Field theoretical approach to spin models

Feng Liu, Zhenhao Fan, Zhipeng Sun, Xuzong Chen, Dingping Li

PDF(520 KB)
PDF(520 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (6) : 63504. DOI: 10.1007/s11467-021-1081-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Field theoretical approach to spin models

Author information +
History +

Abstract

We developed a systematic non-perturbative method base on Dyson–Schwinger theory and the Φ-derivable theory for Ising model at broken phase. Based on these methods, we obtain critical temperature and spin spin correlation beyond mean field theory. The spectrum of Green function obtained from our methods become gapless at critical point, so the susceptibility become divergent at Tc. The critical temperature of Ising model obtained from this method is fairly good in comparison with other non-cluster methods. It is straightforward to extend this method to more complicate spin models for example with continue symmetry.

Graphical abstract

Keywords

Ising model / mean field theory / Dyson–Schwinger equations

Cite this article

Download citation ▾
Feng Liu, Zhenhao Fan, Zhipeng Sun, Xuzong Chen, Dingping Li. Field theoretical approach to spin models. Front. Phys., 2021, 16(6): 63504 https://doi.org/10.1007/s11467-021-1081-x

References

[1]
E. Ising, Beitrag zur theorie des ferromagnetismus, Z. Phys. 31(1), 253 (1925)
CrossRef ADS Google scholar
[2]
L. Onsager, Crystal statistics (i): A two-dimensional model with an order-disorder transition, Phys. Rev. 65(3–4), 117 (1944)
CrossRef ADS Google scholar
[3]
A. Kuzemsky, Statistical mechanics and the physics of many-particle model systems, Phys. Part. Nucl. 40(7), 949 (2009)
CrossRef ADS Google scholar
[4]
P. Weiss and E. Stoner, Magnetism and atomic structure, J. Phys. 6, 667 (1907)
[5]
G. Wysin and J. Kaplan, Correlated molecular-field theory for Ising models, Phys. Rev. E 61(6), 6399 (2000)
CrossRef ADS Google scholar
[6]
H. A. Bethe, Statistical theory of superlattices, Proc. R. Soc. Lond. A 150(871), 552 (1935)
CrossRef ADS Google scholar
[7]
R. Peierls, On Ising’s model of ferromagnetism, in: Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 32, Cambridge University Press, 1936, pp 477–481
CrossRef ADS Google scholar
[8]
P. R. Weiss, The application of the Bethe–Peierls method to ferromagnetism, Phys. Rev. 74(10), 1493 (1948)
CrossRef ADS Google scholar
[9]
K. K. Zhuravlev, Molecular-field theory method for evaluating critical points of the ising model, Phys. Rev. E 72(5), 056104 (2005)
CrossRef ADS Google scholar
[10]
D. Yamamoto, Correlated cluster mean-field theory for spin systems, Phys. Rev. B 79(14), 144427 (2009)
CrossRef ADS Google scholar
[11]
J. R. Viana, O. R. Salmon, J. R. de Sousa, M. A. Neto, and I. T. Padilha, An effective correlated mean-field theory applied in the spin-1/2 Ising ferromagnetic model, J. Magn. Magn. Mater. 369, 101 (2014)
CrossRef ADS Google scholar
[12]
J. M. Luttinger and J. C. Ward, Ground-state energy of a many-fermion system (ii), Phys. Rev. 118(5), 1417 (1960)
CrossRef ADS Google scholar
[13]
G. Baym and L. P. Kadanoff, Conservation laws and correlation functions, Phys. Rev. 124(2), 287 (1961)
CrossRef ADS Google scholar
[14]
J. M. Cornwall, R. Jackiw, and E. Tomboulis, Effective action for composite operators, Phys. Rev. D 10(8), 2428 (1974)
CrossRef ADS Google scholar
[15]
A. Kovner and B. Rosenstein, Covariant Gaussian approximation (i): Formalism, Phys. Rev. D 39(8), 2332 (1989)
CrossRef ADS Google scholar
[16]
H. Van Hees and J. Knoll, Renormalization in selfconsistent approximation schemes at finite temperature (iii): Global symmetries, Phys. Rev. D 66(2), 025028 (2002)
CrossRef ADS Google scholar
[17]
D. J. Amit and V. Martin-Mayor, Field Theory, the Renormalization Group, and Critical Phenomena: Graphs to Computers, World Scientific Publishing Company, 2005
[18]
J. Wang, D. Li, H. Kao, and B. Rosenstein, Covariant Gaussian approximation in Ginzburg–Landau model, Ann. Phys. 380, 228 (2017)
CrossRef ADS Google scholar
[19]
B. Rosenstein and A. Kovner, Covariant Gaussian approximation (ii): Scalar theories, Phys. Rev. D 40(2), 504 (1989)
CrossRef ADS Google scholar
[20]
M. E. Fisher, The theory of equilibrium critical phenomena, Rep. Prog. Phys. 30(2), 615 (1967)
CrossRef ADS Google scholar
[21]
N. W. Ashcroft, N. D. Mermin, , Solid state physics, Vol. 2005, Holt, Rinehart And Winston, New York, London, 1976
[22]
H. Au-Yang and J. H. Perk, Correlation functions and susceptibility in the z-invariant Ising model, in: MathPhys Odyssey 2001, Springer, 2002, pp 23–48
CrossRef ADS Google scholar
[23]
W. Orrick, B. Nickel, A. Guttmann, and J. Perk, The susceptibility of the square lattice Ising model: New developments, J. Stat. Phys. 102(3/4), 795 (2001) (for the complete set of series coefficients see https://blogs.unimelb.edu.au/tony-guttmann/)
CrossRef ADS Google scholar
[24]
F. Ricci-Tersenghi, The Bethe approximation for solving the inverse Ising problem: A comparison with other inference methods, J. Stat. Mech. 2012(08), P08015 (2012)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(520 KB)

Accesses

Citations

Detail

Sections
Recommended

/