Generic spiral spin liquids

Xu-Ping Yao, Jian Qiao Liu, Chun-Jiong Huang, Xiaoqun Wang, Gang Chen

PDF(1365 KB)
PDF(1365 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (5) : 53303. DOI: 10.1007/s11467-021-1074-9
Topical review
Topical review

Generic spiral spin liquids

Author information +
History +

Abstract

Spiral spin liquids are unique classical spin liquids that occur in many frustrated spin systems, but do not comprise a new phase of matter. Owing to extensive classical ground-state degeneracy, the spins in a spiral spin liquid thermally fluctuate cooperatively from a collection of spiral configurations at low temperatures. These spiral propagation wavevectors form a continuous manifold in reciprocal space, i.e., a spiral contour or a spiral surface, that strongly governs the low-temperature thermal fluctuations and magnetic physics. In this paper, the relevant spin models conveying the spiral spin liquid physics are systematically explored and the geometric origin of the spiral manifold is clarified in the model construction. The spiral spin liquids based on the dimension and the codimension of the spiral manifold are further clarified. For each class, the physical properties are studied both generally and for specific examples. The results are relevant to a wide range of frustrated magnets. A survey of materials is given and future experiments are suggested.

Keywords

spiral spin liquids / thermal order-by-disorder / Monte Carlo simulation

Cite this article

Download citation ▾
Xu-Ping Yao, Jian Qiao Liu, Chun-Jiong Huang, Xiaoqun Wang, Gang Chen. Generic spiral spin liquids. Front. Phys., 2021, 16(5): 53303 https://doi.org/10.1007/s11467-021-1074-9

References

[1]
L. Balents, Spin liquids in frustrated magnets, Nature 464, 199 (2010)
CrossRef ADS Google scholar
[2]
L. Savary and L. Balents, Quantum spin liquids: A review, Rep. Prog. Phys. 80, 016502 (2016)
CrossRef ADS Google scholar
[3]
P. A. Lee, From high temperature superconductivity to quantum spin liquid: Progress in strong correlation physics, Rep. Prog. Phys. 71, 012501 (2007)
CrossRef ADS Google scholar
[4]
Y. Zhou, K. Kanoda, and T.-K. Ng, Quantum spin liquid states, Rev. Mod. Phys. 89, 025003 (2017)
CrossRef ADS Google scholar
[5]
Y. Kohama, H. Ishikawa, A. Matsuo, K. Kindo, N. Shannon, and Z. Hiroi, Possible observation of quantum spinnematic phase in a frustrated magnet, Proc. Nat. Acad. Sci. 116, 10686 (2019)
CrossRef ADS Google scholar
[6]
A. Kitaev, Anyons in an exactly solved model and beyond, Ann. Phys. 321, 2 (2006)
CrossRef ADS Google scholar
[7]
D. Bergman, J. Alicea, E. Gull, S. Trebst, and L. Balents, Order-by-disorder and spiral spin-liquid in frustrated diamond-lattice antiferromagnets, Nature Phys. 3, 487 (2007)
CrossRef ADS Google scholar
[8]
S. Lee and L. Balents, Theory of the ordered phase in A-site antiferromagnetic spinels, Phys. Rev. B 78, 144417 (2008)
CrossRef ADS Google scholar
[9]
L. Seabra, P. Sindzingre, T. Momoi, and N. Shannon, Novel phases in a square-lattice frustrated ferromagnet: 13-magnetization plateau, helicoidal spin liquid, and vortex crystal, Phys. Rev. B 93, 085132 (2016)
CrossRef ADS Google scholar
[10]
T. Shimokawa, T. Okubo, and H. Kawamura, Multiple-q states of the J1–J2 classical honeycomb-lattice Heisenberg antiferromagnet under a magnetic field, Phys. Rev. B 100, 224404 (2019)
CrossRef ADS Google scholar
[11]
S. Gao, O. Zaharko, V. Tsurkan, Y. Su, J. S. White, G. S. Tucker, B. Roessli, F. Bourdarot, R. Sibille, D. Chernyshov, T. Fennell, A. Loidl, and C. Rüegg, Spiral spin-liquid and the emergence of a vortex-like state in MnSc2S4, Nature Phys. 13, 157 (2016)
CrossRef ADS Google scholar
[12]
T. Shimokawa and H. Kawamura, Ripple state in the frustrated honeycomb-lattice antiferromagnet, Phys. Rev. Lett. 123, 057202 (2019)
CrossRef ADS Google scholar
[13]
S. Gao, H. D. Rosales, F. A. Gomez Albarracn, V. Tsurkan, G. Kaur, T. Fennell, P. Steens, M. Boehm, P. Cermak, A. Schneidewind, , Fractional antiferromagnetic skyrmion lattice induced by anisotropic couplings, Nature 586, 37 (2020)
CrossRef ADS Google scholar
[14]
X. Bai, J. A. M. Paddison, E. Kapit, S. M. Koohpayeh, 12 J.-J. Wen, S. E. Dutton, A. T. Savici, A. I. Kolesnikov, G. E. Granroth, C. L. Broholm, J. T. Chalker, and M. Mourigal, Magnetic excitations of the classical spin liquid MgCr2O4, Phys. Rev. Lett. 122, 097201 (2019)
CrossRef ADS Google scholar
[15]
M. M. Bordelon, C. Liu, L. Posthuma, E. Kenney, M. J. Graf, N. P. Butch, A. Banerjee, S. Calder, L. Balents, and S. D. Wilson, Frustrated Heisenberg J1–J2 model within the stretched diamond lattice of LiYbO2, arXiv:2009.04043 (2020)
CrossRef ADS Google scholar
[16]
S. Biswas and K. Damle, Semiclassical theory for liquidlike behavior of the frustrated magnet Ca10Cr7O28, Phys. Rev. B 97, 115102 (2018)
CrossRef ADS Google scholar
[17]
R. Pohle, H. Yan, and N. Shannon, How many spin liquids are there in Ca10Cr7O28? arXiv: 1711.03778 (2017)
[18]
A. Mulder, R. Ganesh, L. Capriotti, and A. Paramekanti, Spiral order by disorder and lattice nematic order in a frustrated heisenberg antiferromagnet on the honeycomb lattice, Phys. Rev. B 81, 214419 (2010)
CrossRef ADS Google scholar
[19]
P. Balla, Y. Iqbal, and K. Penc, Ane lattice construction of spiral surfaces in frustrated Heisenberg models, Phys. Rev. B 100, 140402 (2019)
CrossRef ADS Google scholar
[20]
P. Balla, Y. Iqbal, and K. Penc, Degenerate manifolds, helimagnets, and multi-Q chiral phases in the classical Heisenberg antiferromagnet on the face-centered-cubic lattice, Phys. Rev. Res. 2, 043278 (2020)
CrossRef ADS Google scholar
[21]
N. Niggemann, M. Hering, and J. Reuther, Classical spiral spin liquids as a possible route to quantum spin liquids, J. Phys.: Condens. Matter 32, 024001 (2019)
CrossRef ADS Google scholar
[22]
Z. Nussinov, Commensurate and incommensurate o(n) spin systems: Novel even-odd eects, a generalized merminwagner-coleman theorem, and ground states, arXiv:0105253 (2004)
[23]
J. Attig and S. Trebst, Classical spin spirals in frustrated magnets from free-fermion band topology, Phys. Rev. B 96, 085145 (2017)
CrossRef ADS Google scholar
[24]
J. Villain, R. Bidaux, J.-P. Carton, and R. Conte, Order as an eect of disorder, Journal de Physique 41, 1263 (1980)
CrossRef ADS Google scholar
[25]
C. L. Henley, Ordering due to disorder in a frustrated vector antiferromagnet, Phys. Rev. Lett. 62, 2056 (1989)
CrossRef ADS Google scholar
[26]
J. N. Reimers and A. J. Berlinsky, Order by disorder in the classical Heisenberg Kagomé antiferromagnet, Phys. Rev. B 48, 9539 (1993)
CrossRef ADS Google scholar
[27]
K. Hukushima and K. Nemoto, Exchange Monte Carlo method and application to spin glass simulations, J. Phys. Soc. Japan 65, 1604 (1996)
CrossRef ADS Google scholar
[28]
N. Tristan, J. Hemberger, A. Krimmel, H.-A. Krug von Nidda, V. Tsurkan, and A. Loidl, Geometric frustration in the cubic spinels MAl2O4 (M= Co, Fe, and Mn), Phys. Rev. B 72, 174404 (2005)
CrossRef ADS Google scholar
[29]
T. Suzuki, H. Nagai, M. Nohara, and H. Takagi, Melting of antiferromagnetic ordering in spinel oxide CoAl2O4, J. Phys.: Condens. Matter 19, 145265 (2007)
CrossRef ADS Google scholar
[30]
V. Fritsch, J. Hemberger, N. Büttgen, E.-W. Scheidt, H.-A. Krug von Nidda, A. Loidl, and V. Tsurkan, Spin and orbital frustration in MnSc2S4 and FeSc2S4, Phys. Rev. Lett. 92, 116401 (2004)
CrossRef ADS Google scholar
[31]
O. Zaharko, N. B. Christensen, A. Cervellino, V. Tsurkan, A. Maljuk, U. Stuhr, C. Niedermayer, F. Yokaichiya, D. N. Argyriou, M. Boehm, and A. Loidl, Spin liquid in a single crystal of the frustrated diamond lattice antiferromagnet CoAl2O4, Phys. Rev. B 84, 094403 (2011)
CrossRef ADS Google scholar
[32]
Y. Iqbal, T. Müller, H. O. Jeschke, R. Thomale, and J. Reuther, Stability of the spiral spin liquid in MnSc2S4, Phys. Rev. B 98, 064427 (2018)
CrossRef ADS Google scholar
[33]
J. R. Chamorro, L. Ge, J. Flynn, M. A. Subramanian, M. Mourigal, and T. M. McQueen, Frustrated spin one on a diamond lattice in NiRh2O4, Phys. Rev. Mater. 2, 034404 (2018)
CrossRef ADS Google scholar
[34]
L. Ge, J. Flynn, J. A. M. Paddison, M. B. Stone, S. Calder, M. A. Subramanian, A. P. Ramirez, and M. Mourigal, Spin order and dynamics in the diamond-lattice Heisenberg antiferromagnets CuRh2O4 and CoRh2O4, Phys. Rev. B 96, 064413 (2017)
CrossRef ADS Google scholar
[35]
G. Chen, Quantum paramagnet and frustrated quantum criticality in a spin-one diamond lattice antiferromagnet, Phys. Rev. B 96, 020412 (2017)
CrossRef ADS Google scholar
[36]
F. L. Buessen, M. Hering, J. Reuther, and S.Trebst, Quantum spin liquids in frustrated spin-1 diamond antiferromagnets, Phys. Rev. Lett. 120, 057201 (2018)
CrossRef ADS Google scholar
[37]
F.-Y. Li and G. Chen, Spin-orbital entanglement in d8 Mott insulators: Possible excitonic magnetism in diamond lattice antiferromagnets, Phys. Rev. B 100, 045103 (2019)
CrossRef ADS Google scholar
[38]
S. Das, D. Nafday, T. Saha-Dasgupta, and A. Paramekanti, NiRh2O4: A spin–orbit entangled diamond-lattice paramagnet, Phys. Rev. B 100, 140408 (2019)
CrossRef ADS Google scholar
[39]
S. A. Nikolaev, I. V. Solovyev, A. N. Ignatenko, V. Y. Irkhin, and S. V. Streltsov, Realization of the anisotropic compass model on the diamond lattice of Cu2+ in CuAl2O4, Phys. Rev. B 98, 201106 (2018)
CrossRef ADS Google scholar
[40]
X.-P. Yao, C.-J. Huang, C. Liu, F.-Y. Li, and G. Chen, The eects of spin–orbit coupling in diamond lattice magnets: A study of heisenberg-compass model on a diamond lattice (2020) (in preparation)
[41]
J. G. Cheng, G. Li, L. Balicas, J. S. Zhou, J. B. Goodenough, C. Xu, and H. D. Zhou, High-pressure sequence of Ba3NiSb2O9 structural phases: New S= 1 quantum spin liquids based on Ni2+, Phys. Rev. Lett. 107, 197204 (2011)
CrossRef ADS Google scholar
[42]
G. Chen, M. Hermele, and L. Radzihovsky, Frustrated quantum critical theory of putative spin-liquid phenomenology in 6H–B–Ba3NiSb2O9, Phys. Rev. Lett. 109, 016402 (2012)
CrossRef ADS Google scholar
[43]
S. Okumura, H. Kawamura, T. Okubo, and Y. Motome, Novel spin-liquid states in the frustrated Heisenberg antiferromagnet on the honeycomb lattice, J. Phys. Soc. Japan 79, 114705 (2010)
CrossRef ADS Google scholar
[44]
M. Matsuda, M. Azuma, M. Tokunaga, Y. Shimakawa, and N. Kumada, Disordered ground state and magnetic eld-induced long-range order in an S= 3/2 antiferromagnetic honeycomb lattice compound Bi3Mn4O12(NO3), Phys. Rev. Lett. 105, 187201 (2010)
CrossRef ADS Google scholar
[45]
T. A. Sedrakyan, L. I. Glazman, and A. Kamenev, Spontaneous formation of a nonuniform chiral spin liquid in a moat-band lattice, Phys. Rev. Lett. 114, 037203 (2015)
CrossRef ADS Google scholar
[46]
S. Jiang, L. Zou, and W. Ku, Non-Fermi-liquid scattering against an emergent Bose liquid: Manifestations in the kink and other exotic quasiparticle behavior in the normalstate cuprate superconductors, Phys. Rev. B 99, 104507(2019)
CrossRef ADS Google scholar
[47]
Z. Wang, C. Navarrete-Benlloch, and Z. Cai, Pattern formation and exotic order in driven-dissipative Bose–Hubbard systems, Phys. Rev. Lett. 125, 115301 (2020)
CrossRef ADS Google scholar
[48]
J.-S. Bernier, M. J. Lawler, and Y. B. Kim, Quantum order by disorder in frustrated diamond lattice antiferromagnets, Phys. Rev. Lett. 101, 047201 (2008)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(1365 KB)

Accesses

Citations

Detail

Sections
Recommended

/