Ab initio study of anisotropic mechanical and electronic properties of strained carbon-nitride nanosheet with interlayer bonding
Hao Cheng, Jin-Cheng Zheng
Ab initio study of anisotropic mechanical and electronic properties of strained carbon-nitride nanosheet with interlayer bonding
Due to the noticeable structural similarity and being neighborhood in periodic table of group-IV and-V elemental monolayers, whether the combination of group-IV and-V elements could have stable nanosheet structures with optimistic properties has attracted great research interest. In this work, we performed first-principles simulations to investigate the elastic, vibrational and electronic properties of the carbon nitride (CN) nanosheet in the puckered honeycomb structure with covalent interlayer bonding. It has been demonstrated that the structural stability of CN nanosheet is essentially maintained by the strong interlayer σ bonding between adjacent carbon atoms in the opposite atomic layers. A negative Poisson’s ratio in the out-of-plane direction under biaxial deformation, and the extreme in-plane stiffness of CN nanosheet, only slightly inferior to the monolayer graphene, are revealed. Moreover, the highly anisotropic mechanical and electronic response of CN nanosheet to tensile strain have been explored.
carbon-nitride / anisotropy / Poisson’s ratio / strain engineering / in-plane strength / interlayer bonding
[1] |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306, 666 (2004)
CrossRef
ADS
Google scholar
|
[2] |
Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438, 201 (2005)
CrossRef
ADS
Google scholar
|
[3] |
C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Electronic confinement and coherence in patterned epitaxial graphene, Science 312, 1191 (2006)
CrossRef
ADS
Google scholar
|
[4] |
H. Nakano, T. Mitsuoka, M. Harada, K. Horibuchi, H. Nozaki, N. Takahashi, T. Nonaka, Y. Seno, and H. Nakamura, Soft synthesis of single-crystal silicon monolayer sheets, Angew. Chem. Int. Ed. 45, 6303 (2006)
CrossRef
ADS
Google scholar
|
[5] |
S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin, and S. Ciraci, Two- and one-dimensional honeycomb structures of silicon and germanium, Phys. Rev. Lett. 102, 236804 (2009)
CrossRef
ADS
Google scholar
|
[6] |
P. R. Wallace, The band theory of graphite, Phys. Rev. 71, 622 (1947)
CrossRef
ADS
Google scholar
|
[7] |
H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, and P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano 8, 4033 (2014)
CrossRef
ADS
Google scholar
|
[8] |
L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9, 372 (2014)
CrossRef
ADS
Google scholar
|
[9] |
J.-H. Lin, H. Zhang, and X.-L. Cheng, First-principle study on the optical response of phosphorene, Front. Phys. 10, 1 (2015)
CrossRef
ADS
Google scholar
|
[10] |
J.-C. Zheng, H.-Q. Wang, A. Wee, and C. Huan, Structural and electronic properties of Al nanowires: An ab initio pseudopotential study, Int. J. Nanosci. 1, 159 (2002)
CrossRef
ADS
Google scholar
|
[11] |
Z.-Q. Wang, T.-Y. Lü, H.-Q. Wang, Y. P. Feng, and J.-C. Zheng, Review of borophene and its potential applications, Front. Phys. 14, 33403 (2019)
CrossRef
ADS
Google scholar
|
[12] |
J.-C. Lei, X. Zhang, and Z. Zhou, Recent advances in MXene: Preparation, properties, and applications, Front. Phys. 10, 276 (2015)
CrossRef
ADS
Google scholar
|
[13] |
C. Niu, Y. Z. Lu, and C. M. Lieber, Experimental realization of the covalent solid carbon nitride, Science 261, 334 (1993)
CrossRef
ADS
Google scholar
|
[14] |
K. M. Yu, M. L. Cohen, E. E. Haller, W. L. Hansen, A. Y. Liu, and I. C. Wu, Observation of crystalline C3N4, Phys. Rev. B 49, 5034 (1994)
CrossRef
ADS
Google scholar
|
[15] |
H. W. Song, F. Z. Cui, X. M. He, W. Z. Li, and H. D. Li, Carbon nitride films synthesized by NH3-ion-beamassisted deposition, J. Phys.: Condens. Matter 6, 6125 (1994)
CrossRef
ADS
Google scholar
|
[16] |
A. Bousetta, M. Lu, A. Bensaoula, and A. Schultz, Formation of carbon nitride films on Si(100) substrates by electron cyclotron resonance plasma assisted vapor deposition, Appl. Phys. Lett. 65, 696 (1994)
CrossRef
ADS
Google scholar
|
[17] |
Z. J. Zhang, S. Fan, and C. M. Lieber, Growth and composition of covalent carbon nitride solids, Appl. Phys. Lett. 66, 3582 (1995)
CrossRef
ADS
Google scholar
|
[18] |
S. R. J. Pearce, P. W. May, R. K. Wild, K. R. Hallam, and P. J. Heard, Deposition and properties of amorphous carbon phosphide films, Diam. Relat. Mater. 11, 1041 (2002)
CrossRef
ADS
Google scholar
|
[19] |
F. Claeyssens, G. M. Fuge, N. L. Allan, P. W. May, and M. N. R. Ashfold, Phosphorus carbides: Theory and experiment, Dalton Trans. 2004, 3085 (2004)
CrossRef
ADS
Google scholar
|
[20] |
J. N. Hart, P. W. May, N. L. Allan, K. R. Hallam, F. Claeyssens, G. M. Fuge, M. Ruda, and P. J. Heard, Towards new binary compounds: Synthesis of amorphous phosphorus carbide by pulsed laser deposition, J. Solid State Chem. 198, 466 (2013)
CrossRef
ADS
Google scholar
|
[21] |
A. Furlan, G. K. Gueorguiev, Z. Czigány, H. H?gberg, S. Braun, S. Stafström, and L. Hultman, Synthesis of phosphorus-carbide thin films by magnetron sputtering, Phys. Status Solidi RRL 2, 191 (2008)
CrossRef
ADS
Google scholar
|
[22] |
M. Côté and M. L. Cohen, Carbon nitride compounds with 1:1 stoichiometry, Phys. Rev. B 55, 5684 (1997)
CrossRef
ADS
Google scholar
|
[23] |
J.-C. Zheng, M. C. Payne, Y. P. Feng, and A. T.-L. Lim, Stability and electronic properties of carbon phosphide compounds with 1:1 stoichiometry, Phys. Rev. B 67, 153105 (2003)
CrossRef
ADS
Google scholar
|
[24] |
G. Wang, R. Pandey, and S. P. Karna, Carbon phosphide monolayers with superior carrier mobility, Nanoscale 8, 8819 (2016)
CrossRef
ADS
Google scholar
|
[25] |
A. K. Geim and I. V. Grigorieva, van der Waals heterostructures, Nature 499, 419 (2013)
CrossRef
ADS
Google scholar
|
[26] |
K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, 2D materials and Van der Waals heterostructures, Science 353, aac9439 (2016)
CrossRef
ADS
Google scholar
|
[27] |
X.-R. Hu, J.-M. Zheng, and Z.-Y. Ren, Strong interlayer coupling in phosphorene/graphene Van der Waals heterostructure: A first-principles investigation, Front. Phys. 13, 137302 (2017)
CrossRef
ADS
Google scholar
|
[28] |
P. L. de Andres, R. Ramírez, and J. A. Vergés, Strong covalent bonding between two graphene layers, Phys. Rev. B 77, 045403 (2008)
CrossRef
ADS
Google scholar
|
[29] |
J.-J. Li, Y. Dai, and J.-C. Zheng, Strain engineering of ion migration in LiCoO2, Front. Phys., doi:10.1007/s11467-021-1086-5 (2021)
|
[30] |
J. Kanasaki, E. Inami, K. Tanimura, H. Ohnishi, and K. Nasu, Formation of sp3-bonded carbon nanostructures by femtosecond laser excitation of graphite, Phys. Rev. Lett. 102, 087402 (2009)
CrossRef
ADS
Google scholar
|
[31] |
K. Nishioka and K. Nasu, Cooperative domain-type interlayer sp3-bond formation in graphite, Phys. Rev. B 82, 035440 (2010)
CrossRef
ADS
Google scholar
|
[32] |
S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, and A. A. Balandin, Dimensional crossover of thermal transport in few-layer graphene, Nat. Mater. 9, 555 (2010)
CrossRef
ADS
Google scholar
|
[33] |
Z. Wei, Z. Ni, K. Bi, M. Chen, and Y. Chen, In-plane lattice thermal conductivities of multilayer graphene films, Carbon 49, 2653 (2011)
CrossRef
ADS
Google scholar
|
[34] |
T. Guo, Z.-D. Sha, X. Liu, G. Zhang, T. Guo, Q.-X. Pei, and Y.-W. Zhang, Tuning the thermal conductivity of multi-layer graphene with interlayer bonding and tensile strain, Appl. Phys. A 120, 1275 (2015)
CrossRef
ADS
Google scholar
|
[35] |
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter 21, 395502 (2009)
CrossRef
ADS
Google scholar
|
[36] |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996)
CrossRef
ADS
Google scholar
|
[37] |
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50, 17953 (1994)
CrossRef
ADS
Google scholar
|
[38] |
Z. H. Levine and D. C. Allan, Linear optical response in silicon and germanium including self-energy effects, Phys. Rev. Lett. 63, 1719 (1989)
CrossRef
ADS
Google scholar
|
[39] |
V. Fiorentini and A. Baldereschi, Dielectric scaling of the self-energy scissor operator in semiconductors and insulators, Phys. Rev. B 51, 17196 (1995)
CrossRef
ADS
Google scholar
|
[40] |
M. S. Hybertsen and S. G. Louie, Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies, Phys. Rev. B 34, 5390 (1986)
CrossRef
ADS
Google scholar
|
[41] |
O. Zakharov, A. Rubio, X. Blase, M. L. Cohen, and S. G. Louie, Quasiparticle band structures of six II–VI compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe, Phys. Rev. B 50, 10780 (1994)
CrossRef
ADS
Google scholar
|
[42] |
P. E. Trevisanutto, C. Giorgetti, L. Reining, M. Ladisa, and V. Olevano, Ab initio GW many-body effects in graphene, Phys. Rev. Lett. 101, 226405 (2008)
CrossRef
ADS
Google scholar
|
[43] |
H. Şahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R. T. Senger, and S. Ciraci, Monolayer honeycomb structures of group-IV elements and III–V binary compounds: First-principles calculations, Phys. Rev. B 80, 155453 (2009)
CrossRef
ADS
Google scholar
|
[44] |
C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321, 385 (2008)
CrossRef
ADS
Google scholar
|
[45] |
J.-W. Jiang, Graphene versus MoS2: A short review, Front. Phys. 10, 287 (2015)
CrossRef
ADS
Google scholar
|
[46] |
F. Liu, P. Ming, and J. Li, Ab initio calculation of ideal strength and phonon instability of graphene under tension, Phys. Rev. B 76, 064120 (2007)
CrossRef
ADS
Google scholar
|
[47] |
J. Wu, B. Wang, Y. Wei, R. Yang, and M. Dresselhaus, Mechanics and mechanically tunable band gap in singlelayer hexagonal boron–nitride, Mater. Res. Lett. 1, 200 (2013)
CrossRef
ADS
Google scholar
|
[48] |
J.-W. Jiang, T. Chang, X. Guo, and H. S. Park, Intrinsic negative Poisson’s ratio for single-layer graphene, Nano Lett. 16, 5286 (2016)
CrossRef
ADS
Google scholar
|
[49] |
G. Qin and Z. Qin, Negative Poisson’s ratio in twodimensional honeycomb structures, npj Comput. Mater. 6, 51 (2020)
CrossRef
ADS
Google scholar
|
[50] |
T. Li, J. W. Morris, N. Nagasako, S. Kuramoto, and D. C. Chrzan, “Ideal” engineering alloys, Phys. Rev. Lett. 98, 105503 (2007)
CrossRef
ADS
Google scholar
|
[51] |
T. Li, Ideal strength and phonon instability in single-layer MoS2, Phys. Rev. B 85, 235407 (2012)
CrossRef
ADS
Google scholar
|
[52] |
T.-Y. Lü, X.-X. Liao, H.-Q. Wang, and J.-C. Zheng, Tuning the indirect–direct band gap transition of SiC, GeC and SnC monolayer in a graphene-like honeycomb structure by strain engineering: A quasiparticle GW study, J. Mater. Chem. 22, 10062 (2012)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |