The relative importance of structure and dynamics on node influence in reversible spreading processes
Jun-Yi Qu, Ming Tang, Ying Liu, Shu-Guang Guan
The relative importance of structure and dynamics on node influence in reversible spreading processes
The reversible spreading processes with repeated infection widely exist in nature and human society, such as gonorrhea propagation and meme spreading. Identifying influential spreaders is an important issue in the reversible spreading dynamics on complex networks, which has been given much attention. Except for structural centrality, the nodes’ dynamical states play a significant role in their spreading influence in the reversible spreading processes. By integrating the number of outgoing edges and infection risks of node’s neighbors into structural centrality, a new measure for identifying influential spreaders is articulated which considers the relative importance of structure and dynamics on node influence. The number of outgoing edges and infection risks of neighbors represent the positive effect of the local structural characteristic and the negative effect of the dynamical states of nodes in identifying influential spreaders, respectively. We find that an appropriate combination of these two characteristics can greatly improve the accuracy of the proposed measure in identifying the most influential spreaders. Notably, compared with the positive effect of the local structural characteristic, slightly weakening the negative effect of dynamical states of nodes can make the proposed measure play the best performance. Quantitatively understanding the relative importance of structure and dynamics on node influence provides a significant insight into identifying influential nodes in the reversible spreading processes.
reversible spreading process / node influence / local structure / dynamical state
[1] |
D. Koschützki, K. A. Lehmann, L. Peeters, S. Richter, D. Tenfelde-Podehl, and O. Zlotowski,
CrossRef
ADS
Google scholar
|
[2] |
L. Lü, D. Chen, X. Ren, Q. Zhang, Y. Zhang, and T. Zhou, Vital nodes identification in complex networks, Phys. Rep. 650, 1 (2016)
CrossRef
ADS
Google scholar
|
[3] |
S. Pei, J. Wang, F. Morone, and H. A. Makse, Influencer identification in dynamical complex systems, J. Complex Netw. 8(2), cnz029 (2020)
CrossRef
ADS
Google scholar
|
[4] |
J. Leskovec, L. A. Adamic, and B. A. Huberman, The dynamics of viral marketing, ACM Trans. Web 1(1), 5 (2007)
CrossRef
ADS
Google scholar
|
[5] |
A. Bovet and H. A. Makse, Influence of fake news in Twitter during the 2016 US presidential election, Nat. Commun. 10(1), 1 (2019)
CrossRef
ADS
Google scholar
|
[6] |
Y. T. Lin, X. P. Han, B. K. Chen, J. Zhou, and B. H. Wang, Evolution of innovative behaviors on scale-free networks, Front. Phys. 13(4), 130308 (2018)
CrossRef
ADS
Google scholar
|
[7] |
A. E. Motter and Y. Lai, Cascade-based attacks on complex networks, Phys. Rev. E 66(6), 065102 (2002)
CrossRef
ADS
Google scholar
|
[8] |
R. Albert, I. Albert, and G. L. Nakarado, Structural vulnerability of the North American power grid, Phys. Rev. E 69(2), 025103 (2004)
CrossRef
ADS
Google scholar
|
[9] |
R. Pastor-Satorras and A. Vespignani, Immunization of complex networks, Phys. Rev. E 65(3), 036104 (2002)
CrossRef
