formed surface coating layer enabling LiCoO2 with stable 4.6 V highvoltage cycle performances, Adv. Energy Mater. 10(28), 2001413 (2020)
CrossRef ADS Google scholar
[15]
Y. S. Hong, X. J. Huang, C. X. Wei, J. Y. Wang, J. N. Zhang, H. F. Yan, Y. S. Chu, P. Pianetta, R. J. Xiao, X. Q. Yu, Y. J. Liu, and H. Li, Hierarchical defect engineering for LiCoO2 through low-solubility trace element doping, Chem 6(10), 2759 (2020)
CrossRef ADS Google scholar
[16]
J. N. Zhang, Q. H. Li, C. Y. Ouyang, X. Q. Yu, M. Y. Ge, X. J. Huang, E. Y. Hu, C. Ma, S. F. Li, R. J. Xiao, W. L. Yang, Y. Chu, Y. J. Liu, H. G. Yu, X. Q. Yang, X. J. Huang, L. Q. Chen, and H. Li, Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V, Nat. Energy 4(7), 594 (2019)
CrossRef ADS Google scholar
[17]
H. Zeng, M. Wu, H. Q. Wang, J. C. Zheng, and J. Y. Kang, Tuning the magnetic and electronic properties of strontium titanate by carbon doping, Front. Phys. 16(4), 43501 (2021)
CrossRef ADS Google scholar
[18]
L. Wang, B. Chen, Jun Ma, G. Cui, and L. Chen, Reviving lithium cobalt oxide-based lithium secondary batteriestoward a higher energy density, Chem. Soc. Rev. 47, 6505 (2018)
CrossRef ADS Google scholar
[19]
F. H. Ning, S. Li, B. Xu, and C. Y. Ouyang, Strain tuned Li diffusion in LiCoO2 material for Li ion batteries: A first principles study, Solid State Ionics 263, 46 (2014)
CrossRef ADS Google scholar
[20]
L. M. Wu and J. Zhang, Ab initiostudy of anisotropic mechanical properties of LiCoO2 during lithium intercalation and deintercalation process, J. Appl. Phys. 118(22), 225101 (2015)
CrossRef ADS Google scholar
[21]
P. Stein, A. Moradabadi, M. Diehm, B. X. Xu, and K. Albe, The influence of anisotropic surface stresses and bulk stresses on defect thermodynamics in LiCoO2 nanoparticles, Acta Mater. 159, 225 (2018)
CrossRef ADS Google scholar
[22]
J. C. Zheng and J. W. Davenport, Ferromagnetism and stability of half-metallic MnSb and MnBi in the strained zinc-blende structure: Predictions from full potential and pseudopotential calculations, Phys. Rev. B 69(14), 144415 (2004)
CrossRef ADS Google scholar
[23]
J. C. Zheng and Y. M. Zhu, Searching for a higher superconducting transition temperature in strained MgB2, Phys. Rev. B 73(2), 024509 (2006)
CrossRef ADS Google scholar
[24]
N. Wei, L. Q. Xu, H. Q. Wang, and J. C. Zheng, Strain engineering of thermal conductivity in graphene sheets and nanoribbons: A demonstration of magic flexibility, Nanotechnology 22(10), 105705 (2011)
CrossRef ADS Google scholar
[25]
T. Y. Lu, X. X. Liao, H. Q. Wang, and J. C. Zheng, Tuning the indirect-direct band gap transition of SiC, GeC and SnC monolayer in a graphene-like honeycomb structure by strain engineering: A quasiparticle GW study, J. Mater. Chem. 22(19), 10062 (2012)
CrossRef ADS Google scholar
[26]
H. Cheng and J.-C. Zheng, Ab initio study of anisotropic mechanical and electronic properties of strained carbonnitride nanosheet with interlayer bonding, Front. Phys. 16(4), 43505 (2021)
CrossRef ADS Google scholar
[27]
J. D. Gale and A. L. Rohl, The general utility lattice program (GULP), Mol. Simul. 29(5), 291 (2003)
