Epitaxial fabrication of AgTe monolayer on Ag(111) and the sequential growth of Te film
Haoyu Dong, Le Lei, Shuya Xing, Jianfeng Guo, Feiyue Cao, Shangzhi Gu, Yanyan Geng, Shuo Mi, Hanxiang Wu, Yan Jun Li, Yasuhiro Sugawara, Fei Pang, Wei Ji, Rui Xu, Zhihai Cheng
Epitaxial fabrication of AgTe monolayer on Ag(111) and the sequential growth of Te film
Transition-metal chalcogenides (TMCs) materials have attracted increasing interest both for fundamental research and industrial applications. Among all these materials, two-dimensional (2D) compounds with honeycomb-like structure possess exotic electronic structures. Here, we report a systematic study of TMC monolayer AgTe fabricated by direct depositing Te on the surface of Ag(111) and annealing. Few intrinsic defects are observed and studied by scanning tunneling microscopy, indicating that there are two kinds of AgTe domains and they can form gliding twin-boundary. Then, the monolayer AgTe can serve as the template for the following growth of Te film. Meanwhile, some Te atoms are observed in the form of chains on the top of the bottom Te film. Our findings in this work might provide insightful guide for the epitaxial growth of 2D materials for study of novel physical properties and for future quantum devices.
AgTe monolayer / Te film / epitaxial growth / scanning tunneling microscopy / two-dimensional materials / transition-metal chalcogenides
[1] |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (5696), 666 (2004)
CrossRef
ADS
Google scholar
|
[2] |
K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, 2D materials and van der Waals heterostruc- tures, Science 353 (6298), aac9439 (2016)
CrossRef
ADS
Google scholar
|
[3] |
Y. Pan, L. Z. Zhang, L. Huang, L. F. Li, L. Meng, M. Gao, Q. Huan, X. Lin, Y. L. Wang, S. X. Du, H. J. Freund, and H. J. Gao, Construction of 2D atomic crystals on transition metal surfaces: Graphene, silicene, and hafnene, Small 10(11), 2215 (2014)
CrossRef
ADS
Google scholar
|
[4] |
G. Y. Zhang, S. X. Du, K. H. Wu, and H. J. Gao, Sponsored Collection |Humble beginning, bright future: Institute of Physics (CAS) at 90, Science 360(6389), 673 (2018)
CrossRef
ADS
Google scholar
|
[5] |
Y. Pan, D. X. Shi, and H. J. Gao, Formation of graphene on Ru(0001) surface, Chin. Phys. 16(11), 3151 (2007)
CrossRef
ADS
Google scholar
|
[6] |
Y. Pan, H. G. Zhang, D. X. Shi, J. T. Sun, S. X. Du, F. Liu, and H. J. Gao, Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001), Adv. Mater. 21(27), 2777 (2009)
CrossRef
ADS
Google scholar
|
[7] |
L. Huang, W. Y. Xu, Y. D. Que, J. H. Mao, L. Meng, L. D. Pan, G. Li, Y. L. Wang, S. X. Du, Y. Q. Liu, and H. J. Gao, Intercalation of metals and silicon at the interface of epitaxial graphene and its substrates, Chin. Phys. B 22(9), 096803 (2013)
CrossRef
ADS
Google scholar
|
[8] |
C. X. Zhao and J. F. Jia, Stanene: A good platform for topological insulator and topological superconductor, Front. Phys. 15(5), 53201 (2020)
CrossRef
ADS
Google scholar
|
[9] |
S. Y. Xing, L. Lei, H. Y. Dong, J. F. Guo, F. Y. Cao, S. Z. Gu, S. Hussain, F. Pang, W. Ji, R. Xu, and Z. H. Cheng, Epitaxial growth of antimony nanofilms on HOPG and thermal desorption to control the film thickness, Chin. Phys. B 29(9), 096801 (2020)
CrossRef
ADS
Google scholar
|
[10] |
L. Meng, Y. L. Wang, L. Z. Zhang, S. X. Du, R. T. Wu, L. F. Li, Y. Zhang, G. Li, H. T. Zhou, W. A. Hofer, and H. J. Gao, Buckled silicene formation on Ir(111), Nano Lett. 13(2), 685 (2013)
CrossRef
ADS
Google scholar
|
[11] |
L. F. Li, S. Z. Lu, J. B. Pan, Z. H. Qin, Y. Q. Wang, Y. L. Wang, G. Y. Cao, S. X. Du, and H. J. Gao, Buckled germanene formation on Pt(111), Adv. Mater. 26(28), 4820 (2014)
CrossRef
ADS
Google scholar
|
[12] |
X. Wu, Y. Shao, H. Liu, Z. Feng, Y. L. Wang, J. T. Sun, C. Liu, J. O. Wang, Z. L. Liu, S. Y. Zhu, Y. Q. Wang, S. X. Du, Y. G. Shi, K. Ibrahim, and H. J. Gao, Epitaxial growth and air-stability of monolayer antimonene on PdTe2, Adv. Mater. 29(11), 1605407 (2017)
CrossRef
ADS
Google scholar
|
[13] |
F. F. Zhu, W. J. Chen, Y. Xu, C. L. Gao, D. D. Guan, C. H. Liu, D. Qian, S. C. Zhang, and J. F. Jia, Epitaxial growth of two-dimensional stanene, Nat. Mater. 14(10), 1020 (2015)
CrossRef
ADS
Google scholar
|
[14] |
Z. H. Zhang, E. S. Penev, and B. I. Yakobson, Twodimensional boron: Structures, properties and applications, Chem. Soc. Rev. 46(22), 6746 (2017)
CrossRef
ADS
Google scholar
|
[15] |
S. Hussain, K. Q. Xu, S. L. Ye, L. Lei, X. M. Liu, R. Xu, L. M. Xie, and Z. H. Cheng, Local electrical characterization of two-dimensional materials with functional atomic force microscopy, Front. Phys. 14(3), 33401 (2019)
CrossRef
ADS
Google scholar
|
[16] |
Z. Y. Zheng, Y. H. Pan, T. F. Pei, R. Xu, L. Lei, S. Hussain, X. J. Liu, L. H. Bao, H. J. Gao, W. Ji, and Z. H. Cheng, Local probe of the interlayer coupling strength of few-layers SnSe by contact-resonance atomic force microscopy, Front. Phys. 15(6), 63505 (2020)
CrossRef
ADS
Google scholar
|
[17] |
Z. Y. Zheng, R. Xu, K. Q. Xu, S. L. Ye, F. Pang, L. Lei, S. Hussain, X. M. Liu, W. Ji, and Z. H. Cheng, Real-space visualization of intercalated water phases at the hydrophobic graphene interface with atomic force microscopy, Front. Phys. 15(2), 23601 (2020)
CrossRef
ADS
Google scholar
|
[18] |
S. Balendhran, S. Walia, H. Nili, S. Sriram, and M. Bhaskaran, Elemental analogues of graphene: Silicene, germanene, stanene, and phosphorene, Small 11(6), 640 (2015)
CrossRef
ADS
Google scholar
|
[19] |
J. Gou, B. Xia, H. Li, X. Wang, L. Kong, P. Cheng, H. Li, W. Zhang, T. Qian, H. Ding, Y. Xu, W. Duan, K. Wu, and L. Chen, Binary two-dimensional honeycomb lattice with strong spin–orbit coupling and electron–hole asymmetry, Phys. Rev. Lett. 121(12), 126801 (2018)
CrossRef
ADS
Google scholar
|
[20] |
B. Özdamar, G. Özbal, M. N. Çinar, K. Sevim, G. Kurt, B. Kaya, and H. Sevinçli, Structural, vibrational, and electronic properties of single-layer hexagonal crystals of group IV and V elements, Phys. Rev. B 98(4), 045431 (2018)
CrossRef
ADS
Google scholar
|
[21] |
F. D. M. Haldane, Model for a quantum Hall effect without landau levels: Condensed-matter realization of the “parity anomaly”, Phys. Rev. Lett. 61(18), 2015 (1988)
CrossRef
ADS
Google scholar
|
[22] |
A. Molle, J. Goldberger, M. Houssa, Y. Xu, S. C. Zhang, and D. B. Akinwande, Buckled two-dimensional Xene sheets, Nat. Mater. 16(2), 163 (2017)
CrossRef
ADS
Google scholar
|
[23] |
C. C. Liu, W. Feng, and Y. Yao, Quantum spin Hall effect in silicene and two-dimensional germanium, Phys. Rev. Lett. 107(7), 076802 (2011)
CrossRef
ADS
Google scholar
|
[24] |
G. H. Han, D. L. Duong, D. H. Keum, S. J. Yun, and Y. H. Lee, van der Waals metallic transition metal dichalcogenides, Chem. Rev. 118(13), 6297 (2018)
CrossRef
ADS
Google scholar
|
[25] |
X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
CrossRef
ADS
Google scholar
|
[26] |
L. Fu and C. L. Kane, Topological insulators with inversion symmetry, Phys. Rev. B 76(4), 045302 (2007)
CrossRef
ADS
Google scholar
|
[27] |
H. M. Weng, X. Dai, and Z. Fang, Topological semimetals predicted from first-principles calculations, J. Phys.: Condens. Matter 28, 303001 (2016)
CrossRef
ADS
Google scholar
|
[28] |
L. Gao, J. T. Sun, J. C. Lu, H. Li, K. Qian, S. Zhang, Y. Y. Zhang, T. Qian, H. Ding, X. Lin, S. Du, and H.J. Gao, Epitaxial growth of honeycomb monolayer CuSe with Dirac nodal line fermions, Adv. Mater. 30(16), 1707055 (2018)
