Effect of biaxial strain and hydrostatic pressure on the magnetic properties of bilayer CrI3

Chong Xu, Qian-Jun Wang, Bin Xu, Jun Hu

PDF(1978 KB)
PDF(1978 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (5) : 53502. DOI: 10.1007/s11467-021-1073-x
RESEARCH ACTICLE
RESEARCH ACTICLE

Effect of biaxial strain and hydrostatic pressure on the magnetic properties of bilayer CrI3

Author information +
History +

Abstract

Two-dimensional van der Waals magnetic materials are intriguing for applications in the future spintronics devices, so it is crucial to explore strategy to control the magnetic properties. Here, we carried out first-principles calculations and Monte Carlo simulations to investigate the effect of biaxial strain and hydrostatic pressure on the magnetic properties of the bilayer CrI3. We found that the magnetic anisotropy, intralayer and interlayer exchange interactions, and Curie temperature can be tuned by biaxial strain and hydrostatic pressure. Large compressive biaxial strain may induce a ferromagneticto-antiferromagnetic transition of both CrI3 layers. The hydrostatic pressure could enhance the intralayer exchange interaction significantly and hence largely boost the Curie temperature. The effect of the biaxial strain and hydrostatic pressure revealed in the bilayer CrI3 may be generalized to other two-dimensional magnetic materials.

Keywords

bilayer CrI3 / biaxial strain / hydrostatic pressure / magnetic properties

Cite this article

Download citation ▾
Chong Xu, Qian-Jun Wang, Bin Xu, Jun Hu. Effect of biaxial strain and hydrostatic pressure on the magnetic properties of bilayer CrI3. Front. Phys., 2021, 16(5): 53502 https://doi.org/10.1007/s11467-021-1073-x