CrossRef ADS Google scholar
[28]
C. R. A. Catlow, I. D. Faux, and M. J. Norgett, Shell and breathing shell model calculations for defect formation energies and volumes in magnesium oxide, J. Phys. C: Solid State Phys. 9(3), 419 (1976)
CrossRef ADS Google scholar
[29]
U. Schroder, A new model for lattice-dynamics (breathing shell-model), Solid State Commun. 88(11–12), 1049 (1993)
CrossRef ADS Google scholar
[30]
C. A. J. Fisher, M. S. Islam, and H. Moriwake, Atomic level investigations of lithium ion battery cathode materials, J. Phys. Soc. Jpn. 79, 59 (2010)
CrossRef ADS Google scholar
[31]
N. F. Mott and M. J. N. Littleton, Conduction in polar crystals (I): Electrolytic conduction in solid salts, Trans. Faraday Soc. 34(5), 485 (1938)
CrossRef ADS Google scholar
[32]
A. L. Samuel, Some studies in machine learning using the game of checkers, IBM J. Res. Dev. 3(3), 210 (1959)
CrossRef ADS Google scholar
[33]
T. M. Mitchell,  Machine Learning,  New York: McGraw-Hill,  1997
[34]
J. C. Zheng,  J. Y. Chen,  J. W. Shuai,  S. H. Cai, and R. Z. Wang, Storage capacity of the Hopfield neural network, Physica A  246(3–4),  313 (1997)
CrossRef ADS Google scholar
[35]
J. W. Shuai,  J. C. Zheng,  Z. X. Chen,  R. T. Liu, and B. X. Wu, The three-dimensional rotation neural network, Physica A  238(1),  23 (1997)
CrossRef ADS Google scholar
[36]
B. Meredig,  A. Agrawal,  S. Kirklin,  J. E. Saal,  J. W. Doak, A. Thompson,  K. Zhang,  A. Choudhary, and  C. Wolverton, Combinatorial screening for new materials in unconstrained composition space with machine learning,  Phys. Rev. B  89(9),  094104 (2014)
CrossRef ADS Google scholar
[37]
Y. L. Ouyang,  C. Q. Yu,  G. Yan, and  J. Chen,  Machine learning approach for the prediction and optimization of thermal transport properties,  Front. Phys.  16(4),  43200 (2021)
CrossRef ADS Google scholar
[38]
V. Deringer,  Modelling and understanding battery materials with machine-learning-driven atomistic simulations,  J. Phys.: Energy  2(4),  041003 (2020)
CrossRef ADS Google scholar
[39]
S. Q. Li,  J. W. Li,  H. W. He, and  H. X. Wang,  Lithium-ion battery modeling based on big data,  Energy Procedia  159, 168 (2019)
CrossRef ADS Google scholar
[40]
M. Dahbi,  I. Saadoune, and  J. M. Amarilla, LixNi0.7Co0.3O2 electrode material: Structural, physical and electrochemical investigations,  Electrochimica Acta 53(16),  5266 (2008)
CrossRef ADS Google scholar
[41]
H. Gabrisch,  R. Yazami, and  B. Fultz,  The character of dislocations in LiCoO2, Electrochem. Solid-State Lett.  5(6), A111 (2002)
CrossRef ADS Google scholar
[42]
Y. I. Jang,  B. J. Neudecker, and  N. J. Dudney,  Lithium diffusion in LixCoO2 (0.45 <  x < 0.7) intercalation cathodes, Electrochem. Solid-State Lett.  4(6),  A74 (2001)
CrossRef ADS Google scholar
[43]
D. C. Li,  Z. H. Peng,  H. B. Ren,  W. Y. Guo, and  Y. H. Zhou,  Synthesis and characterization of LiNi1−xCoxO2 for lithium batteries by a novel method, Mater. Chem. Phys.  107(1),  171 (2008)
CrossRef ADS Google scholar
[44]
C. W. Wang,  X. L. Ma,  L. Q. Zhou,  J. G. Cheng,  J. T. Sun, and Y. H. Zhou, Study on the rapid synthesis of LiNi1−xCoxO2 cathode material for lithium secondary battery, Electrochimica Acta  52(9),  3022 (2007)
CrossRef ADS Google scholar
[45]
F. Xiong,  H. J. Yan,  Y. Chen,  B. Xu,  J. X. Le, and  C. Y. Ouyang,  The atomic and electronic structure changes upon delithiation of LiCoO2: From first principles calculations, Int. J. Electrochem. Sci.  7(10),  9390 (2012)
[46]
M. Holzapfel,  C. Haak, and  A. Ott, Lithium-ion conductors of the system LiCo1−xFexO2, preparation and structural investigation,  J. Solid State Chem.  156(2),  470 (2001)
CrossRef ADS Google scholar
[47]
A. Van der Ven and  G. Ceder,  Lithium diffusion in layered LixCoO2,  Electrochem. Solid-State Lett.  3(7),  301–304 (2000)
CrossRef ADS Google scholar
[48]
A. Van der Ven and  G. Ceder,  Lithium diffusion mechanisms in layered intercalation compounds,  J. Power Sources  97–98,  529 (2001)
CrossRef ADS Google scholar
[49]
G. H. Vineyard,  Frequency factors and isotope effects in solid state rate processes,  J. Phys. Chem. Solids  3(1–2), 121 (1957)
CrossRef ADS Google scholar
[50]
R. Kutner,  Chemical diffusion in the lattice gas of noninteracting particles,  Phys. Lett. A  81(4),  239 (1981)
CrossRef ADS Google scholar
[51]
X. Gong,  J. M. Huang,  Y. Chen,  M. S. Wu, and  C. Y. Ouyang,  Vibrational contribution to the thermodynamic properties of lithium ion batteries system: A first principles calculations,  Int. J. Electrochem. Sci.  8(8),  10549 (2013)
[52]
J. Sugiyama,  K. Mukai,  Y. Ikedo,  H. Nozaki,  M. Månsson, and  I. Watanabe,  Li diffusion in LixCoO2 probed by muonspin spectroscopy,  Phys. Rev. Lett.  103(14),  147601 (2009)
CrossRef ADS Google scholar
[53]
  L. Wu,  J.-C. Zheng,  J. Zhou,  Q. Li,  J. Yang, and Y. Zhu,  Nanostructures and defects in thermoelectric AgPb18SbTe20 single crystal,  J. Appl. Phys.  105,  094317 (2009)
CrossRef ADS Google scholar
[54]
J.-C. Zheng,  L. Wu,  Y. Zhu, and  J. W. Davenport,  On the sensitivity of electron and X-ray scattering factors to valence charge distributions,  J. Appl. Cryst.  38,  648 (2005)
CrossRef ADS Google scholar
[55]
J.-C. Zheng,  L. Wu, and  Y. Zhu,  Aspherical electron scattering factors and their parameterizations for elements from H to Xe,  J. Appl. Cryst.  42,  1043 (2009)
CrossRef ADS Google scholar
[56]
J.-C. Zheng,  A. I. Frenkel, L. Wu,  J. Hanson,  W. Ku,  E. S. Bozin,  S. J. L. Billinge, and  Y. Zhu,  Nanoscale disorder and local electronic properties of CaCu3Ti4O12: An integrated study of electron, neutron, and X-ray diffraction, X-ray absorption fine structure, and first-principles calculations,  Phys. Rev. B  81,  144203 (2010)
CrossRef ADS Google scholar
[57]
J.-C. Zheng and  H. Q. Wang,  Principles and applications of a comprehensive characterization method combining synchrotron radiation technology, transmission electron microscopy, and density functional theory, Scientia Sinica: Physica,  Mechanica et Astronomica,  51(3),  030007 (2021) (in Chinese)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(1763 KB)

Accesses

Citations

Detail

Sections
Recommended

/