Pseudo-copper Ni–Zn alloy catalysts for carbon dioxide reduction to C2 products
Xiao-Dong Zhang, Kang Liu, Jun-Wei Fu, Hong-Mei Li, Hao Pan, Jun-Hua Hu, Min Liu
Pseudo-copper Ni–Zn alloy catalysts for carbon dioxide reduction to C2 products
Electrocatalytic CO2 reduction reaction (CO2RR) to obtain C2 products has drawn widespread attentions. Copper-based materials are the most reported catalysts for CO2 reduction to C2 products. Design of high-efficiency pseudo-copper catalysts according to the key characteristics of copper (Cu) is an important strategy to understand the reaction mechanism of C2 products. In this work, density function theory (DFT) calculations are used to predict nickel–zinc (NiZn) alloy catalysts with the criteria similar structure and intermediate adsorption property to Cu catalyst. The calculated tops of 3d states of NiZn3(001) catalysts are the same as Cu(100), which is the key parameter affecting the adsorption of intermediate products. As a result, NiZn3(001) exhibits similar adsorption properties with Cu(100) on the crucial intermediates *CO2, *CO and *H. Moreover, we further studied CO formation, CO hydrogenation and C–C coupling process on Ni–Zn alloys. The free energy profile of C2 products formation shows that the energy barrier of C2 products formation on NiZn3(001) is even lower than Cu(100). These results indicate that NiZn3 alloy as pseudo-copper catalyst can exhibit a higher catalytic activity and selectivity of C2 products during CO2RR. This work proposes a feasible pseudo-copper catalyst and provides guidance to design high-efficiency catalysts for CO2RR to C2 or multi-carbon products.
pseudo-copper catalysts / surface and electronic structure / adsorption abilities / Ni–Zn alloys / CO2RR C2 products / DFT
[1] |
Z. Cui, W. Du, C. Xiao, Q. Li, R. Sa, C. Sun, and Z. Ma, Enhancing hydrogen evolution of MoS2 Basal planes by combining single-boron catalyst and compressive strain, Front. Phys. 15(6), 63502 (2020)
CrossRef
ADS
Google scholar
|
[2] |
K. Chen, H. Li, Y. Xu, K. Liu, H. Li, X. Xu, X. Qiu, and M. Liu, Untying thioether bond structures enabled by “voltage-scissors” for stable room temperature sodiumsulfur batteries, Nanoscale 11(13), 5967 (2019)
CrossRef
ADS
Google scholar
|
[3] |
X. Li, Y. B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z. H. Lu, and E. H. Sargent, Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination, Nat. Photon. 12(3), 159 (2018)
CrossRef
ADS
Google scholar
|
[4] |
Y. Wei, G. Xing, K. Liu, G. Li, P. Dang, S. Liang, M. Liu, Z. Cheng, D. Jin, and J. Lin, New strategy for designing orangish-red-emitting phosphor via oxygen-vacancyinduced electronic localization, Light Sci. Appl. 8(1), 15 (2019)
CrossRef
ADS
Google scholar
|
[5] |
K. Chen, W. Fan, C. Huang, and X. Qiu, Enhanced stability and catalytic activity of bismuth nanoparticles by modified with porous silica, J. Phys. Chem. Solids 110, 9 (2017)
CrossRef
ADS
Google scholar
|
[6] |
Q. Li, S. Qiu, and B. Jia, Theoretical investigation of CoTa2O6/graphene heterojunctions for oxygen evolution reaction, Front. Phys. 16(1), 13503 (2021)
CrossRef
ADS
Google scholar
|
[7] |
Z. Q. Wang, T. Y. Lü, H. Q. Wang, Y. P. Feng, and J. C. Zheng, Review of borophene and its potential applications, Front. Phys. 14(3), 33403 (2019)
CrossRef
ADS
Google scholar
|
[8] |
Y. H. Lui, B. Zhang, and S. Hu, Rational design of photoelectrodes for photoelectrochemical water splitting and CO2 reduction, Front. Phys. 14(5), 53402 (2019)
CrossRef
ADS
Google scholar
|
[9] |
J. Fu, K. Jiang, X. Qiu, J. Yu, and M. Liu, Product selectivity of photocatalytic CO2 reduction reactions, Mater. Today 32, 222 (2020)
CrossRef
ADS
Google scholar
|
[10] |
J. Fu, K. Liu, K. Jiang, H. Li, P. An, W. Li, N. Zhang, H. Li, X. Xu, H. Zhou, D. Tang, X. Wang, X. Qiu, and M. Liu, Graphitic carbon nitride with dopant induced charge localization for enhanced photoreduction of CO2 to CH4, Adv. Sci. 6(18), 1900796 (2019)
CrossRef
ADS
Google scholar
|
[11] |
J. Fu, S. Wang, Z. Wang, K. Liu, H. Li, H. Liu, J. Hu, X. Xu, H. Li, and M. Liu, Graphitic carbon nitride based single-atom photocatalysts, Front. Phys. 15(3), 33201 (2020)
CrossRef
ADS
Google scholar
|
[12] |
R. Kas, R. Kortlever, H. Yilmaz, M. T. M. Koper, and G. Mul, Manipulating the hydrocarbon selectivity of copper nanoparticles in CO2 electroreduction by process conditions, ChemElectroChem 2(3), 354 (2015)
CrossRef
ADS
Google scholar
|
[13] |
M. Zhong, K. Tran, Y. Min, C. Wang, Z. Wang, C. T. Dinh, P. De Luna, Z. Yu, A. S. Rasouli, P. Brodersen, S. Sun, O. Voznyy, C. S. Tan, M. Askerka, F. Che, M. Liu, A. Seifitokaldani, Y. Pang, S. C. Lo, A. Ip, Z. Ulissi, and E. H. Sargent, Accelerated discovery of CO2 electrocatalysts using active machine learning, Nature 581(7807), 178 (2020)
CrossRef
ADS
Google scholar
|
[14] |
R. Reske, M. Duca, M. Oezaslan, K. J. P. Schouten, M. T. M. Koper, and P. Strassert, Controlling catalytic selectivities during CO2 electroreduction on thin Cu metal overlayers, J. Phys. Chem. Lett. 4(15), 2410 (2013)
CrossRef
ADS
Google scholar
|
[15] |
F. Calle-Vallejo and M. T. Koper, Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes, Angew. Chem. Int. Ed. 52(28), 7282 (2013)
CrossRef
ADS
Google scholar
|
[16] |
X. Wang, Z. Wang, F. P. García de Arquer, C. T. Dinh, A. Ozden, Y. C. Li, D. H. Nam, J. Li, Y. S. Liu, J. Wicks, Z. Chen, M. Chi, B. Chen, Y. Wang, J. Tam, J. Y. Howe, A. Proppe, P. Todorović, F. Li, T. T. Zhuang, C. M. Gabardo, A. R. Kirmani, C. McCallum, S. F. Hung, Y. Lum, M. Luo, Y. Min, A. Xu, C. P. O’Brien, B. Stephen, B. Sun, A. H. Ip, L. J. Richter, S. O. Kelley, D. Sinton, and E. H. Sargent, Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation, Nat. Energy 5(6), 478 (2020)
CrossRef
ADS
Google scholar
|
[17] |
P. An, L. Wei, H. Li, B. Yang, K. Liu, J. Fu, H. Li, H. Liu, J. Hu, Y. R. Lu, H. Pan, T. S. Chan, N. Zhang, and M. Liu, Enhancing CO2 reduction by suppressing hydrogen evolution with polytetrafluoroethylene protected copper nanoneedles, J. Mater. Chem. A 8(31), 15936 (2020)
CrossRef
ADS
Google scholar
|
[18] |
H. Zhou, K. Liu, H. Li, M. Cao, J. Fu, X. Gao, J. Hu, W. Li, H. Pan, J. Zhan, Q. Li, X. Qiu, and M. Liu, Recent advances in different-dimension electrocatalysts for carbon dioxide reduction, J. Colloid Interface Sci. 550, 17 (2019)
CrossRef
ADS
Google scholar
|
[19] |
Y. Zhou, F. Che, M. Liu, C. Zou, Z. Liang, P. De Luna, H. Yuan, J. Li, Z. Wang, H. Xie, H. Li, P. Chen, E. Bladt, R. Quintero-Bermudez, T. K. Sham, S. Bals, J. Hofkens, D. Sinton, G. Chen, and E. H. Sargent, Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons, Nat. Chem. 10(9), 974 (2018)
CrossRef
ADS
Google scholar
|
[20] |
S. Nitopi, E. Bertheussen, S. B. Scott, X. Liu, A. K. Engstfeld, S. Horch, B. Seger, I. E. L. Stephens, K. Chan, C. Hahn, J. K. Norskov, T. F. Jaramillo, and I. Chorkendorff, Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte, Chem. Rev. 119(12), 7610 (2019)
CrossRef
ADS
Google scholar
|
[21] |
Y. Y. Birdja, E. Pérez-Gallent, M. C. Figueiredo, A. J. Göttle, F. Calle-Vallejo, and M. T. M. Koper, Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels, Nat. Energy 4(9), 732 (2019)
CrossRef
ADS
Google scholar
|
[22] |
W. Luo, X. Nie, M. J. Janik, and A. Asthagiri, Facet dependence of CO2 reduction paths on Cu electrodes, ACS Catal. 6(1), 219 (2016)
CrossRef
ADS
Google scholar
|
[23] |
H. Li, F. Calle-Vallejo, M. J. Kolb, Y. Kwon, Y. Li, and M. T. Koper, Why (1 0 0) terraces break and make bonds: Oxidation of dimethyl ether on platinum single-crystal electrodes, J. Am. Chem. Soc. 135(38), 14329 (2013)
CrossRef
ADS
Google scholar
|
[24] |
M. T. Koper, Structure sensitivity and nanoscale effects in electrocatalysis, Nanoscale 3(5), 2054 (2011)
CrossRef
ADS
Google scholar
|
[25] |
X. G. Zhang, S. Feng, C. Zhan, D. Y. Wu, Y. Zhao, and Z. Q. Tian, Electroreduction reaction mechanism of carbon dioxide to C2 products via Cu/Au bimetallic catalysis: A theoretical prediction, J. Phys. Chem. Lett. 11(16), 6593 (2020)
CrossRef
ADS
Google scholar
|
[26] |
Z. X. Chen, K. M. Neyman, A. B. Gordienko, and N. Rösch, Surface structure and stability of PdZn and PtZn alloys: Density-functional slab model studies, Phys. Rev. B 68(7), 075417 (2003)
CrossRef
ADS
Google scholar
|
[27] |
D. Kim, J. Resasco, Y. Yu, A. M. Asiri, and P. Yang, Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles, Nat. Commun. 5(1), 4948 (2014)
CrossRef
ADS
Google scholar
|
[28] |
A. Nilsson, L. G. M. Pettersson, B. Hammer, T. Bligaard, C. H. Christensen, and J. K. Nørskov, The electronic structure effect in heterogeneous catalysis, Catal. Lett. 100(3–4), 111 (2005)
CrossRef
ADS
Google scholar
|
[29] |
J. K. Norskov, F. Abild-Pedersen, F. Studt, and T. Bligaard, Density functional theory in surface chemistry and catalysis, Proc. Natl. Acad. Sci. USA 108(3), 937 (2011)
CrossRef
ADS
Google scholar
|
[30] |
M. Luo, Z. Wang, Y. C.Li, J. Li, F. Li, Y. Lum, D. H. Nam, B. Chen, J. Wicks, A. Xu, T. Zhuang, W. R. Leow, X. Wang, C. T. Dinh, Y. Wang, Y. Wang, D. Sinton, and E. H. Sargent, Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen, Nat. Commun. 10(1), 5814 (2019)
CrossRef
ADS
Google scholar
|
[31] |
A. Bagger, W. Ju, A. S. Varela, P. Strasser, and J. Rossmeisl, Electrochemical CO2 reduction: A classification problem, ChemPhysChem 18(22), 3266 (2017)
CrossRef
ADS
Google scholar
|
[32] |
Y. Zheng, A. Vasileff, X. Zhou, Y. Jiao, M. Jaroniec, and S. Z. Qiao, Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts, J. Am. Chem. Soc. 141(19), 7646 (2019)
CrossRef
ADS
Google scholar
|
[33] |
Z. Zhao and G. Lu, Computational screening of nearsurface alloys for CO2 electroreduction, ACS Catal. 8(5), 3885 (2018)
CrossRef
ADS
Google scholar
|
[34] |
S. Lee, G. Park, and J. Lee, Importance of Ag–Cu biphasic boundaries for selective electrochemical reduction of CO2 to ethanol, ACS Catal. 7(12), 8594 (2017)
CrossRef
ADS
Google scholar
|
[35] |
X. Lv, L. Shang, S. Zhou, S. Li, Y. Wang, Z. Wang, T. K. Sham, C. Peng, and G. Zheng, Electron-deficient Cu sites on Cu3Ag1 catalyst promoting CO2 electroreduction to alcohols, Adv. Energy Mater. 10(37), 2001987 (2020)
CrossRef
ADS
Google scholar
|
[36] |
D. Ren, B. S. H. Ang, and B. S. Yeo, Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts, ACS Catal. 6(12), 8239 (2016)
CrossRef
ADS
Google scholar
|
[37] |
H. S. Jeon, J. Timoshenko, F. Scholten, I. Sinev, A. Herzog, F. T. Haase, and B. R. Cuenya, Operando insight into the correlation between the structure and composition of CuZn nanoparticles and their selectivity for the electrochemical CO2 reduction, J. Am. Chem. Soc. 141(50), 19879 (2019)
CrossRef
ADS
Google scholar
|
[38] |
A. R. Paris and A. B. Bocarsly, Ni–Al films on glassy carbon electrodes generate an array of oxygenated organics from CO2, ACS Catal. 7(10), 6815 (2017)
CrossRef
ADS
Google scholar
|
[39] |
A. R. Paris and A. B. Bocarsly, Mechanistic insights into C2 and C3 product generation using Ni3Al and Ni3Ga electrocatalysts for CO2 reduction, Faraday Discuss. 215, 192 (2019)
CrossRef
ADS
Google scholar
|
[40] |