CrossRef
ADS
Google scholar
|
[29] |
B. Liu, J. Liu, G. Y. Miao, S. W. Xue, S. Y. Zhang, L. X. Liu, X. C. Huang, X. T. Zhu, S. Meng, J. D. Guo, M. Liu, and W. H. Wang, Flat AgTe honeycomb monolayer on Ag(111), J. Phys. Chem. Lett. 10(8), 1866 (2019)
CrossRef
ADS
Google scholar
|
[30] |
M. Ünzelmann, H. Bentmann, P. Eck, T. Kißlinger, B. Geldiyev, J. Rieger, S. Moser, R. C. Vidal, K. Kißner, L. Hammer, M. A. Schneider, T. Fauster, G. Sangiovanni, D. Di Sante, and F. Reinert, Orbital-driven Rashba effect in a binary honeycomb monolayer AgTe, Phys. Rev. Lett. 124(17), 176401 (2020)
CrossRef
ADS
Google scholar
|
[31] |
Z. Y. Zhang, H. Gedeon, Z. W. Cheng, C. Xu, Z. B. Shao, H. G. Sun, S. J. Li, Y. Cao, X. Zhang, Q. Bian, L. J. Liu, Z. B. Liu, H. M. Cheng, W. C. Ren, and M. H. Pan, Layer-stacking, defects, and robust superconductivity on the mo-terminated surface of ultrathin Mo2C flakes grown by CVD, Nano Lett. 19(5), 3327 (2019)
CrossRef
ADS
Google scholar
|
[32] |
B. W. J. Chen, D. Kirvassilis, Y. H. Bai, and M. Mavrikakis, Atomic and molecular adsorption on Ag(111), J. Phys. Chem. C 123(13), 7551 (2019)
CrossRef
ADS
Google scholar
|
[33] |
A. L. Gould, C. R. A. Catlow, and A. J. Logsdail, Computational investigation of CO adsorbed on Aux, Agx and (AuAg)x nanoclusters (x= 1–5, 147) and monometallic Au and Ag low-energy surfaces, Eur. Phys. J. B 91(2), 32 (2018)
CrossRef
ADS
Google scholar
|
[34] |
M. Kulawik, H. P. Rust, M. Heyde, N. Nilius, B. A. Mantooth, P. S. Weiss, and H. J. Freund, Interaction of CO molecules with surface state electrons on Ag(111), Surf. Sci. Lett. 590(2–3), L253 (2005)
CrossRef
ADS
Google scholar
|
[35] |
M. Kulawik, H. P. Rust, N. Nilius, M. Heyde, and H. J. Freund, STM studies of ordered ( 31 × 31 ) R 9◦ CO islands on Ag(111), Phys. Rev. B 71(15), 153405 (2005)
CrossRef
ADS
Google scholar
|
[36] |
L. Dong, A. W. Wang, E. Li, Q. Wang, G. Li, Q. Huan, and H. J. Gao, Formation of two-dimensional AgTe monolayer atomic crystal on Ag(111) substrate, Chin. Phys. Lett. 36(2), 028102 (2019)
CrossRef
ADS
Google scholar
|
[37] |
J. Shah, H. M. Sohail, R. I. G. Uhrberg, and W. Wang, Two-dimensional binary honeycomb layer formed by Ag and Te on Ag(111), J. Phys. Chem. Lett. 11(5), 1609 (2020)
CrossRef
ADS
Google scholar
|
[38] |
W. Jolie, C. Murray, P. S. Weiß, J. Hall, F. Portner, N. Atodiresei, A. V. Krasheninnikov, C. Busse, H. P. Komsa, A. Rosch, and T. Michely, Tomonaga-luttinger liquid in a box: Electrons confined within MoS2 mirror-twin boundaries, Phys. Rev. X 9(1), 011055 (2019)
CrossRef
ADS
Google scholar
|
[39] |
C. Wang, X. Y. Zhou, J. S. Qiao, L. W. Zhou, X. H. Kong, Y. H. Pan, Z. H. Cheng, Y. Chai, and W. Ji, Charge-governed phase manipulation of few-layer tellurium, Nanoscale 10(47), 22263 (2018)
CrossRef
ADS
Google scholar
|
[40] |
Z. L. Zhu, X. L. Cai, S. H. Yi, J. L. Chen, Y. W. Dai, C. Y. Niu, Z. X. Guo, M. H. Xie, F. Liu, J. H. Cho, Y. Jia, and Z. Y. Zhang, Multivalency-driven formation of Te-based monolayer materials: A combined first-principles and experimental study, Phys. Rev. Lett. 119(10), 106101 (2017)
CrossRef
ADS
Google scholar
|
[41] |
S. Zhang, Y. Song, J. M. Li, Z. Y. Wang, C. Liu, J. O. Wang, L. Gao, J. C. Lu, Y. Y. Zhang, X. Lin, J. B. Pan, S. X. Du, and H. J. Gao, Epitaxial fabrication of monolayer copper arsenide on Cu(111), Chin. Phys. B 29(7), 077301 (2020)
CrossRef
ADS
Google scholar
|
[42] |
D. C. Zhou, H. P. Li, N. Si, Y. X. Jiang, H. Huang, H. Li, and T. C. Niu, Epitaxial growth of single tellurium atomic wires on a Cu2Sb surface alloy, Appl. Phys. Lett. 116(6), 061602 (2020)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |