Field theoretical approach to spin models
Feng Liu, Zhenhao Fan, Zhipeng Sun, Xuzong Chen, Dingping Li
Field theoretical approach to spin models
We developed a systematic non-perturbative method base on Dyson–Schwinger theory and the Φ-derivable theory for Ising model at broken phase. Based on these methods, we obtain critical temperature and spin spin correlation beyond mean field theory. The spectrum of Green function obtained from our methods become gapless at critical point, so the susceptibility become divergent at Tc. The critical temperature of Ising model obtained from this method is fairly good in comparison with other non-cluster methods. It is straightforward to extend this method to more complicate spin models for example with continue symmetry.
Ising model / mean field theory / Dyson–Schwinger equations
[1] |
E. Ising, Beitrag zur theorie des ferromagnetismus, Z. Phys. 31(1), 253 (1925)
CrossRef
ADS
Google scholar
|
[2] |
L. Onsager, Crystal statistics (i): A two-dimensional model with an order-disorder transition, Phys. Rev. 65(3–4), 117 (1944)
CrossRef
ADS
Google scholar
|
[3] |
A. Kuzemsky, Statistical mechanics and the physics of many-particle model systems, Phys. Part. Nucl. 40(7), 949 (2009)
CrossRef
ADS
Google scholar
|
[4] |
P. Weiss and E. Stoner, Magnetism and atomic structure, J. Phys. 6, 667 (1907)
|
[5] |
G. Wysin and J. Kaplan, Correlated molecular-field theory for Ising models, Phys. Rev. E 61(6), 6399 (2000)
CrossRef
ADS
Google scholar
|
[6] |
H. A. Bethe, Statistical theory of superlattices, Proc. R. Soc. Lond. A 150(871), 552 (1935)
CrossRef
ADS
Google scholar
|
[7] |
R. Peierls, On Ising’s model of ferromagnetism, in: Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 32, Cambridge University Press, 1936, pp 477–481
CrossRef
ADS
Google scholar
|
[8] |
P. R. Weiss, The application of the Bethe–Peierls method to ferromagnetism, Phys. Rev. 74(10), 1493 (1948)
CrossRef
ADS
Google scholar
|
[9] |
K. K. Zhuravlev, Molecular-field theory method for evaluating critical points of the ising model, Phys. Rev. E 72(5), 056104 (2005)
CrossRef
ADS
Google scholar
|
[10] |
D. Yamamoto, Correlated cluster mean-field theory for spin systems, Phys. Rev. B 79(14), 144427 (2009)
CrossRef
ADS
Google scholar
|
[11] |
J. R. Viana, O. R. Salmon, J. R. de Sousa, M. A. Neto, and I. T. Padilha, An effective correlated mean-field theory applied in the spin-1/2 Ising ferromagnetic model, J. Magn. Magn. Mater. 369, 101 (2014)
CrossRef
ADS
Google scholar
|
[12] |
J. M. Luttinger and J. C. Ward, Ground-state energy of a many-fermion system (ii), Phys. Rev. 118(5), 1417 (1960)
CrossRef
ADS
Google scholar
|
[13] |
G. Baym and L. P. Kadanoff, Conservation laws and correlation functions, Phys. Rev. 124(2), 287 (1961)
CrossRef
ADS
Google scholar
|
[14] |
J. M. Cornwall, R. Jackiw, and E. Tomboulis, Effective action for composite operators, Phys. Rev. D 10(8), 2428 (1974)
CrossRef
ADS
Google scholar
|
[15] |
A. Kovner and B. Rosenstein, Covariant Gaussian approximation (i): Formalism, Phys. Rev. D 39(8), 2332 (1989)
CrossRef
ADS
Google scholar
|
[16] |
H. Van Hees and J. Knoll, Renormalization in selfconsistent approximation schemes at finite temperature (iii): Global symmetries, Phys. Rev. D 66(2), 025028 (2002)
CrossRef
ADS
Google scholar
|
[17] |
D. J. Amit and V. Martin-Mayor, Field Theory, the Renormalization Group, and Critical Phenomena: Graphs to Computers, World Scientific Publishing Company, 2005
|
[18] |
J. Wang, D. Li, H. Kao, and B. Rosenstein, Covariant Gaussian approximation in Ginzburg–Landau model, Ann. Phys. 380, 228 (2017)
CrossRef
ADS
Google scholar
|
[19] |
B. Rosenstein and A. Kovner, Covariant Gaussian approximation (ii): Scalar theories, Phys. Rev. D 40(2), 504 (1989)
CrossRef
ADS
Google scholar
|
[20] |
M. E. Fisher, The theory of equilibrium critical phenomena, Rep. Prog. Phys. 30(2), 615 (1967)
CrossRef
ADS
Google scholar
|
[21] |
N. W. Ashcroft, N. D. Mermin,
|
[22] |
H. Au-Yang and J. H. Perk, Correlation functions and susceptibility in the z-invariant Ising model, in: MathPhys Odyssey 2001, Springer, 2002, pp 23–48
CrossRef
ADS
Google scholar
|
[23] |
W. Orrick, B. Nickel, A. Guttmann, and J. Perk, The susceptibility of the square lattice Ising model: New developments, J. Stat. Phys. 102(3/4), 795 (2001) (for the complete set of series coefficients see https://blogs.unimelb.edu.au/tony-guttmann/)
CrossRef
ADS
Google scholar
|
[24] |
F. Ricci-Tersenghi, The Bethe approximation for solving the inverse Ising problem: A comparison with other inference methods, J. Stat. Mech. 2012(08), P08015 (2012)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |