Toplayer-dependent crystallographic orientation imaging in the bilayer two-dimensional materials with transverse shear microscopy
Sabir Hussain, Rui Xu, Kunqi Xu, Le Lei, Shuya Xing, Jianfeng Guo, Haoyu Dong, Adeel Liaqat, Rashid Iqbal, Muhammad Ahsan Iqbal, Shangzhi Gu, Feiyue Cao, Yan Jun Li, Yasuhiro Sugawara, Fei Pang, Wei Ji, Liming Xie, Shanshan Chen, Zhihai Cheng
Toplayer-dependent crystallographic orientation imaging in the bilayer two-dimensional materials with transverse shear microscopy
Nanocontact properties of two-dimensional (2D) materials are closely dependent on their unique nanomechanical systems, such as the number of atomic layers and the supporting substrate. Here, we report a direct observation of toplayer-dependent crystallographic orientation imaging of 2D materials with the transverse shear microscopy (TSM). Three typical nanomechanical systems, MoS2 on the amorphous SiO2/Si, graphene on the amorphous SiO2/Si, and MoS2 on the crystallized Al2O3, have been investigated in detail. This experimental observation reveals that puckering behaviour mainly occurs on the top layer of 2D materials, which is attributed to its direct contact adhesion with the AFM tip. Furthermore, the result of crystallographic orientation imaging of MoS2/SiO2/Si and MoS2/Al2O3 indicated that the underlying crystalline substrates almost do not contribute to the puckering effect of 2D materials. Our work directly revealed the top layer dependent puckering properties of 2D material, and demonstrate the general applications of TSM in the bilayer 2D systems.
2D materials / toplayer-dependent crystallographic orientation imaging / nanomechanical contact properties / transverse shear microscopy
[1] |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
CrossRef
ADS
Google scholar
|
[2] |
C. Dang, M. Guan, S. Hussain, W. Wen, Y. Zhu, L. Jiao, S. Meng, and L. Xie, Phase transition photodetection in charge density wave tantalum disulfide, Nano Lett.20(9), 6725 (2020)
CrossRef
ADS
Google scholar
|
[3] |
A. Gupta, T. Sakthivel, and S. Seal, Recent development in 2D materials beyond graphene, Prog. Mater. Sci. 73, 44 (2015)
CrossRef
ADS
Google scholar
|
[4] |
S. Zhang, T. Ma, A. Erdemir, and Q. Li, Tribology of twodimensional materials: From mechanisms to modulating strategies, Mater. Today 26, 67 (2019)
CrossRef
ADS
Google scholar
|
[5] |
S. Li, Q. Li, R. W. Carpick, P. Gumbsch, X. Z. Liu, X. Ding, J. Sun, and J. Li, The evolving quality of frictional contact with graphene, Nature539(7630), (2016)
CrossRef
ADS
Google scholar
|
[6] |
R. Wang, X. G. Ren, Z. Yan, L. J. Jiang, W. E. I. Sha, and G. C. Shan, Graphene based functional devices: A short review, Front. Phys. 14(1), 13603 (2019)
CrossRef
ADS
Google scholar
|
[7] |
J. Mao, Y. Wang, Z. Zheng, and D. Deng, The rise of twodimensional MoS2 for catalysis, Front. Phys. 13(4), 138118 (2018)
CrossRef
ADS
Google scholar
|
[8] |
S. Hussain, R. Xu, K. Xu, L. Lei, L. Meng, Z. Zheng, S. Xing, J. Guo, H. Dong, A. Liaqat, M. A. Iqbal, Y. J. Li, Y. Sugawara, F. Pang, W. Ji, L. Xie, and Z. Cheng, Straininduced hierarchical ripples in MoS2 layers investigated by atomic force microscopy, Appl. Phys. Lett. 117(15), 153102 (2020)
CrossRef
ADS
Google scholar
|
[9] |
R. Xu, F. Pang, Y. Pan, Y. Lun, L. Meng, Z. Zheng, K. Xu, L. Lei, S. Hussain, Y. J. Li, Y. Sugawara, J. Hong, W. Ji, and Z. Cheng, Atomically asymmetric inversion scales up to mesoscopic single-crystal monolayer flakes, ACS Nano 14(10), 13834 (2020)
CrossRef
ADS
Google scholar
|
[10] |
J. H. Kim, J. H. Jeong, N. Kim, R. Joshi, and G. H. Lee, Mechanical properties of two-dimensional materials and their applications, J. Phys. D Appl. Phys. 52(8), 083001 (2019)
CrossRef
ADS
Google scholar
|
[11] |