References

[1]
1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
CrossRef ADS Google scholar
[2]
X. M. Li, L. Tao, Z. F. Chen, H. Fang, X. S. Li, X. R. Wang, J. B. Xu, and H. W. Zhu, Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics, Appl. Phys. Rev. 4(2), 021306 (2017)
CrossRef ADS Google scholar
[3]
C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia, and X. Zhang, Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals, Nature 546(7657), 265 (2017)
CrossRef ADS Google scholar
[4]
B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. D. Xu, Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature 546(7657), 270 (2017)
CrossRef ADS Google scholar
[5]
N. D. Mermin and H. Wagner, Absence of ferromagnetism or anti-ferromagnetism in one- or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett. 17(22), 1133 (1966)
CrossRef ADS Google scholar
[6]
M. Bonilla, S. Kolekar, Y. Ma, H. C. Diaz, V. Kalappattil, R. Das, T. Eggers, H. R. Gutierrez, M. H. Phan, and M. Batzill, Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates, Nat. Nanotechnol. 13(4), 289 (2018)
CrossRef ADS Google scholar
[7]
Y. Deng, Y. Yu, Y. Song, J. Zhang, N. Z. Wang, Z. Sun, Y. Yi, Y. Z. Wu, S. Wu, J. Zhu, J. Wang, X. H. Chen, and Y. B. Zhang, Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2, Nature 563(7729), 94 (2018)
CrossRef ADS Google scholar
[8]
C. Gong and X. Zhang, Two-dimensional magnetic crystals and emergent heterostructure devices, Science 363(6428), eaav4450 (2019)
CrossRef ADS Google scholar
[9]
B. Huang, M. A. McGuire, A. F. May, D. Xiao, P. Jarillo-Herrero, and X. D. Xu, Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures, Nat. Mater. 19(12), 1276 (2020)
CrossRef ADS Google scholar
[10]
J. F. Jr Dillon and C. E. Olson, Magnetization, resonance, and optical properties of the ferromagnet CrI3, J. Appl. Phys. 36(3), 1259 (1965)
CrossRef ADS Google scholar
[11]
M. A. McGuire, H. Dixit, V. R. Cooper, and B. C. Sales, Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3, Chem. Mater. 27(2), 612 (2015)
CrossRef ADS Google scholar
[12]
T. Latychevskaia, S. K. Son, Y. Yang, D. Chancellor, M. Brown, S. Ozdemir, I. Madan, G. Berruto, F. Carbone, A. Mishchenko, and K. S. Novoselov, Stacking transition in rhombohedral graphite, Front. Phys. 14, 13608 (2019)
CrossRef ADS Google scholar
[13]
N. Sivadas, S. Okamoto, X. D. Xu, C. J. Fennie, and D. Xiao, Stacking-dependent magnetism in bilayer CrI3, Nano Lett. 18(12), 7658 (2018)
CrossRef ADS Google scholar
[14]
P. H. Jiang, C. Wang, D. C. Chen, Z. C. Zhong, Z. Yuan, Z. Y. Lu, and W. Ji, Stacking tunable interlayer magnetism in bilayer CrI3, Phys. Rev. B 99(14), 144401 (2019)
CrossRef ADS Google scholar
[15]
D. Soriano, C. Cardoso, and J. Fernández-Rossier, Interplay between interlayer exchange and stacking in CrI3 bilayers, Solid State Commun. 299, 113662 (2019)
CrossRef ADS Google scholar
[16]
S. W. Jang, M. Y. Jeong, H. Yoon, S. Ryee, and M. J. Han, Microscopic understanding of magnetic interactions in bilayer CrI3, Phys. Rev. Mater. 3(3), 031001 (2019)
CrossRef ADS Google scholar
[17]
S. Jiang, J. Shan, and K. F. Mak, Electric-field switching of two-dimensional van der Waals magnets, Nat. Mater. 17(5), 406 (2018)
CrossRef ADS Google scholar
[18]
B. Huang, G. Clark, D. R. Klein, D. MacNeill, E. Navarro-Moratalla, K. L. Seyler, N. Wilson, M. A. McGuire, D. H. Cobden, D. Xiao, W. Yao, P. Jarillo-Herrero, and X. D. Xu, Electrical control of 2D magnetism in bilayer CrI3, Nat. Nanotechnol. 13(7), 544 (2018)
CrossRef ADS Google scholar
[19]
X. X. Zhang, L. Li, D. Weber, J. Goldberger, K. F. Mak, and J. Shan, Gate-tunable spin waves in antiferromagnetic atomic bilayers, Nat. Mater. 19(8), 838 (2020)
CrossRef ADS Google scholar
[20]
T. Li, S. Jiang, N. Sivadas, Z. Wang, Y. Xu, D. Weber, J. E. Goldberger, K. Watanabe, T. Taniguchi, C. J. Fennie, K. Fai Mak, and J. Shan, Pressure-controlled interlayer magnetism in atomically thin CrI3, Nat. Mater. 18(12), 1303 (2019)
CrossRef ADS Google scholar
[21]
T. C. Song, Z. Y. Fei, M. Yankowitz, Z. Lin, Q. N. Jiang, K. Hwangbo, Q. Zhang, B. S. Sun, T. Taniguchi, K. Watanabe, M. A. McGuire, D. Graf, T. Cao, J. H. Chu, D. H. Cobden, C. R. Dean, D. Xiao, and X. D. Xu, Switching 2D magnetic states via pressure tuning of layer stacking, Nat. Mater. 18(12), 1298 (2019)
CrossRef ADS Google scholar
[22]
J. L. Lado and J. Fernández-Rossier, On the origin of magnetic anisotropy in two dimensional CrI3, 2D Mater. 4, 035002 (2017)
CrossRef ADS Google scholar
[23]
F. Xue, Y. Hou, Z. Wang, and R. Wu, Two-dimensional ferromagnetic van der Waals CrCl3 monolayer with enhanced anisotropy and Curie temperature, Phys. Rev. B 100(22), 224429 (2019)
CrossRef ADS Google scholar
[24]
J. Liu, P. Mo, M. Shi, D. Gao, and J. Lu, Multiscale analysis of strain-dependent magnetocrystalline anisotropy and strain-induced Villari and Nagaoka-Honda effects in a two-dimensional ferromagnetic chromium tri-iodide monolayer, J. Appl. Phys. 124(4), 044303 (2018)
CrossRef ADS Google scholar
[25]
J. Liu, M. Shi, J. Lu, and M. P. Anantram, Analysis of electrical-field-dependent Dzyaloshinskii-Moriya interaction and magnetocrystalline anisotropy in a twodimensional ferromagnetic monolayer, Phys. Rev. B 97(5), 054416 (2018)
CrossRef ADS Google scholar
[26]
L. Webster and J. A. Yan, Strain-tunable magnetic anisotropy in monolayer CrCl3, CrBr3, and CrI3, Phys. Rev. B 98(14), 144411 (2018)
CrossRef ADS Google scholar
[27]
F. Zheng, J. Zhao, Z. Liu, M. Li, M. Zhou, S. Zhang, and P. Zhang, Tunable spin states in the two-dimensional magnet CrI3, Nanoscale 10(29), 14298 (2018)
CrossRef ADS Google scholar
[28]
A. M. León, J. W. González, J. Mejía-López, F. Crasto de Lima, and E. S. Morell, Strain-induced phase transition in CrI3 bilayers, 2D Mater. 7, 035008 (2020)
CrossRef ADS Google scholar
[29]
G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
CrossRef ADS Google scholar
[30]
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef ADS Google scholar
[31]
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
CrossRef ADS Google scholar
[32]
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
CrossRef ADS Google scholar
[33]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef ADS Google scholar
[34]
J. Klimeš, D. R. Bowler, and A. Michaelides, Van der Waals density functionals applied to solids, Phys. Rev. B 83(19), 195131 (2011)
CrossRef ADS Google scholar
[35]
A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Density-functional theory and strong interactions: Orbital ordering in Mott–Hubbard insulators, Phys. Rev. B 52(8), R5467 (1995)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(1978 KB)

Accesses

Citations

Detail

Sections
Recommended

/