Coexistence of superconductivity and antiferromagentic order in Er2O2Bi with anti-ThCr2Si2 structure

Lei Qiao, Ning-hua Wu, Tianhao Li, Siqi Wu, Zhuyi Zhang, Miaocong Li, Jiang Ma, Baijiang Lv, Yupeng Li, Chenchao Xu, Qian Tao, Chao Cao, Guang-Han Cao, Zhu-An Xu

PDF(2328 KB)
PDF(2328 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (6) : 63501. DOI: 10.1007/s11467-021-1076-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Coexistence of superconductivity and antiferromagentic order in Er2O2Bi with anti-ThCr2Si2 structure

Author information +
History +

Abstract

We investigated the coexistence of superconductivity and antiferromagnetic order in the compound Er2O2Bi with anti-ThCr2Si2-type structure through resistivity, magnetization, specific heat measurements and first-principle calculations. The superconducting transition temperature Tc of 1.23 K and antiferromagnetic transition temperature TN of 3 K are observed in the sample with the best nominal composition. The superconducting upper critical field Hc2(0) and electron-phonon coupling constant λeph in Er2O2Bi are similar to those in the previously reported non-magnetic superconductor Y2O2Bi with the same structure, indicating that the superconductivity in Er2O2Bi may have the same origin as in Y2O2Bi. The first-principle calculations of Er2O2Bi show that the Fermi surface is mainly composed of the Bi 6p orbitals both in the paramagnetic and antiferromagnetic state, implying minor effect of the 4f electrons on the Fermi surface. Besides, upon increasing the oxygen incorporation in Er2OxBi, Tc increases from 1 to 1.23 K and TN decreases slightly from 3 K to 2.96 K, revealing that superconductivity and antiferromagnetic order may compete with each other. The Hall effect measurements indicate that hole-type carrier density indeed increases with increasing oxygen content, which may account for the variations of Tc and TN with different oxygen content.

Graphical abstract

Keywords

superconductivity / Kondo lattice / magnetic correlation / phase diagram

Cite this article

Download citation ▾
Lei Qiao, Ning-hua Wu, Tianhao Li, Siqi Wu, Zhuyi Zhang, Miaocong Li, Jiang Ma, Baijiang Lv, Yupeng Li, Chenchao Xu, Qian Tao, Chao Cao, Guang-Han Cao, Zhu-An Xu. Coexistence of superconductivity and antiferromagentic order in Er2O2Bi with anti-ThCr2Si2 structure. Front. Phys., 2021, 16(6): 63501 https://doi.org/10.1007/s11467-021-1076-7

References

[1]
L. N. Bulaevskii, A. I. Buzdin, M. L. Kulić, and S. V. Panjukov, Coexistence of superconductivity and magnetism theoretical predictions and experimental results, Adv. Phys. 34(2), 175 (1985)
CrossRef ADS Google scholar
[2]
P. W. Anderson, Theory of dirty superconductors, J. Phys. Chem. Solids 11(1–2), 26 (1959)
CrossRef ADS Google scholar
[3]
O. Fischer and L. B. Maple, Superconductivity in Ternary Compounds (I): Structural, Electronic, and Lattice Properties, Vol. 32, Springer Science & Business Media, 2012
[4]
M. B. Maple and Ø. Fischer, in: Superconductivity in Ternary Compounds (II), Vol. 34, pp 1–10, Springer, Boston, MA, 1982
CrossRef ADS Google scholar
[5]
D. M. Paul, H. A. Mook, A. W. Hewat, B. C. Sales, L. A. Boatner, J. R. Thompson, and M. Mostoller, Magnetic ordering in the high-temperature superconductor GdBa2Cu3O7, Phys. Rev. B 37(4), 2341 (1988)
CrossRef ADS Google scholar
[6]
B. D. Dunlap, M. Slaski, D. G. Hinks, L. Soderholm, M. Beno, K. Zhang, C. Segre, G. W. Crabtree, W. K. Kwok, S. K. Malik, I. K. Schuller, J. D. Jorgensen, and Z. Sungaila, Electronic and magnetic properties of rare-earth ions in REBa2Cu3O7 – x(RE= Dy, Ho, Er), J. Magn. Magn. Mater. 68(2), L139 (1987)
CrossRef ADS Google scholar
[7]
B. D. Dunlap, M. Slaski, Z. Sungaila, D. G. Hinks, K. Zhang, C. Segre, S. K. Malik, and E. E. Alp, Magnetic ordering of Gd and Cu in superconducting and nonsuperconducting GdBa2Cu3O7−δ, Phys. Rev. B 37(1), 592 (1988)
CrossRef ADS Google scholar
[8]
Z. Zou, J. Ye, K. Oka, and Y. Nishihara, Superconducting PrBa2Cu3Ox, Phys. Rev. Lett. 80(5), 1074 (1998)
CrossRef ADS Google scholar
[9]
H. Eisaki, H. Takagi, R. J. Cava, B. Batlogg, J. J. Krajewski, K. Peck, J. O. Mizuhashi, J. O. Lee, and S. Uchida, Competition between magnetism and superconductivity in rare-earth nickel boride carbides, Phys. Rev. B 50(1), 647 (1994)
CrossRef ADS Google scholar
[10]
K. H. Müller and V. N. Narozhnyi, Interaction of superconductivity and magnetism in borocarbide superconductors, Rep. Prog. Phys. 64(8), 943 (2001)
CrossRef ADS Google scholar
[11]
Y. Nakajima, R. Hu, K. Kirshenbaum, A. Hughes, P. Syers, X. Wang, K. Wang, R. Wang, S. R. Saha, D. Pratt, J. W. Lynn, and J. Paglione, Topological RPdBi half- Heusler semimetals: A new family of noncentrosymmetric magnetic superconductors, Sci. Adv. 1(5), e1500242 (2015)
CrossRef ADS Google scholar
[12]
For example, Y. Luo, H. Han, S. Jiang, X. Lin, Y. Li, J. Dai, G. Cao, and Z. A. Xu, Interplay of superconductivity and Ce 4f magnetism in CeFeAs1 – xPxO0.95F0.05, Phys. Rev. B 83(5), 054501 (2011)
CrossRef ADS Google scholar
[13]
W. A. Fertig, D. C. Johnston, L. E. De Long, R. W. Mc- Callum, M. B. Maple, and B. T. Matthias, Destruction of superconductivity at the onset of long-range magnetic order in the compound ErRh4B4, Phys. Rev. Lett. 38(17), 987 (1977)
CrossRef ADS Google scholar
[14]
M. Ishikawa and Ø. Fischer, Destruction of superconductivity by magnetic ordering in Ho1.2Mo6S8, Solid State Commun. 23(1), 37 (1977)
CrossRef ADS Google scholar
[15]
M. Ishikawa, Ø. Fischer, and J. Muller, in: Superconductivity in Ternary Compounds II, pp 143–165, Springer, 1982
CrossRef ADS Google scholar
[16]
L. Jiao, S. Howard, S. Ran, Z. Wang, J. O. Rodriguez, M. Sigrist, Z. Wang, N. P. Butch, and V. Madhavan, Chiral superconductivity in heavy-fermion metal UTe2, Nature 579(7800), 523 (2020)
CrossRef ADS Google scholar
[17]
R. Sei, H. Kawasoko, K. Matsumoto, M. Arimitsu, K. Terakado, D. Oka, S. Fukuda, N. Kimura, H. Kasai, E. Nishibori, K. Ohoyama, A. Hoshikawa, T. Ishigaki, T. Hasegawa, and T. Fukumura, Tetragonality induced superconductivity in anti-ThCr2Si2-type RE2O2Bi (RE= Rare Earth) with Bi square nets, Dalton Trans. 49(10), 3321 (2020)
CrossRef ADS Google scholar
[18]
R. Sei, S. Kitani, T. Fukumura, H. Kawaji, and T. Hasegawa, Two-dimensional superconductivity emerged at monatomic Bi2 – square net in layered Y2O2Bi via oxygen incorporation, J. Am. Chem. Soc. 138(35), 11085 (2016)
CrossRef ADS Google scholar
[19]
L. Qiao, J. Chen, B. Lv, X. Yang, J. Wu, Y. Cui, H. Bai, M. Li, Y. Li, Z. Ren, J. Dai, and Z. Xu, Antiferromagnetic Kondo lattice compound Ce2O2Bi with anti- ThCr2Si2-type structure, J. Alloys Compd. 836, 155229 (2020)
CrossRef ADS Google scholar
[20]
K. Terakado, R. Sei, H. Kawasoko, T. Koretsune, D. Oka, T. Hasegawa, and T. Fukumura, Superconductivity in anti-ThCr2Si2-type Er2O2Bi induced by incorporation of excess oxygen with CaO oxidant, Inorg. Chem. 57(17), 10587 (2018)
CrossRef ADS Google scholar
[21]
B. H. Toby, EXPGUI, a graphical user interface for GSAS, J. Appl. Cryst. 34(2), 210 (2001)
CrossRef ADS Google scholar
[22]
G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47(1), 558 (1993)
CrossRef ADS Google scholar
[23]
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef ADS Google scholar
[24]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef ADS Google scholar
[25]
H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12), 5188 (1976)
CrossRef ADS Google scholar
[26]
V. I. Anisimov, J. Zaanen, and O. K. Andersen, Band theory and Mott insulators: Hubbard U instead of Stoner I, Phys. Rev. B 44(3), 943 (1991)
CrossRef ADS Google scholar
[27]
V. I. Anisimov and O. Gunnarsson, Density-functional calculation of effective Coulomb interactions in metals, Phys. Rev. B 43(10), 7570 (1991)
CrossRef ADS Google scholar
[28]
V. N. Antonov, B. N. Harmon, and A. N. Yaresko, Electronic structure of mixed-valence and charge-ordered Sm and Eu pnictides and chalcogenides, Phys. Rev. B 72(8), 085119 (2005)
CrossRef ADS Google scholar
[29]
C. Xu, Q. Chen, and C. Cao, Unique crystal field splitting and multiband RKKY interactions in Ni-doped EuRbFe4As4, Commun. Phys. 2, 16 (2019)
CrossRef ADS Google scholar
[30]
H. Wang, C. Dong, Q. Mao, R. Khan, X. Zhou, C. Li, B. Chen, J. Yang, Q. Su, and M. Fang, Multiband superconductivity of heavy electrons in a TlNi2Se2 single crystal, Phys. Rev. Lett. 111(20), 207001 (2013)
CrossRef ADS Google scholar
[31]
S. V. Shulga, S. L. Drechsler, G. Fuchs, K. H. Müller, K. Winzer, M. Heinecke, and K. Krug, Upper critical field peculiarities of superconducting YNi2B2C and LuNi2B2C, Phys. Rev. Lett. 80(8), 1730 (1998)
CrossRef ADS Google scholar
[32]
F. Hunte, J. Jaroszynski, A. Gurevich, D. C. Larbalestier, R. Jin, A. S. Sefat, M. A. Mc Guire, B. C. Sales, D. K. Christen, and D. Mandrus, Two-band superconductivity in La FeAsO0.89F0.11 at very high magnetic fields, Nature 453(7197), 903 (2008)
CrossRef ADS Google scholar
[33]
H. Bai, X. Yang, Y. Liu, M. Zhang, M. Wang, Y. Li, J. Ma, Q. Tao, Y. Xie, G. H. Cao, and Z. A. Xu, Superconductivity in a misfit layered compound (SnSe)1.16(NbSe2), J. Phys.: Condens. Matter 30(35), 355701 (2018)
CrossRef ADS Google scholar
[34]
A. Gurevich, Enhancement of the upper critical field by nonmagnetic impurities in dirty two-gap superconductors, Phys. Rev. B 67(18), 184515 (2003)
CrossRef ADS Google scholar
[35]
Y. Takeda, N. Duc Dung, Y. Nakano, T. Ishikura, S. Ikeda, T. D. Matsuda, E. Yamamoto, Y. Haga, T. Takeuchi, R. Settai, , Calorimetric study in single crystalline RCu2Si2 (R: Rare Earth), J. Phys. Soc. Jpn. 77(10), 104710 (2008)
CrossRef ADS Google scholar
[36]
W. L. Mc Millan, Transition temperature of strongcoupled superconductors, Phys. Rev. 167(2), 331 (1968)
CrossRef ADS Google scholar
[37]
T. Moriya, Spin fluctuations in nearly antiferromagnetic metals, Phys. Rev. Lett. 24(25), 1433 (1970)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(2328 KB)

Accesses

Citations

Detail

Sections
Recommended

/