Cyclotron dynamics of a Bose–Einstein condensate in a quadruple-well potential with synthetic gauge fields

Wen-Yuan Wang, Ji Lin, Jie Liu

PDF(3079 KB)
PDF(3079 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (5) : 52502. DOI: 10.1007/s11467-021-1078-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Cyclotron dynamics of a Bose–Einstein condensate in a quadruple-well potential with synthetic gauge fields

Author information +
History +

Abstract

We investigate the cyclotron dynamics of Bose–Einstein condensate (BEC) in a quadruple-well potential with synthetic gauge fields. We use laser-assisted tunneling to generate large tunable effective magnetic fields for BEC. The mean position of BEC follows an orbit that simulated the cyclotron orbits of charged particles in a magnetic field. In the absence of atomic interaction, atom dynamics may exhibit periodic or quasi-periodic cyclotron orbits. In the presence of atomic interaction, the system may exhibit self-trapping, which depends on synthetic gauge fields and atomic interaction strength. In particular, the competition between synthetic gauge fields and atomic interaction leads to the generation of several discontinuous parameter windows for the transition to self-trapping, which is obviously different from that without synthetic gauge fields.

Graphical abstract

Keywords

cyclotron dynamics / Bose–Einstein condensate / quadruple-well potential / synthetic gauge fields

Cite this article

Download citation ▾
Wen-Yuan Wang, Ji Lin, Jie Liu. Cyclotron dynamics of a Bose–Einstein condensate in a quadruple-well potential with synthetic gauge fields. Front. Phys., 2021, 16(5): 52502 https://doi.org/10.1007/s11467-021-1078-5

References

[1]
I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80(3), 885 (2008)
CrossRef ADS Google scholar
[2]
M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
CrossRef ADS Google scholar
[3]
Q. Niu, Advances on topological materials, Front. Phys. 15(4), 43601 (2020)
CrossRef ADS Google scholar
[4]
M. Yang, X. L. Zhang, and W. M. Liu, Tunable topological quantum statesin three- and two-dimensional materials, Front. Phys. 10(2), 161 (2015)
CrossRef ADS Google scholar
[5]
K. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45(6), 494 (1980)
CrossRef ADS Google scholar
[6]
D. C. Tsui, H. L. Stormer, and A. C. Gossard, Twodimensional magnetotransport in the extreme quantum limit, Phys. Rev. Lett. 48(22), 1559 (1982)
CrossRef ADS Google scholar
[7]
R. B. Laughlin, Anomalous quantum hall effect: An incompressible quantum fluid with fractionally charged excitations, Phys. Rev. Lett. 50(18), 1395 (1983)
CrossRef ADS Google scholar
[8]
D. Jaksch and P. Zoller, Creation of effective magnetic fields in optical lattices: The Hofstadter butterfly for cold neutral atoms, New J. Phys. 5, 56 (2003)
CrossRef ADS Google scholar
[9]
N. Goldman, G. Juzeliūnas, P. Öhberg, and I. B. Spielman, Light-induced gauge fields for ultracold atoms, Rep. Prog. Phys. 77(12), 126401 (2014)
CrossRef ADS Google scholar
[10]
F. Schäfer, T. Fukuhara, S. Sugawa, Y. Takasu, and Y. Takahashi, Tools for quantum simulation with ultracold atoms in optical lattices, Nat. Rev. Phys. 2(8), 411 (2020)
CrossRef ADS Google scholar
[11]
D. W. Zhang, Z. D. Wang, and S. L. Zhu, Relativistic quantum effects of Dirac particles simulated by ultracold atoms, Front. Phys. 7(1), 31 (2012)
CrossRef ADS Google scholar
[12]
A. L. Fetter, Rotating trapped Bose–Einstein condensates, Rev. Mod. Phys. 81(2), 647 (2009)
CrossRef ADS Google scholar
[13]
J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öhberg, Artificial gauge potentials for neutral atoms, Rev. Mod. Phys. 83(4), 1523 (2011)
CrossRef ADS Google scholar
[14]
I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation, Rev. Mod. Phys. 86(1), 153 (2014)
CrossRef ADS Google scholar
[15]
N. R. Cooper, J. Dalibard, and I. B. Spielman, Topological bands for ultracold atoms, Rev. Mod. Phys. 91(1), 015005 (2019)
CrossRef ADS Google scholar
[16]
K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Vortex formation in a stirred Bose–Einstein condensate, Phys. Rev. Lett. 84(5), 806 (2000)
CrossRef ADS Google scholar
[17]
J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle, Observation of vortex lattices in Bose–Einstein condensates, Science 292(5516), 476 (2001)
CrossRef ADS Google scholar
[18]
S. Tung, V. Schweikhard, and E. A. Cornell, Observation of vortex pinning in Bose–Einstein condensates, Phys. Rev. Lett. 97(24), 240402 (2006)
CrossRef ADS Google scholar
[19]
R. A. Williams, S. Al-Assam, and C. J. Foot, Observation of vortex nucleation in a rotating two-dimensional lattice of Bose–Einstein condensates, Phys. Rev. Lett. 104(5), 050404 (2010)
CrossRef ADS Google scholar
[20]
N. R. Cooper, Rapidly rotating atomic gases, Adv. Phys. 57(6), 539 (2008)
CrossRef ADS Google scholar
[21]
M. Aidelsburger, M. Atala, S. Nascimbène, S. Trotzky, Y. A. Chen, and I. Bloch, Experimental realization of strong effective magnetic fields in an optical lattice, Phys. Rev. Lett. 107(25), 255301 (2011)
CrossRef ADS Google scholar
[22]
H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Burton, and W. Ketterle, Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices, Phys. Rev. Lett. 111(18), 185302 (2013)
CrossRef ADS Google scholar
[23]
M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes, and I. Bloch, Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices, Phys. Rev. Lett. 111(18), 185301 (2013)
CrossRef ADS Google scholar
[24]
M. Aidelsburger, M. Atala, S. Nascimbene, S. Trotzky, Y. A. Chen, and I. Bloch, Experimental realization of strong effective magnetic fields inoptical superlattice potentials, Appl. Phys. B 113(1), 1 (2013)
CrossRef ADS Google scholar
[25]
M. Mancini, G. Pagano, G. Cappellini, L. Livi, M. Rider, J. Catani, C. Sias, P. Zoller, M. Inguscio, M. Dalmonte, and L. Fallani, Observation of chiral edge states with neutral fermions in synthetic Hall ribbons, Science 349(6255), 1510 (2015)
CrossRef ADS Google scholar
[26]
B. K. Stuhl, H. I. Lu, L. M. Aycock, D. Genkina, and I. B. Spielman, Visualizing edge states with an atomic Bose gas in the quantum Hall regime, Science 349(6255), 1514 (2015)
CrossRef ADS Google scholar
[27]
A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, Optical atomic clocks, Rev. Mod. Phys. 87(2), 637 (2015)
CrossRef ADS Google scholar
[28]
A. R. Kolovsky, Creating artificial magnetic fields for cold atoms by photon-assisted tunneling, Europhys. Lett. 93(2), 20003 (2011)
CrossRef ADS Google scholar
[29]
J. Struck, C. Ölschläger, M. Weinberg, P. Hauke, J. Simonet, A. Eckardt, M. Lewenstein, K. Sengstock, and P. Windpassinger, Tunable gauge potential for neutral and spinless particles in driven optical lattices, Phys. Rev. Lett. 108(22), 225304 (2012)
CrossRef ADS Google scholar
[30]
G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, Experimental realization of the topological Haldane model with ultracold fermions, Nature 515(7526), 237 (2014)
CrossRef ADS Google scholar
[31]
L. W. Clark, B. M. Anderson, L. Feng, A. Gaj, K. Levin, and C. Chin, Observation of density-dependent gauge fields in a Bose–Einstein condensate based on micromotion control in a shaken two-dimensional lattice, Phys. Rev. Lett. 121(3), 030402 (2018)
CrossRef ADS Google scholar
[32]
C. Schweizer, F. Grusdt, M. Berngruber, L. Barbiero, E. Demler, N. Goldman, I. Bloch, and M. Aidelsburger, Floquet approach to Z2 lattice gauge theories with ultracold atoms in optical lattices, Nat. Phys. 15(11), 1168 (2019)
CrossRef ADS Google scholar
[33]
F. Görg, K. Sandholzer, J. Minguzzi, R. Desbuquois, M. Messer, and T. Esslinger, Realization of density-dependent Peierls phases to engineer quantized gauge fields coupled to ultracold matter, Nat. Phys. 15(11), 1161 (2019)
CrossRef ADS Google scholar
[34]
V. Lienhard, P. Scholl, S. Weber, D. Barredo, S. de Léséleuc, R. Bai, N. Lang, M. Fleischhauer, H. P. Büchler, T. Lahaye, and A. Browaeys, Realization of a densitydependent Peierls phase in a synthetic, spin–orbit coupled Rydberg system, Phys. Rev. X 10(2), 021031 (2020)
CrossRef ADS Google scholar
[35]
C. J. Kennedy, W. C. Burton, W. C. Chung, and W. Ketterle, Observation of Bose–Einstein condensation in a strong synthetic magnetic field, Nat. Phys. 11(10), 859 (2015)
CrossRef ADS Google scholar
[36]
G. J. Milburn, J. Corney, E. M. Wright, and D. F. Walls, Quantum dynamics of an atomic Bose–Einstein condensate in a double-well potential, Phys. Rev. A 55(6), 4318 (1997)
CrossRef ADS Google scholar
[37]
A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, Quantum coherent atomic tunneling between two trapped Bose–Einstein condensates, Phys. Rev. Lett. 79(25), 4950 (1997)
CrossRef ADS Google scholar
[38]
M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, and M. K. Oberthaler, Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction, Phys. Rev. Lett. 95(1), 010402 (2005)
CrossRef ADS Google scholar
[39]
B. Wang, P. Fu, J. Liu, and B. Wu, Self-trapping of Bose–Einstein condensates in optical lattices, Phys. Rev. A 74(6), 063610 (2006)
CrossRef ADS Google scholar
[40]
L. J. LeBlanc, A. B. Bardon, J. McKeever, M. H. T. Extavour, D. Jervis, J. H. Thywissen, F. Piazza, and A. Smerzi, Dynamics of a tunable superfluid junction, Phys. Rev. Lett. 106(2), 025302 (2011)
CrossRef ADS Google scholar
[41]
P. G. Harper, Single band motion of conduction electronsin a uniform magnetic field, Proc. Phys. Soc. A 68(10), 874 (1955)
CrossRef ADS Google scholar
[42]
D. R. Hofstadter, Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields, Phys. Rev. B 14(6), 2239 (1976)
CrossRef ADS Google scholar
[43]
A. X. Zhang, Y. Zhang, Y. F. Jiang, Z. F. Yu, L. X. Cai, and J. K. Xue, Cyclotron dynamics of neutral atoms in optical lattices with additional magnetic field and harmonic trap potential, Chin. Phys. B 29(1), 010307 (2020)
CrossRef ADS Google scholar
[44]
J. Liu, L. Fu, B. Y. Ou, S. G. Chen, D. I. Choi, B. Wu, and Q. Niu, Theory of nonlinear Landau–Zener tunneling, Phys. Rev. A 66(2), 023404 (2002)
CrossRef ADS Google scholar
[45]
D. F. Ye, L. B. Fu, and J. Liu, Rosen–Zener transition in a nonlinear two-level system, Phys. Rev. A 77(1), 013402 (2008)
CrossRef ADS Google scholar
[46]
G. F. Wang, L. B. Fu, and J. Liu, Periodic modulation effect on self-trapping of two weakly coupled Bose–Einstein condensates, Phys. Rev. A 73(1), 013619 (2006)
CrossRef ADS Google scholar
[47]
J. Liu, L. B. Fu, B. Liu, and B. Wu, Role of particle interactions in the Feshbach conversion of fermionic atoms to bosonic molecules, New J. Phys. 10(12), 123018 (2008)
CrossRef ADS Google scholar
[48]
J. Liu, B. Liu, and L. B. Fu, Many-body effects on nonadiabatic Feshbach conversion in bosonic systems, Phys. Rev. A 78(1), 013618 (2008)
CrossRef ADS Google scholar
[49]
S. Raghavan, A. Smerzi, S. Fantoni, and S. R. Shenoy, Coherent oscillations between two weakly coupled Bose–Einstein condensates: Josephson effects, π oscillations, and macroscopic quantum self-trapping, Phys. Rev. A 59(1), 620 (1999)
CrossRef ADS Google scholar
[50]
L. Fu and J. Liu, Quantum entanglement manifestation of transition to nonlinear self-trapping for Bose–Einstein condensates in a symmetric double well, Phys. Rev. A 74(6), 063614 (2006)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(3079 KB)

Accesses

Citations

Detail

Sections
Recommended

/