ADS
Google scholar
|
[10] |
S. V. Scarpino and G. Petri, On the predictability of infectious disease outbreaks,Nat. Commun . 10(1), 898 (2019)
CrossRef
ADS
Google scholar
|
[11] |
J. Zhou and Z. H. Liu, Epidemic spreading in complex networks, Front. Phys. 3(3), 331 (2008)
CrossRef
ADS
Google scholar
|
[12] |
F. Morone and H. A. Makse, Influence maximization in complex networks through optimal percolation, Nature 524(7563), 65 (2015)
CrossRef
ADS
Google scholar
|
[13] |
S. Pei, F. Morone, and H. A. Makse, in: Complex Spreading Phenomena in Social Systems, Springer, 2018, pp 125–148
CrossRef
ADS
Google scholar
|
[14] |
Y. Hu, S. Ji, Y. Jin, L. Feng, H. E. Stanley, and S. Havlin, Local structure can identify and quantify influential global spreaders in large scale social networks, Proc. Natl. Acad. Sci. USA 115(29), 7468 (2018)
CrossRef
ADS
Google scholar
|
[15] |
A. Y. Lokhov and D. Saad, Optimal deployment of resources for maximizing impact in spreading processes, Proc. Natl. Acad. Sci. USA 114(39), E8138 (2017)
CrossRef
ADS
Google scholar
|
[16] |
K. Zheng, Y. Liu, Y. Wang, and W. Wang, k-core percolation on interdependent and interconnected multiplex networks, arXiv: 2101.02335 (2021)
CrossRef
ADS
Google scholar
|
[17] |
G. Poux-Médard, R. Pastor-Satorras, and C. Castellano, Influential spreaders for recurrent epidemics on networks, Phys. Rev. Res.2(2), 023332 (2020)
CrossRef
ADS
Google scholar
|
[18] |
S. Erkol, D. Mazzilli, and F. Radicchi, Influence maximization on temporal networks, Phys. Rev. E 102(4), 042307 (2020)
CrossRef
ADS
Google scholar
|
[19] |
S. Aral and P. S. Dhillon, Social influence maximization under empirical influence models, Nat. Hum. Behav. 2(6), 375 (2018)
CrossRef
ADS
Google scholar
|
[20] |
K. Klemm, M. Á. Serrano, V. M. Eguíluz, and M. S. Miguel, A measure of individual role in collective dynamics, Sci. Rep. 2(1), 1 (2012)
CrossRef
ADS
Google scholar
|
[21] |
J. P. Gleeson, J. A. Ward, K. P. Osullivan, and W. T. Lee, Competition-induced criticality in a model of meme popularity, Phys. Rev. Lett. 112(4), 048701 (2014)
CrossRef
ADS
Google scholar
|
[22] |
R. Pastor-Satorras and A. Vespignani, Epidemic dynamics and endemic states in complex networks, Phys. Rev. E 63(6), 066117 (2001)
CrossRef
ADS
Google scholar
|
[23] |
S. K. Stavroglou, A. A. Pantelous, H. E. Stanley, and K. M. Zuev, Hidden interactions in financial markets, Proc. Natl. Acad. Sci. USA 116(22), 10646 (2019)
CrossRef
ADS
Google scholar
|
[24] |
B. Barzel and A. Barabási, Universality in network dynamics, Nat. Phys. 9(10), 673 (2013)
CrossRef
ADS
Google scholar
|
[25] |
R. Pastor-Satorras, and A. Vespignani, Epidemic Spreading in Scale-Free Networks, Phys. Rev. Lett. 86(14), 3200 (2001)
CrossRef
ADS
Google scholar
|
[26] |
R. Pastor-Satorras, and A. Vespignani, Epidemic dynamics and endemic states in complex networks, Phys. Rev. E 63(6), 066117 (2001)
CrossRef
ADS
Google scholar
|
[27] |
J. Qu, M. Tang, Y. Liu, and S. Guan, Identifying influential spreaders in reversible process, Chaos Solitons Fractals 140, 110197 (2020)
CrossRef
ADS
Google scholar
|
[28] |
P. Shu, W. Wang, M. Tang, P. Zhao, and Y. Zhang, Recovery rate affects the effective epidemic threshold with synchronous updating, Chaos 26(6), 063108 (2016)
CrossRef
ADS
Google scholar
|
[29] |
Y. Liu, M. Tang, T. Zhou, and Y. Do, Core-like groups result in invalidation of identifying super-spreader by kshell decomposition, Sci. Rep. 5(1), 9602 (2015)
CrossRef
ADS
Google scholar
|
[30] |
S. C. Ferreira, C. Castellano, and R. Pastor-Satorras, Epidemic thresholds of the susceptible-infected-susceptible model on networks: A comparison of numerical and theoretical results, Phys. Rev. E 86(4), 041125 (2012)
CrossRef
ADS
Google scholar
|
[31] |
P. Shu, W. Wang, M. Tang, and Y. Do, Numerical identification of epidemic thresholds for susceptible-infectedrecovered model on finite-size networks, Chaos 25(6), 063104 (2015)
CrossRef
ADS
Google scholar
|
[32] |
Y. Xu, M. Tang, Y. Liu, Y. Zou, and Z. Liu, Identifying epidemic threshold by temporal profile of outbreaks on networks, Chaos 29(10), 103141 (2019)
CrossRef
ADS
Google scholar
|
[33] |
Y. Liu, M. Tang, T. Zhou, and Y. Do, Identify influential spreaders in complex networks, the role of neighborhood, Physica A 452, 289 (2016)
CrossRef
ADS
Google scholar
|
[34] |
M. G. Kendall, A new measure of rank correlation, Biometrika 30(1–2), 81 (1938)
CrossRef
ADS
Google scholar
|
[35] |
M. E. Newman, Finding community structure in networks using the eigenvectors of matrices, Phys. Rev. E 74(3), 036104 (2006)
CrossRef
ADS
Google scholar
|
[36] |
N. Spring, R. Mahajan, and D. Wetherall, Measuring ISP topologies with rocketfuel, Comput. Commun. Rev. 32(4), 133 (2002)
CrossRef
ADS
Google scholar
|
[37] |
M. Boguñá, R. Pastorsatorras, A. Diazguilera, and A. Arenas, Models of social networks based on social distance attachment, Phys. Rev. E 70(5), 056122 (2004)
CrossRef
ADS
Google scholar
|
[38] |
M. E. Newman, The structure of scientific collaboration networks, Proc. Natl. Acad. Sci. USA 98(2), 404 (2001)
CrossRef
ADS
Google scholar
|
[39] |
M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. E. Stanley, and H. A. Makse, Identification of influential spreaders in complex networks, Nat. Phys. 6(11), 888 (2010)
CrossRef
ADS
Google scholar
|
[40] |
M. Boguñá, C. Castellano, and R. Pastor-Satorras, Nature of the epidemic threshold for the susceptible-infectedsusceptible dynamics in networks, Phys. Rev. Lett. 111(6), 068701 (2013)
CrossRef
ADS
Google scholar
|
[41] |
C. Castellano and R. Pastor-Satorras, Competing activation mechanisms in epidemics on networks, Sci. Rep. 2(1), 371 (2012)
CrossRef
ADS
Google scholar
|
[42] |
H. Zhang, J. Xie, M. Tang, and Y. Lai, Suppression of epidemic spreading in complex networks by local information based behavioral responses, Chaos 24(4), 043106 (2014)
CrossRef
ADS
Google scholar
|
[43] |
X. Chen, R. Wang, M. Tang, S. Cai, H. E. Stanley, and L. A. Braunstein, Suppressing epidemic spreading in multiplex networks with social-support, New J. Phys. 20(1), 013007 (2018)
CrossRef
ADS
Google scholar
|
[44] |
W. Wang, M. Tang, H. Zhang, and Y. Lai, Dynamics of social contagions with memory of nonredundant information, Phys. Rev. E 92(1), 012820 (2015)
CrossRef
ADS
Google scholar
|
[45] |
Z. Lin, M. Feng, M. Tang, Z. Liu, C. Xu, P. M. Hui, and Y. Lai, Non-Markovian recovery makes complex networks more resilient against largescale failures, Nat. Commun. 11, 2490 (2020)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |