Ab initio study of anisotropic mechanical and electronic properties of strained carbon-nitride nanosheet with interlayer bonding

Hao Cheng , Jin-Cheng Zheng

Front. Phys. ›› 2021, Vol. 16 ›› Issue (4) : 43505

PDF (2590KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (4) : 43505 DOI: 10.1007/s11467-021-1077-6
RESEARCH ARTICLE

Ab initio study of anisotropic mechanical and electronic properties of strained carbon-nitride nanosheet with interlayer bonding

Author information +
History +
PDF (2590KB)

Abstract

Due to the noticeable structural similarity and being neighborhood in periodic table of group-IV and-V elemental monolayers, whether the combination of group-IV and-V elements could have stable nanosheet structures with optimistic properties has attracted great research interest. In this work, we performed first-principles simulations to investigate the elastic, vibrational and electronic properties of the carbon nitride (CN) nanosheet in the puckered honeycomb structure with covalent interlayer bonding. It has been demonstrated that the structural stability of CN nanosheet is essentially maintained by the strong interlayer σ bonding between adjacent carbon atoms in the opposite atomic layers. A negative Poisson’s ratio in the out-of-plane direction under biaxial deformation, and the extreme in-plane stiffness of CN nanosheet, only slightly inferior to the monolayer graphene, are revealed. Moreover, the highly anisotropic mechanical and electronic response of CN nanosheet to tensile strain have been explored.

Graphical abstract

Keywords

carbon-nitride / anisotropy / Poisson’s ratio / strain engineering / in-plane strength / interlayer bonding

Cite this article

Download citation ▾
Hao Cheng, Jin-Cheng Zheng. Ab initio study of anisotropic mechanical and electronic properties of strained carbon-nitride nanosheet with interlayer bonding. Front. Phys., 2021, 16(4): 43505 DOI:10.1007/s11467-021-1077-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306, 666 (2004)

[2]

Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438, 201 (2005)

[3]

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Electronic confinement and coherence in patterned epitaxial graphene, Science 312, 1191 (2006)

[4]

H. Nakano, T. Mitsuoka, M. Harada, K. Horibuchi, H. Nozaki, N. Takahashi, T. Nonaka, Y. Seno, and H. Nakamura, Soft synthesis of single-crystal silicon monolayer sheets, Angew. Chem. Int. Ed. 45, 6303 (2006)

[5]

S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin, and S. Ciraci, Two- and one-dimensional honeycomb structures of silicon and germanium, Phys. Rev. Lett. 102, 236804 (2009)

[6]

P. R. Wallace, The band theory of graphite, Phys. Rev. 71, 622 (1947)

[7]

H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, and P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano 8, 4033 (2014)

[8]

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9, 372 (2014)

[9]

J.-H. Lin, H. Zhang, and X.-L. Cheng, First-principle study on the optical response of phosphorene, Front. Phys. 10, 1 (2015)

[10]

J.-C. Zheng, H.-Q. Wang, A. Wee, and C. Huan, Structural and electronic properties of Al nanowires: An ab initio pseudopotential study, Int. J. Nanosci. 1, 159 (2002)

[11]

Z.-Q. Wang, T.-Y. , H.-Q. Wang, Y. P. Feng, and J.-C. Zheng, Review of borophene and its potential applications, Front. Phys. 14, 33403 (2019)

[12]

J.-C. Lei, X. Zhang, and Z. Zhou, Recent advances in MXene: Preparation, properties, and applications, Front. Phys. 10, 276 (2015)

[13]

C. Niu, Y. Z. Lu, and C. M. Lieber, Experimental realization of the covalent solid carbon nitride, Science 261, 334 (1993)

[14]

K. M. Yu, M. L. Cohen, E. E. Haller, W. L. Hansen, A. Y. Liu, and I. C. Wu, Observation of crystalline C3N4, Phys. Rev. B 49, 5034 (1994)

[15]

H. W. Song, F. Z. Cui, X. M. He, W. Z. Li, and H. D. Li, Carbon nitride films synthesized by NH3-ion-beamassisted deposition, J. Phys.: Condens. Matter 6, 6125 (1994)

[16]

A. Bousetta, M. Lu, A. Bensaoula, and A. Schultz, Formation of carbon nitride films on Si(100) substrates by electron cyclotron resonance plasma assisted vapor deposition, Appl. Phys. Lett. 65, 696 (1994)

[17]

Z. J. Zhang, S. Fan, and C. M. Lieber, Growth and composition of covalent carbon nitride solids, Appl. Phys. Lett. 66, 3582 (1995)

[18]

S. R. J. Pearce, P. W. May, R. K. Wild, K. R. Hallam, and P. J. Heard, Deposition and properties of amorphous carbon phosphide films, Diam. Relat. Mater. 11, 1041 (2002)

[19]

F. Claeyssens, G. M. Fuge, N. L. Allan, P. W. May, and M. N. R. Ashfold, Phosphorus carbides: Theory and experiment, Dalton Trans. 2004, 3085 (2004)

[20]

J. N. Hart, P. W. May, N. L. Allan, K. R. Hallam, F. Claeyssens, G. M. Fuge, M. Ruda, and P. J. Heard, Towards new binary compounds: Synthesis of amorphous phosphorus carbide by pulsed laser deposition, J. Solid State Chem. 198, 466 (2013)

[21]

A. Furlan, G. K. Gueorguiev, Z. Czigány, H. H?gberg, S. Braun, S. Stafström, and L. Hultman, Synthesis of phosphorus-carbide thin films by magnetron sputtering, Phys. Status Solidi RRL 2, 191 (2008)

[22]

M. Côté and M. L. Cohen, Carbon nitride compounds with 1:1 stoichiometry, Phys. Rev. B 55, 5684 (1997)

[23]

J.-C. Zheng, M. C. Payne, Y. P. Feng, and A. T.-L. Lim, Stability and electronic properties of carbon phosphide compounds with 1:1 stoichiometry, Phys. Rev. B 67, 153105 (2003)

[24]

G. Wang, R. Pandey, and S. P. Karna, Carbon phosphide monolayers with superior carrier mobility, Nanoscale 8, 8819 (2016)

[25]

A. K. Geim and I. V. Grigorieva, van der Waals heterostructures, Nature 499, 419 (2013)

[26]

K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, 2D materials and Van der Waals heterostructures, Science 353, aac9439 (2016)

[27]

X.-R. Hu, J.-M. Zheng, and Z.-Y. Ren, Strong interlayer coupling in phosphorene/graphene Van der Waals heterostructure: A first-principles investigation, Front. Phys. 13, 137302 (2017)

[28]

P. L. de Andres, R. Ramírez, and J. A. Vergés, Strong covalent bonding between two graphene layers, Phys. Rev. B 77, 045403 (2008)

[29]

J.-J. Li, Y. Dai, and J.-C. Zheng, Strain engineering of ion migration in LiCoO2, Front. Phys., doi:10.1007/s11467-021-1086-5 (2021)

[30]

J. Kanasaki, E. Inami, K. Tanimura, H. Ohnishi, and K. Nasu, Formation of sp3-bonded carbon nanostructures by femtosecond laser excitation of graphite, Phys. Rev. Lett. 102, 087402 (2009)

[31]

K. Nishioka and K. Nasu, Cooperative domain-type interlayer sp3-bond formation in graphite, Phys. Rev. B 82, 035440 (2010)

[32]

S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, and A. A. Balandin, Dimensional crossover of thermal transport in few-layer graphene, Nat. Mater. 9, 555 (2010)

[33]

Z. Wei, Z. Ni, K. Bi, M. Chen, and Y. Chen, In-plane lattice thermal conductivities of multilayer graphene films, Carbon 49, 2653 (2011)

[34]

T. Guo, Z.-D. Sha, X. Liu, G. Zhang, T. Guo, Q.-X. Pei, and Y.-W. Zhang, Tuning the thermal conductivity of multi-layer graphene with interlayer bonding and tensile strain, Appl. Phys. A 120, 1275 (2015)

[35]

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter 21, 395502 (2009)

[36]

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996)

[37]

P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50, 17953 (1994)

[38]

Z. H. Levine and D. C. Allan, Linear optical response in silicon and germanium including self-energy effects, Phys. Rev. Lett. 63, 1719 (1989)

[39]

V. Fiorentini and A. Baldereschi, Dielectric scaling of the self-energy scissor operator in semiconductors and insulators, Phys. Rev. B 51, 17196 (1995)

[40]

M. S. Hybertsen and S. G. Louie, Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies, Phys. Rev. B 34, 5390 (1986)

[41]

O. Zakharov, A. Rubio, X. Blase, M. L. Cohen, and S. G. Louie, Quasiparticle band structures of six II–VI compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe, Phys. Rev. B 50, 10780 (1994)

[42]

P. E. Trevisanutto, C. Giorgetti, L. Reining, M. Ladisa, and V. Olevano, Ab initio GW many-body effects in graphene, Phys. Rev. Lett. 101, 226405 (2008)

[43]

H. Şahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R. T. Senger, and S. Ciraci, Monolayer honeycomb structures of group-IV elements and III–V binary compounds: First-principles calculations, Phys. Rev. B 80, 155453 (2009)

[44]

C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321, 385 (2008)

[45]

J.-W. Jiang, Graphene versus MoS2: A short review, Front. Phys. 10, 287 (2015)

[46]

F. Liu, P. Ming, and J. Li, Ab initio calculation of ideal strength and phonon instability of graphene under tension, Phys. Rev. B 76, 064120 (2007)

[47]

J. Wu, B. Wang, Y. Wei, R. Yang, and M. Dresselhaus, Mechanics and mechanically tunable band gap in singlelayer hexagonal boron–nitride, Mater. Res. Lett. 1, 200 (2013)

[48]

J.-W. Jiang, T. Chang, X. Guo, and H. S. Park, Intrinsic negative Poisson’s ratio for single-layer graphene, Nano Lett. 16, 5286 (2016)

[49]

G. Qin and Z. Qin, Negative Poisson’s ratio in twodimensional honeycomb structures, npj Comput. Mater. 6, 51 (2020)

[50]

T. Li, J. W. Morris, N. Nagasako, S. Kuramoto, and D. C. Chrzan, “Ideal” engineering alloys, Phys. Rev. Lett. 98, 105503 (2007)

[51]

T. Li, Ideal strength and phonon instability in single-layer MoS2, Phys. Rev. B 85, 235407 (2012)

[52]

T.-Y. , X.-X. Liao, H.-Q. Wang, and J.-C. Zheng, Tuning the indirect–direct band gap transition of SiC, GeC and SnC monolayer in a graphene-like honeycomb structure by strain engineering: A quasiparticle GW study, J. Mater. Chem. 22, 10062 (2012)

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (2590KB)

Supplementary files

supplementary material

668

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/