Ab initio study of anisotropic mechanical and electronic properties of strained carbon-nitride nanosheet with interlayer bonding

Hao Cheng, Jin-Cheng Zheng

PDF(2590 KB)
PDF(2590 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (4) : 43505. DOI: 10.1007/s11467-021-1077-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Ab initio study of anisotropic mechanical and electronic properties of strained carbon-nitride nanosheet with interlayer bonding

Author information +
History +

Abstract

Due to the noticeable structural similarity and being neighborhood in periodic table of group-IV and-V elemental monolayers, whether the combination of group-IV and-V elements could have stable nanosheet structures with optimistic properties has attracted great research interest. In this work, we performed first-principles simulations to investigate the elastic, vibrational and electronic properties of the carbon nitride (CN) nanosheet in the puckered honeycomb structure with covalent interlayer bonding. It has been demonstrated that the structural stability of CN nanosheet is essentially maintained by the strong interlayer σ bonding between adjacent carbon atoms in the opposite atomic layers. A negative Poisson’s ratio in the out-of-plane direction under biaxial deformation, and the extreme in-plane stiffness of CN nanosheet, only slightly inferior to the monolayer graphene, are revealed. Moreover, the highly anisotropic mechanical and electronic response of CN nanosheet to tensile strain have been explored.

Graphical abstract

Keywords

carbon-nitride / anisotropy / Poisson’s ratio / strain engineering / in-plane strength / interlayer bonding

Cite this article

Download citation ▾
Hao Cheng, Jin-Cheng Zheng. Ab initio study of anisotropic mechanical and electronic properties of strained carbon-nitride nanosheet with interlayer bonding. Front. Phys., 2021, 16(4): 43505 https://doi.org/10.1007/s11467-021-1077-6

References

[1]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306, 666 (2004)
CrossRef ADS Google scholar
[2]
Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438, 201 (2005)
CrossRef ADS Google scholar
[3]
C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Electronic confinement and coherence in patterned epitaxial graphene, Science 312, 1191 (2006)
CrossRef ADS Google scholar
[4]
H. Nakano, T. Mitsuoka, M. Harada, K. Horibuchi, H. Nozaki, N. Takahashi, T. Nonaka, Y. Seno, and H. Nakamura, Soft synthesis of single-crystal silicon monolayer sheets, Angew. Chem. Int. Ed. 45, 6303 (2006)
CrossRef ADS Google scholar
[5]
S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin, and S. Ciraci, Two- and one-dimensional honeycomb structures of silicon and germanium, Phys. Rev. Lett. 102, 236804 (2009)
CrossRef ADS Google scholar
[6]
P. R. Wallace, The band theory of graphite, Phys. Rev. 71, 622 (1947)
CrossRef ADS Google scholar
[7]
H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, and P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano 8, 4033 (2014)
CrossRef ADS Google scholar
[8]
L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9, 372 (2014)
CrossRef ADS Google scholar
[9]
J.-H. Lin, H. Zhang, and X.-L. Cheng, First-principle study on the optical response of phosphorene, Front. Phys. 10, 1 (2015)
CrossRef ADS Google scholar
[10]
J.-C. Zheng, H.-Q. Wang, A. Wee, and C. Huan, Structural and electronic properties of Al nanowires: An ab initio pseudopotential study, Int. J. Nanosci. 1, 159 (2002)
CrossRef ADS Google scholar
[11]
Z.-Q. Wang, T.-Y. Lü, H.-Q. Wang, Y. P. Feng, and J.-C. Zheng, Review of borophene and its potential applications, Front. Phys. 14, 33403 (2019)
CrossRef ADS Google scholar
[12]
J.-C. Lei, X. Zhang, and Z. Zhou, Recent advances in MXene: Preparation, properties, and applications, Front. Phys. 10, 276 (2015)
CrossRef ADS Google scholar
[13]
C. Niu, Y. Z. Lu, and C. M. Lieber, Experimental realization of the covalent solid carbon nitride, Science 261, 334 (1993)
CrossRef ADS Google scholar
[14]
K. M. Yu, M. L. Cohen, E. E. Haller, W. L. Hansen, A. Y. Liu, and I. C. Wu, Observation of crystalline C3N4, Phys. Rev. B 49, 5034 (1994)
CrossRef ADS Google scholar
[15]
H. W. Song, F. Z. Cui, X. M. He, W. Z. Li, and H. D. Li, Carbon nitride films synthesized by NH3-ion-beamassisted deposition, J. Phys.: Condens. Matter 6, 6125 (1994)
CrossRef ADS Google scholar
[16]
A. Bousetta, M. Lu, A. Bensaoula, and A. Schultz, Formation of carbon nitride films on Si(100) substrates by electron cyclotron resonance plasma assisted vapor deposition, Appl. Phys. Lett. 65, 696 (1994)
CrossRef ADS Google scholar
[17]
Z. J. Zhang, S. Fan, and C. M. Lieber, Growth and composition of covalent carbon nitride solids, Appl. Phys. Lett. 66, 3582 (1995)
CrossRef ADS Google scholar
[18]
S. R. J. Pearce, P. W. May, R. K. Wild, K. R. Hallam, and P. J. Heard, Deposition and properties of amorphous carbon phosphide films, Diam. Relat. Mater. 11, 1041 (2002)
CrossRef ADS Google scholar
[19]
F. Claeyssens, G. M. Fuge, N. L. Allan, P. W. May, and M. N. R. Ashfold, Phosphorus carbides: Theory and experiment, Dalton Trans. 2004, 3085 (2004)
CrossRef ADS Google scholar
[20]
J. N. Hart, P. W. May, N. L. Allan, K. R. Hallam, F. Claeyssens, G. M. Fuge, M. Ruda, and P. J. Heard, Towards new binary compounds: Synthesis of amorphous phosphorus carbide by pulsed laser deposition, J. Solid State Chem. 198, 466 (2013)
CrossRef ADS Google scholar
[21]
A. Furlan, G. K. Gueorguiev, Z. Czigány, H. H?gberg, S. Braun, S. Stafström, and L. Hultman, Synthesis of phosphorus-carbide thin films by magnetron sputtering, Phys. Status Solidi RRL 2, 191 (2008)
CrossRef ADS Google scholar
[22]
M. Côté and M. L. Cohen, Carbon nitride compounds with 1:1 stoichiometry, Phys. Rev. B 55, 5684 (1997)
CrossRef ADS Google scholar
[23]
J.-C. Zheng, M. C. Payne, Y. P. Feng, and A. T.-L. Lim, Stability and electronic properties of carbon phosphide compounds with 1:1 stoichiometry, Phys. Rev. B 67, 153105 (2003)
CrossRef ADS Google scholar
[24]
G. Wang, R. Pandey, and S. P. Karna, Carbon phosphide monolayers with superior carrier mobility, Nanoscale 8, 8819 (2016)
CrossRef ADS Google scholar
[25]
A. K. Geim and I. V. Grigorieva, van der Waals heterostructures, Nature 499, 419 (2013)
CrossRef ADS Google scholar
[26]
K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, 2D materials and Van der Waals heterostructures, Science 353, aac9439 (2016)
CrossRef ADS Google scholar
[27]
X.-R. Hu, J.-M. Zheng, and Z.-Y. Ren, Strong interlayer coupling in phosphorene/graphene Van der Waals heterostructure: A first-principles investigation, Front. Phys. 13, 137302 (2017)
CrossRef ADS Google scholar
[28]
P. L. de Andres, R. Ramírez, and J. A. Vergés, Strong covalent bonding between two graphene layers, Phys. Rev. B 77, 045403 (2008)
CrossRef ADS Google scholar
[29]
J.-J. Li, Y. Dai, and J.-C. Zheng, Strain engineering of ion migration in LiCoO2, Front. Phys., doi:10.1007/s11467-021-1086-5 (2021)
[30]
J. Kanasaki, E. Inami, K. Tanimura, H. Ohnishi, and K. Nasu, Formation of sp3-bonded carbon nanostructures by femtosecond laser excitation of graphite, Phys. Rev. Lett. 102, 087402 (2009)
CrossRef ADS Google scholar
[31]
K. Nishioka and K. Nasu, Cooperative domain-type interlayer sp3-bond formation in graphite, Phys. Rev. B 82, 035440 (2010)
CrossRef ADS Google scholar
[32]
S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, and A. A. Balandin, Dimensional crossover of thermal transport in few-layer graphene, Nat. Mater. 9, 555 (2010)
CrossRef ADS Google scholar
[33]
Z. Wei, Z. Ni, K. Bi, M. Chen, and Y. Chen, In-plane lattice thermal conductivities of multilayer graphene films, Carbon 49, 2653 (2011)
CrossRef ADS Google scholar
[34]
T. Guo, Z.-D. Sha, X. Liu, G. Zhang, T. Guo, Q.-X. Pei, and Y.-W. Zhang, Tuning the thermal conductivity of multi-layer graphene with interlayer bonding and tensile strain, Appl. Phys. A 120, 1275 (2015)
CrossRef ADS Google scholar
[35]
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter 21, 395502 (2009)
CrossRef ADS Google scholar
[36]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996)
CrossRef ADS Google scholar
[37]
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50, 17953 (1994)
CrossRef ADS Google scholar
[38]
Z. H. Levine and D. C. Allan, Linear optical response in silicon and germanium including self-energy effects, Phys. Rev. Lett. 63, 1719 (1989)
CrossRef ADS Google scholar
[39]
V. Fiorentini and A. Baldereschi, Dielectric scaling of the self-energy scissor operator in semiconductors and insulators, Phys. Rev. B 51, 17196 (1995)
CrossRef ADS Google scholar
[40]
M. S. Hybertsen and S. G. Louie, Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies, Phys. Rev. B 34, 5390 (1986)
CrossRef ADS Google scholar
[41]
O. Zakharov, A. Rubio, X. Blase, M. L. Cohen, and S. G. Louie, Quasiparticle band structures of six II–VI compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe, Phys. Rev. B 50, 10780 (1994)
CrossRef ADS Google scholar
[42]
P. E. Trevisanutto, C. Giorgetti, L. Reining, M. Ladisa, and V. Olevano, Ab initio GW many-body effects in graphene, Phys. Rev. Lett. 101, 226405 (2008)
CrossRef ADS Google scholar
[43]
H. Şahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R. T. Senger, and S. Ciraci, Monolayer honeycomb structures of group-IV elements and III–V binary compounds: First-principles calculations, Phys. Rev. B 80, 155453 (2009)
CrossRef ADS Google scholar
[44]
C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321, 385 (2008)
CrossRef ADS Google scholar
[45]
J.-W. Jiang, Graphene versus MoS2: A short review, Front. Phys. 10, 287 (2015)
CrossRef ADS Google scholar
[46]
F. Liu, P. Ming, and J. Li, Ab initio calculation of ideal strength and phonon instability of graphene under tension, Phys. Rev. B 76, 064120 (2007)
CrossRef ADS Google scholar
[47]
J. Wu, B. Wang, Y. Wei, R. Yang, and M. Dresselhaus, Mechanics and mechanically tunable band gap in singlelayer hexagonal boron–nitride, Mater. Res. Lett. 1, 200 (2013)
CrossRef ADS Google scholar
[48]
J.-W. Jiang, T. Chang, X. Guo, and H. S. Park, Intrinsic negative Poisson’s ratio for single-layer graphene, Nano Lett. 16, 5286 (2016)
CrossRef ADS Google scholar
[49]
G. Qin and Z. Qin, Negative Poisson’s ratio in twodimensional honeycomb structures, npj Comput. Mater. 6, 51 (2020)
CrossRef ADS Google scholar
[50]
T. Li, J. W. Morris, N. Nagasako, S. Kuramoto, and D. C. Chrzan, “Ideal” engineering alloys, Phys. Rev. Lett. 98, 105503 (2007)
CrossRef ADS Google scholar
[51]
T. Li, Ideal strength and phonon instability in single-layer MoS2, Phys. Rev. B 85, 235407 (2012)
CrossRef ADS Google scholar
[52]
T.-Y. Lü, X.-X. Liao, H.-Q. Wang, and J.-C. Zheng, Tuning the indirect–direct band gap transition of SiC, GeC and SnC monolayer in a graphene-like honeycomb structure by strain engineering: A quasiparticle GW study, J. Mater. Chem. 22, 10062 (2012)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(2590 KB)

Accesses

Citations

Detail

Sections
Recommended

/