S. Ye, K. Xu, L. Lei, S. Hussain, F. Pang, X. Liu, Z. Zheng, W. Ji, X. Shi, R. Xu, L. Xie, and Z. Cheng, Nanoscratch on single-layer MoS2 crystal by atomic force microscopy: semi-circular to periodical zigzag cracks, Mater. Res. Express6(2), 025048 (2018)
CrossRef
ADS
Google scholar
|
[12] |
H. Li, X. Duan, X. Wu, X. Zhuang, H. Zhou, Q. Zhang, X. Zhu, W. Hu, P. Ren, P. Guo, L. Ma, X. Fan, X. Wang, J. Xu, A. Pan, and X. Duan, Growth of alloy MoS2xSe2(1−x) nanosheets with fully tunable chemical compositions and optical properties, J. Am. Chem. Soc. 136(10), 3756 (2014)
CrossRef
ADS
Google scholar
|
[13] |
W. Chen, E. J. Santos, W. Zhu, E. Kaxiras, and Z. Zhang, Tuning the electronic and chemical properties of monolayer MoS2 adsorbed on transition metal substrates, Nano Lett. 13(2), 509 (2013)
CrossRef
ADS
Google scholar
|
[14] |
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of twodimensional transition metal dichalcogenides, Nat. Nanotechnol.7(11), 699 (2012)
CrossRef
ADS
Google scholar
|
[15] |
M. A. Iqbal, A. Liaqat, S. Hussain, X. Wang, M. Tahir, Z. Urooj, and L. Xie, Ultralow-transition-energy organic complex on graphene for high-performance shortwave infrared photodetection, Adv. Mater. 32(37), 2002628 (2020)
CrossRef
ADS
Google scholar
|
[16] |
B. Tang, S. Hussain, R. Xu, Z. Cheng, J. Liao, and Q. Chen, Novel type of synaptic transistors based on a ferroelectric semiconductor channel, ACS Appl. Mater. Interfaces 12(22), 24920 (2020)
CrossRef
ADS
Google scholar
|
[17] |
M. A. Iqbal, M. Cui, A. Liaqat, R. Faiz, M. Hossain, X. Wang, S. Hussain, C. Dang, H. Liu, W. Wen, J. Wu, and L. Xie, Organic charge transfer complexes on graphene with ultrahigh near infrared photogain, Nanotechnology30(25), 254003 (2019)
CrossRef
ADS
Google scholar
|
[18] |
Y. Sun, J. Pan, Z. Zhang, K. Zhang, J. Liang, W. Wang, Z. Yuan, Y. Hao, B. Wang, J. Wang, Y. Wu, J. Zheng, L. Jiao, S. Zhou, K. Liu, C. Cheng, W. Duan, Y. Xu, Q. Yan, and K. Liu, Elastic properties and fracture behaviors of biaxially deformed, polymorphic MoTe2, Nano Lett. 19(2), 761 (2019)
CrossRef
ADS
Google scholar
|
[19] |
V. Kalihari, G. Haugstad, and C. D. Frisbie, Distinguishing elastic shear deformation from friction on the surfaces of molecular crystals, Phys. Rev. Lett. 104(8), 086102 (2010)
CrossRef
ADS
Google scholar
|
[20] |
A. W. Tsen, L. Brown, M. P. Levendorf, F. Ghahari, P. Y. Huang, R. W. Havener, C. S. Ruiz-Vargas, D. A. Muller, P. Kim, and J. Park, Tailoring electrical transport across grain boundaries in polycrystalline graphene, Science 336(6085), 1143 (2012)
CrossRef
ADS
Google scholar
|
[21] |
C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321(5887), 385 (2008)
CrossRef
ADS
Google scholar
|
[22] |
H. Wang, E. J. Sandoz-Rosado, S. H. Tsang, J. Lin, M. Zhu, G. Mallick, Z. Liu, and E. H. T. Teo, Elastic properties of 2D ultrathin tungsten nitride crystals grown by chemical vapor deposition, Adv. Funct. Mater. 29(31), 1902663 (2019)
CrossRef
ADS
Google scholar
|
[23] |
S. Zhang, Y. Hou, S. Li, L. Liu, Z. Zhang, X. Q. Feng, and Q. Li, Tuning friction to a superlubric state via inplane straining, Proc. Natl. Acad. Sci. USA 116(49), 24452 (2019)
CrossRef
ADS
Google scholar
|
[24] |
L. Lei, R. Xu, S. Ye, X. Wang, K. Xu, S. Hussain, Y. J. Li, Y. Sugawara, L. Xie, W. Ji, and Z. Cheng, Local characterization of mobile charge carriers by two electrical AFM modes: Multi-harmonic EFM versus sMIM, J. Chem. Phys. 2, 025013 (2018)
CrossRef
ADS
Google scholar
|
[25] |
K. Xu, S. Ye, L. Lei, L. Meng, S. Hussain, Z. Zheng, H. Zeng, W. Ji, R. Xu, and Z. Cheng, Dynamic interfacial mechanical-thermal characteristics of atomically thin twodimensional crystals, Nanoscale 10(28), 13548 (2018)
CrossRef
ADS
Google scholar
|
[26] |
Z. Zheng, R. Xu, S. Ye, S. Hussain, W. Ji, P. Cheng, Y. Li, Y. Sugawara, and Z. Cheng, High harmonic exploring on different materials in dynamic atomic force microscopy, Sci. China Technol. Sci. 61(3), 446 (2018)
CrossRef
ADS
Google scholar
|
[27] |
Z. Y. Zheng, R. Xu, K. Q. Xu, S. L. Ye, F. Pang, L. Lei, S. Hussain, X. M. Liu, W. Ji, and Z. Cheng, Real-space visualization of intercalated water phases at the hydrophobic graphene interface with atomic force microscopy, Front. Phys. 15(2), 23601 (2020)
CrossRef
ADS
Google scholar
|
[28] |
M. Campione and E. Fumagalli, Friction anisotropy of the surface of organic crystals and its impact on scanning force microscopy, Phys. Rev. Lett. 105(16), 166103 (2010)
CrossRef
ADS
Google scholar
|
[29] |
J. S. Choi, J. S. Kim, I. S. Byun, D. H. Lee, M. J. Lee, B. H. Park, C. Lee, D. Yoon, H. Cheong, K. H. Lee, Y. W. Son, J. Y. Park, and M. Salmeron, Friction anisotropydriven domain imaging on exfoliated monolayer graphene, Science 333(6042), 607 (2011)
CrossRef
ADS
Google scholar
|
[30] |
Q. Li, C. Lee, R. W. Carpick, and J. Hone, Substrate effect on thickness-dependent friction on graphene, Phys. Status Solidi. B 247(5), 2909–2914 (2010)
CrossRef
ADS
Google scholar
|
[31] |
K. Xu, Y. Pan, S. Ye, L. Lei, S. Hussain, Q. Wang, Z. Yang, X. Liu, W. Ji, R. Xu, and Z. Cheng, Shear anisotropy-driven crystallographic orientation imaging in flexible hexagonal two-dimensional atomic crystals, Appl. Phys. Lett. 115(6), 063101 (2019)
CrossRef
ADS
Google scholar
|
[32] |
X. Xu, T. Schultz, Z. Qin, N. Severin, B. Haas, S. Shen, J. N. Kirchhof, A. Opitz, C. T. Koch, K. Bolotin, J. P. Rabe, G. Eda, and N. Koch, Microstructure and elastic constants of transition metal dichalcogenide monolayers from friction and shear force microscopy, Adv. Mater.30(39), 1803748 (2018)
CrossRef
ADS
Google scholar
|
[33] |
S. Hussain, K. Xu, S. Ye, L. Lei, X. Liu, R. Xu, L. Xie, and Z. Cheng, Local electrical characterization of twodimensional materials with functional atomic force microscopy, Front. Phys. 14(3), 33401 (2019)
CrossRef
ADS
Google scholar
|
[34] |
J. S. Choi, Y. J. Chang, S. Woo, Y. W. Son, Y. Park, M. J. Lee, I. S. Byun, J. S. Kim, C. G. Choi, A. Bostwick, E. Rotenberg, and B. H. Park, Correlation between micrometer-scale ripple alignment and atomic-scale crystallographic orientation of monolayer graphene, Sci. Rep.4(1), 7263 (2015)
CrossRef
ADS
Google scholar
|
[35] |
J. S. Choi, J. S. Kim, I. Byun, D. H. Lee, I. R. Hwang, B. H. Park, T. Choi, J. Y. Park, and M. Salmeron, Facile characterization of ripple domains on exfoliated graphene, Rev. Sci. Instrum. 83(7), 073905 (2012)
CrossRef
ADS
Google scholar
|
[36] |
H. Ying, W. Wang, W. Liu, L. Wang, and S. Chen, Layerby-layer synthesis of bilayer and multilayer graphene on Cu foil utilizing the catalytic activity of cobalt nano-powders, Carbon 146, 549 (2019)
CrossRef
ADS
Google scholar
|
[37] |
C. Lee, Q. Li, W. Kalb, X. Z. Liu, H. Berger, R. W. Carpick, and J. Hone, Frictional characteristics of atomically thin sheets, Science 328(5974), 76 (2010)
CrossRef
ADS
Google scholar
|
[38] |
H. Q. Zhao, X. Mao, D. Zhou, S. Feng, X. Shi, Y. Ma, X. Wei, and Y. Mao, Bandgap modulation of MoS2 monolayer by thermal annealing and quick cooling, Nanoscale 8(45), 18995 (2016)
CrossRef
ADS
Google scholar
|
[39] |
M. R. Vazirisereshk, K. Hasz, M. Q. Zhao, A. T. C. Johnson, R. W. Carpick, and A. Martini, Nanoscale friction behavior of transition-metal dichalcogenides: Role of the chalcogenide, ACS Nano 14(11), 16013 (2020)
CrossRef
ADS
Google scholar
|
[40] |
Y. Zheng, J. Chen, M. F. Ng, H. Xu, Y. P. Liu, A. Li, S. J. O’ Shea, T.Dumitrica, and K. P. Loh, Quantum mechanical rippling of a MoS2 monolayer controlled by interlayer bilayer coupling, Phys. Rev. Lett. 114(6), 065501 (2015)
CrossRef
ADS
Google scholar
|
[41] |
H. Li, J. Tao, Y. Luo, L. Deng, and Z. Den, Exploring the evolution of passenger flow and travel time reliability with the expanding process of metro system using smartcard data, J. Harbin Inst. Technol. 26(1), 5 (2019)
|
/
〈 | 〉 |