D. A. Torelli, S. A. Francis, J. C. Crompton, A. Javier, J. R. Thompson, B. S. Brunschwig, M. P. Soriaga, and N. S. Lewis, Nickel–gallium-catalyzed electrochemical reduction of CO2 to highly reduced products at low overpotentials, ACS Catal. 6(3), 2100 (2016)
CrossRef
ADS
Google scholar
|
[41] |
R. Kortlever, I. Peters, C. Balemans, R. Kas, Y. Kwon, G. Mul, and M. T. Koper, Palladium-gold catalyst for the electrochemical reduction of CO2 to C1–C5 hydrocarbons, Chem. Commun. (Camb.) 52(67), 10229 (2016)
CrossRef
ADS
Google scholar
|
[42] |
K. J. P. Schouten, E. Pérez Gallent, and M. T. M. Koper, Structure sensitivity of the electrochemical reduction of carbon monoxide on copper single crystals, ACS Catal. 3(6), 1292 (2013)
CrossRef
ADS
Google scholar
|
[43] |
H. A. Hansen, C. Shi, A. C. Lausche, A. A. Peterson, and J. K. Norskov, Bifunctional alloys for the electroreduction of CO2 and CO, Phys. Chem. Chem. Phys. 18(13), 9194 (2016)
CrossRef
ADS
Google scholar
|
[44] |
M. J. Cheng, E. L. Clark, H. H. Pham, A. T. Bell, and M. Head-Gordon, Quantum mechanical screening of singleatom bimetallic alloys for the selective reduction of CO2 to C1 hydrocarbons, ACS Catal. 6(11), 7769 (2016)
CrossRef
ADS
Google scholar
|
[45] |
A. Vasileff, C. Xu, Y. Jiao, Y. Zheng, and S. Z. Qiao, Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction, Chem 4(8), 1809 (2018)
CrossRef
ADS
Google scholar
|
[46] |
M. Karamad, V. Tripkovic, and J. Rossmeisl, Intermetallic alloys as CO electroreduction catalysts — Role of isolated active sites, ACS Catal. 4(7), 2268 (2014)
CrossRef
ADS
Google scholar
|
[47] |
Y. Cai and X. Luo, First-principles investigation of carbon dioxide adsorption on MN4 doped graphene, AIP Adv. 10(12), 125013 (2020)
CrossRef
ADS
Google scholar
|
[48] |
A. C. Hegde, K. Venkatakrishna, and N. Eliaz, Electrodeposition of Zn–Ni, Zn–Fe and Zn–Ni–Fe alloys, Surf. Coat. Tech. 205(7), 2031 (2010)
CrossRef
ADS
Google scholar
|
[49] |
G. Kresse and J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium, Phys. Rev. B 49(20), 14251 (1994)
CrossRef
ADS
Google scholar
|
[50] |
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef
ADS
Google scholar
|
[51] |
G. Kresses and J. Hafner, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
CrossRef
ADS
Google scholar
|
[52] |
J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B 46(11), 6671 (1992)
CrossRef
ADS
Google scholar
|
[53] |
K. Liu, J. Fu, L. Zhu, X. Zhang, H. Li, H. Liu, J. Hu, and M. Liu, Single-atom transition metals supported on black phosphorene for electrochemical nitrogen reduction, Nanoscale 12(8), 4903 (2020)
CrossRef
ADS
Google scholar
|
[54] |
J. K. Nörskov, T. Bligaard, J. Rossmeisl, and C. H. Christensen, Towards the computational design of solid catalysts, Nat. Chem. 1(1), 37 (2009)
CrossRef
ADS
Google scholar
|
[55] |
J. Li, Z. Wang, C. McCallum, Y. Xu, F. Li, Y. Wang, C. M. Gabardo, C. T. Dinh, T. T. Zhuang, L. Wang, J. Y. Howe, Y. Ren, E. H. Sargent, and D. Sinton, Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction, Nat. Catal. 2(12), 1124 (2019)
CrossRef
ADS
Google scholar
|
[56] |
T. K. Todorova, M. W. Schreiber, and M. Fontecave, Mechanistic understanding of CO2 reduction reaction (CO2RR) toward multicarbon products by heterogeneous copper-based catalysts, ACS Catal. 10(3), 1754 (2020)
CrossRef
ADS
Google scholar
|
[57] |
D. D. Zhu, J. L. Liu, and S. Z. Qiao, Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide, Adv. Mater. 28(18), 3423 (2016)
CrossRef
ADS
Google scholar
|
[58] |
S. Hanselman, M. T. M. Koper, and F. Calle-Vallejo, Computational comparison of late transition metal (100) surfaces for the electrocatalytic reduction of CO to C2 species, ACS Energy Lett. 3(5), 1062 (2018)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |