Predication of topological states in the allotropes of group-IV elements

Chengyong Zhong

PDF(4976 KB)
PDF(4976 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (6) : 63503. DOI: 10.1007/s11467-021-1075-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Predication of topological states in the allotropes of group-IV elements

Author information +
History +

Abstract

Three-dimensional (3D) topological insulators (TIs) have been studied for approximately fifteen years, but those made from group-IV elements, especially Ge and Sn, seem particularly attractive owing to their nontoxicity, sizable intrinsic spin–orbit coupling (SOC) strength and natural compatibility with the current semiconductor industry. However, group-IV elemental TIs have rarely been reported, except for the low temperature phase of α-Sn under strain. Here, based on first-principles calculations, we propose new allotropes of Ge and Sn, named T5-Ge/Sn, as desirable TIs. These new allotropes are also highly anisotropic Dirac semimetals if the SOC is turned off. To the best of our knowledge, T5-Ge/Sn are the first 3D allotropes of Ge/Sn that possess topological states in their equilibrium states at room temperature. Additionally, their isostructures of C and Si are metastable indirect and direct semiconductors. Our work not only reveals two promising TIs, but more profoundly, we justify the advantages of group-IV elements as topological quantum materials (TQMs) for fundamental research and potential practical applications, and thus reveal a new direction in the search for desirable TQMs.

Graphical abstract

Keywords

topological insulators / topological semimetals / group-IV elements / first-principles calculations

Cite this article

Download citation ▾
Chengyong Zhong. Predication of topological states in the allotropes of group-IV elements. Front. Phys., 2021, 16(6): 63503 https://doi.org/10.1007/s11467-021-1075-8

References

[1]
M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
CrossRef ADS Google scholar
[2]
N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and Dirac semimetals in three-dimensional solids, Rev. Mod. Phys. 90(1), 015001 (2018)
CrossRef ADS Google scholar
[3]
P. Liu, J. R. Williams, and J. J. Cha, Topological nanomaterials, Nat. Rev. Mater. 4(7), 479 (2019)
CrossRef ADS Google scholar
[4]
C. N. Lau, F. Xia, and L. Cao, Emergent quantum materials, MRS Bull. 45(5), 340 (2020)
CrossRef ADS Google scholar
[5]
Q. Niu, Advances on topological materials, Front. Phys. 15(4), 43601 (2020)
CrossRef ADS Google scholar
[6]
Y. X. Zhao, Equivariant PT-symmetric real Chern insulators, Front. Phys. 15(1), 13603 (2020)
CrossRef ADS Google scholar
[7]
Y. X. Zhao and Z. D. Wang, Novel Z2 topological metals and semimetals, Phys. Rev. Lett. 116(1), 016401 (2016)
CrossRef ADS Google scholar
[8]
Y. X. Zhao and A. P. Schnyder, Nonsymmorphic symmetry-required band crossings in topological semimetals, Phys. Rev. B 94(19), 195109 (2016)
CrossRef ADS Google scholar
[9]
F. Giustino, J. H. Lee, F. Trier, M. Bibes, S. M. Winter, R. Valentí,Y. W. Son, L. Taillefer, C. Heil, A. I. Figueroa, B. Plaçais, Q. S. Wu, O. V. Yazyev, E. P. A. M. Bakkers, J. Nygård, P. Forn-Díaz, S. De Franceschi, J. W. McIver, L. E. F. F. Torres, T. Low, A. Kumar, R. Galceran, S. O. Valenzuela, M. V. Costache, A. Manchon, E. A. Kim, G. R. Schleder, A. Fazzio, and S. Roche, The 2021 quantum materials roadmap, J. Phys. Mater. 3(4), 042006 (2021)
CrossRef ADS Google scholar
[10]
F. Tang, H. C. Po, A. Vishwanath, and X. Wan, Comprehensive search for topological materials using symmetry indicators, Nature 566(7745), 486 (2019)
CrossRef ADS Google scholar
[11]
M. G. Vergniory, L. Elcoro, C. Felser, N. Regnault, B. A. Bernevig, and Z. Wang, A complete catalogue of highquality topological materials, Nature 566(7745), 480 (2019)
CrossRef ADS Google scholar
[12]
T. Zhang, Y. Jiang, Z. Song, H. Huang, Y. He, Z. Fang, H. Weng, and C. Fang, Catalogue of topological electronic materials, Nature 566(7745), 475 (2019)
CrossRef ADS Google scholar
[13]
H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface, Nat. Phys. 5(6), 438 (2009)
CrossRef ADS Google scholar
[14]
H. Lin, L. A. Wray, Y. Xia, S. Xu, S. Jia, R. J. Cava, A. Bansil, and M. Z. Hasan, Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena, Nat. Mater. 9(7), 546 (2010)
CrossRef ADS Google scholar
[15]
D. Xiao, Y. Yao, W. Feng, J. Wen, W. Zhu, X. Q. Chen, G. M. Stocks, and Z. Zhang, Half-Heusler compounds as a new class of three-dimensional topological insulators, Phys. Rev. Lett. 105(9), 096404 (2010)
CrossRef ADS Google scholar
[16]
B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Quantum spin Hall effect and topological phase transition in HgTe quantum wells, Science 314(5806), 1757 (2006)
CrossRef ADS Google scholar
[17]
C. L. Kane and E. J. Mele, Quantum spin Hall effect in graphene , Phys. Rev. Lett. 95(22), 226801 (2005)
CrossRef ADS Google scholar
[18]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)
CrossRef ADS Google scholar
[19]
S. Balendhran, S. Walia, H. Nili, S. Sriram, and M. Bhaskaran, Elemental analogues of graphene: Silicene, germanene, stanene, and phosphorene, Small 11(6), 640 (2015)
CrossRef ADS Google scholar
[20]
A. J. Mannix, B. Kiraly, M. C. Hersam, and N. P. Guisinger, Synthesis and chemistry of elemental 2D materials, Nat. Rev. Chem. 1, 0014 (2017)
CrossRef ADS Google scholar
[21]
J. R. Chelikowsky and M. L. Cohen, Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors, Phys. Rev. B 14(2), 556 (1976)
CrossRef ADS Google scholar
[22]
F. Kiefer, V. Hlukhyy, A. J. Karttunen, T. F. Fässler, C. Gold, E. W. Scheidt, W. Scherer, J. Nylén, and U. Häussermann, Synthesis, structure, and electronic properties of 4H-germanium, J. Mater. Chem. 20(9), 1780 (2010)
CrossRef ADS Google scholar
[23]
B. C. Johnson, B. Haberl, S. Deshmukh, B. D. Malone, M. L. Cohen, J. C. McCallum, J. S. Williams, and J. E. Bradby, Evidence for the R8 phase of germanium, Phys. Rev. Lett. 110(8), 085502 (2013)
CrossRef ADS Google scholar
[24]
A. Mujica, C. J. Pickard, and R. J. Needs, Low-energy tetrahedral polymorphs of carbon, silicon, and germanium, Phys. Rev. B 91(21), 214104 (2015)
CrossRef ADS Google scholar
[25]
Z. Zhao, H. Zhang, D. Y. Kim, W. Hu, E. S. Bullock, and T. A. Strobel, Properties of the exotic metastable ST12 germanium allotrope, Nat. Commun. 8(1), 13909 (2017)
CrossRef ADS Google scholar
[26]
Z. Tang, A. P. Litvinchuk, M. Gooch, and A. M. Guloy, Narrow gap semiconducting germanium allotrope from the oxidation of a layered zintl phase in ionic liquids, J. Am. Chem. Soc. 140(22), 6785 (2018)
CrossRef ADS Google scholar
[27]
C. He, X. Shi, S. J. Clark, J. Li, C. J. Pickard, T. Ouyang, C. Zhang, C. Tang, and J. Zhong, Complex low energy tetrahedral polymorphs of group IV elements from first principles, Phys. Rev. Lett. 121(17), 175701 (2018)
CrossRef ADS Google scholar
[28]
A. Barfuss, L. Dudy, M. R. Scholz, H. Roth, P. Höpfner, C. Blumenstein, G. Landolt, J. H. Dil, N. C. Plumb, M. Radovic, A. Bostwick, E. Rotenberg, A. Fleszar, G. Bihlmayer, D. Wortmann, G. Li, W. Hanke, R. Claessen, and J. Schäfer,, Elemental topological insulator with tunable Fermi level: Strained α-Sn on InSb(001), Phys. Rev. Lett. 111(15), 157205 (2013)
CrossRef ADS Google scholar
[29]
C. Z. Xu, Y. H. Chan, Y. Chen, P. Chen, X. Wang, C. Dejoie, M. H. Wong, J. A. Hlevyack, H. Ryu, H. Y. Kee, N. Tamura, M. Y. Chou, Z. Hussain, S. K. Mo, and T. C. Chiang, Elemental topological Dirac semimetal: α-Sn on InSb(111), Phys. Rev. Lett. 118(14), 146402 (2017)
CrossRef ADS Google scholar
[30]
D. Zhang, H. Wang, J. Ruan, G. Yao, and H. Zhang, Engineering topological phases in the Luttinger semimetal α-Sn, Phys. Rev. B 97(19), 195139 (2018)
CrossRef ADS Google scholar
[31]
Q. Barbedienne, J. Varignon, N. Reyren, A. Marty, C. Vergnaud, M. Jamet, C. Gomez-Carbonell,A. Lemaître, P. Le Fèvre, F. Bertran, A. Taleb-Ibrahimi, H. Jaffrès, J. M. George, and A. Fert, Angular-resolved photoemission electron spectroscopy and transport studies of the elemental topological insulator α-Sn, Phys. Rev. B 98(19), 195445 (2018)
CrossRef ADS Google scholar
[32]
I. Madarevic, U. Thupakula, G. Lippertz, N. Claessens, P. C. Lin, H. Bana, S. Gonzalez, G. Di Santo, L. Petaccia, M. N. Nair, L. M. C. Pereira, C. Van Haesendonck, and M. J. Van Bael, Structural and electronic properties of the pure and stable elemental 3D topological Dirac semimetal α-Sn, APL Mater. 8(3), 031114 (2020)
CrossRef ADS Google scholar
[33]
J. F. Nye, Physical Properties of Crystals, Clarendon Press, 1985
[34]
B. Bradlyn, L. Elcoro, J. Cano, M. G. Vergniory, Z. Wang, C. Felser, M. I. Aroyo, and B. A. Bernevig, Topological quantum chemistry, Nature 547(7663), 298 (2017)
CrossRef ADS Google scholar
[35]
J. Doherty, S. Biswas, E. Galluccio, C. A. Broderick, A. Garcia-Gil, R. Duffy, E. P. O’Reilly, and J. D. Holmes, Progress on germanium–tin nanoscale alloys, Chem. Mater. 32(11), 4383 (2020)
CrossRef ADS Google scholar
[36]
J. Wagner and M. Núñez-Valdez,Ab initio study of band gap properties in metastable BC8/ST12 SixGe1−x alloys, Appl. Phys. Lett. 117(3), 032105 (2020)
CrossRef ADS Google scholar
[37]
A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Classification of topological insulators and superconductors in three spatial dimensions, Phys. Rev. B 78(19), 195125 (2008)
CrossRef ADS Google scholar
[38]
C. Zhong, W. Wu, J. He, G. Ding, Y. Liu, D. Li, S. A. Yang, and G. Zhang, Two-dimensional honeycomb borophene oxide: Strong anisotropy and nodal loop transformation, Nanoscale 11(5), 2468 (2019)
CrossRef ADS Google scholar
[39]
Y. Chen, Y. Xie, S. A. Yang, H. Pan, F. Zhang, M. L. Cohen, and S. Zhang, Nanostructured carbon allotropes with Weyl-like loops and points, Nano Lett. 15(10), 6974 (2015)
CrossRef ADS Google scholar
[40]
H. Weng, Y. Liang, Q. Xu, R. Yu, Z. Fang, X. Dai, and Y. Kawazoe, Topological node-line semimetal in three-dimensional graphene networks, Phys. Rev. B 92(4), 045108 (2015)
CrossRef ADS Google scholar
[41]
C. Zhong, Y. Chen, Y. Xie, S. A. Yang, M. L. Cohen, and S. B. Zhang, Towards three-dimensional Weyl-surface semimetals in graphene networks, Nanoscale 8(13), 7232 (2016)
CrossRef ADS Google scholar
[42]
C. Zhong, Y. Chen, Z. M. Yu, Y. Xie, H. Wang, S. A. Yang, and S. Zhang, Three-dimensional pentagon carbon with a genesis of emergent fermions, Nat. Commun. 8(1), 15641 (2017)
CrossRef ADS Google scholar
[43]
W. Wu, Y. Liu, S. Li, C. Zhong, Z. M. Yu, X. L. Sheng, Y. X. Zhao, and S. A. Yang, Nodal surface semimetals: Theory and material realization, Phys. Rev. B 97(11), 115125 (2018)
CrossRef ADS Google scholar
[44]
Z. Liu, H. Xin, L. Fu, Y. Liu, T. Song, X. Cui, G. Zhao, and J. Zhao, All-silicon topological semimetals with closed nodal line, J. Phys. Chem. Lett. 10(2), 244 (2019)
CrossRef ADS Google scholar
[45]
S. Z. Chen, S. Li, Y. Chen, and W. Duan, Nodal flexiblesurface semimetals: Case of carbon nanotube networks, Nano Lett. 20(7), 5400 (2020)
CrossRef ADS Google scholar
[46]
B. Liu, G. Zhao, Z. Liu, and Z. F. Wang, Twodimensional quadrupole topological insulator in gammagraphyne, Nano Lett. 19(9), 6492 (2019)
CrossRef ADS Google scholar
[47]
X. L. Sheng, C. Chen, H. Liu, Z. Chen, Z. M. Yu, Y. X. Zhao, and S. A. Yang, Two-dimensional second-order topological insulator in graphdiyne, Phys. Rev. Lett. 123(25), 256402 (2019)
CrossRef ADS Google scholar
[48]
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, Quantum ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter 21(39), 395502 (2009)
CrossRef ADS Google scholar
[49]
P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli,M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R. A. Jr DiStasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H. Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H. V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, and S. Baroni, Advanced capabilities for materials modelling with Quantum ESPRESSO, J. Phys.: Condens. Matter 29(46), 465901 (2017)
CrossRef ADS Google scholar
[50]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef ADS Google scholar
[51]
H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations,Phys. Rev. B 13(12), 5188 (1976)
CrossRef ADS Google scholar
[52]
J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118(18), 8207 (2003)
CrossRef ADS Google scholar
[53]
A. Togo, F. Oba, and I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B 78(13), 134106 (2008)
CrossRef ADS Google scholar
[54]
Q. Wu, S. Zhang, H.-F. Song, M. Troyer, and A. A. Soluyanov, WannierTools: An open-source software package for novel topological materials, Comput. Phys. Commun. 224, 405 (2018)
CrossRef ADS Google scholar
[55]
G. Pizzi, V. Vitale, R. Arita, S. Blügel, F. Freimuth, G. Géranton, M. Gibertini, D. Gresch, C. Johnson, T. Koretsune, J. Ibañez-Azpiroz, H. Lee, J. M. Lihm, D. Marchand, A. Marrazzo, Y. Mokrousov, J. I. Mustafa, Y. Nohara, Y. Nomura, L. Paulatto, S. Poncé, T. Ponweiser, J. Qiao, F. Thöle, S. S. Tsirkin, M. Wierzbowska, N. Marzari, D. Vanderbilt, I. Souza, A. A. Mostofi, and J. R. Yates, Wannier90 as a community code: New features and applications, J. Phys.: Condens. Matter 32(16), 165902 (2020)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(4976 KB)

Accesses

Citations

Detail

Sections
Recommended

/