p + ip-wave pairing symmetry at type-II van Hove singularities

Yin-Xiang Li, Xiao-Tong Yang

PDF(1791 KB)
PDF(1791 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (5) : 53501. DOI: 10.1007/s11467-021-1068-7
RESEARCH ACTICLE
RESEARCH ACTICLE

p + ip-wave pairing symmetry at type-II van Hove singularities

Author information +
History +

Abstract

Based on the random phase approximation calculation in two-orbital honeycomb lattice model, we investigate the pairing symmetry of Ni-based transition-metal trichalcogenides by electron doping access to type-II van Hove singularities (vHs). We find that chiral even-parity d + id-wave (Eg) state is suppressed by odd-parity p + ip-wave (Eu) state when electron doping approaches the type-II vHs. The type-II vHs peak in density of states (DOS) enables to strengthen the ferromagnetic fluctuation, which is responsible for triplet pairing. The competition between antiferromagnetic and ferromagnetic fluctuation results in pairing phase transition from singlet to triplet pairing. The Ni-based transitionmetal trichalcogenides provide a promising platform to unconventional superconductor emerging from electronic DOS.

Keywords

type-II van Hove singularities / pairing symmetry / random phase approximation / unconventional superconductor

Cite this article

Download citation ▾
Yin-Xiang Li, Xiao-Tong Yang. p + ip-wave pairing symmetry at type-II van Hove singularities. Front. Phys., 2021, 16(5): 53501 https://doi.org/10.1007/s11467-021-1068-7

References

[1]
B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Quantum spin Hall effect and topological phase transition in HgTe quantum wells, Science 314(5806), 1757 (2006)
CrossRef ADS Google scholar
[2]
M. König, S. Wiedmann, C. Brüne,, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Quantum spin Hall insulator state in HgTe quantum wells, Science 318, 766 (2007)
CrossRef ADS Google scholar
[3]
H. J. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface, Nat. Phys.5(6), 438 (2009)
CrossRef ADS Google scholar
[4]
Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Observation of a large-gap topological-insulator class with a single Dirac cone on the surface, Nat. Phys. 5(6), 398 (2009)
CrossRef ADS Google scholar
[5]
L. Fu, Topological crystalline insulators, Phys. Rev. Lett. 106(10), 106802 (2011)
CrossRef ADS Google scholar
[6]
T. H. Hsieh, H. Lin, J. W. Liu, W. H. Duan, A. Bansil, and L. Fu, Topological crystalline insulators in the SnTe material class, Nat. Commun. 3(1), 982 (2012)
CrossRef ADS Google scholar
[7]
Z. J. Wang, H. M. Weng, Q. S. Wu, X. Dai, and Z. Fang, Three-dimensional Dirac semimetal and quantum transport in Cd3As2, Phys. Rev. B 88(12), 125427 (2013)
CrossRef ADS Google scholar
[8]
H. M. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai, Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides, Phys. Rev. X 5(1), 011029 (2015)
CrossRef ADS Google scholar
[9]
B. Q. Lv, N. Xu, H. M. Weng, J. Z. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, C. E. Matt, F. Bisti, V. N. Strocov, J. Mesot, Z. Fang, X. Dai, T. Qian, M. Shi, and H. Ding, Observation of Weyl nodes in TaAs, Nat. Phys. 11(9), 724 (2015)
CrossRef ADS Google scholar
[10]
N. N. Hao and J. P. Hu, Topological phases in the singlelayer FeSe,Phys. Rev. X 4(3), 031053 (2014)
CrossRef ADS Google scholar
[11]
X. X. Wu, S. S. Qin, Y. Liang, C. C. Le, H. Fan, and J. P. Hu, CaFeAs2: A staggered intercalation of quantum spin Hall and high-temperature superconductivity, Phys. Rev. B 91(8), 081111 (2015)
CrossRef ADS Google scholar
[12]
X. X. Wu, S. S. Qin, Y. Liang, H. Fan, and J. P. Hu, Topological characters in Fe(Te1−xSex) thin films, Phys. Rev. B 93(11), 115129 (2016)
CrossRef ADS Google scholar
[13]
D. F. Wang, L. Y. Kong, P. Fan, H. Chen, S. Y. Zhu, W. Y. Liu, L. Cao, Y. J. Sun, S. X. Du, J. Schneeloch, R. D. Zhong, G. D. Gu, L. Fu, H. Ding, and H. J. Gao, Evidence for Majorana bound states in an iron-based superconductor, Science 362(6412), 333 (2018)
CrossRef ADS Google scholar
[14]
Z. B. Yan, F. Song, and Z. Wang, Majorana corner modes in a high-temperature platform, Phys. Rev. Lett. 121(9), 096803 (2018)
CrossRef ADS Google scholar
[15]
Q. Y. Wang, C. C. Liu, Y. M. Lu, and F. Zhang, Hightemperature Majorana corner states, Phys. Rev. Lett. 121(18), 186801 (2018)
CrossRef ADS Google scholar
[16]
R. X. Zhang, W. S. Cole, and S. Das Sarma, Helical hinge Majorana modes in iron-based superconductors, Phys. Rev. Lett. 122(18), 187001 (2019)
CrossRef ADS Google scholar
[17]
X. X. Wu, W. A. Benalcazar, Y. X. Li, R. Thomale, C. X. Liu, and J. P. Hu, Boundary-obstructed topological high-Tc superconductivity in iron pnictides, Phys. Rev. X 10(4), 041014 (2020)
CrossRef ADS Google scholar
[18]
A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303(1), 2 (2003)
CrossRef ADS Google scholar
[19]
M. H. Freedman, P/NP, and the quantum field computer, Proc. Natl. Acad. Sci. USA 95(1), 98 (1998)
CrossRef ADS Google scholar
[20]
N. Read and D. Green, Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect, Phys. Rev. B 61(15), 10267 (2000)
CrossRef ADS Google scholar
[21]
L. Y. Kong, S. Y. Zhu, M. Papaj, H. Chen, L. Cao, H. Isobe, Y. Q. Xing, W. Y. Liu, D. F. Wang, P. Fan, Y. J. Sun, S. X. Du, J. Schneeloch, R. D. Zhong, G. D. Gu, L. Fu, H. J. Gao, and H. Ding, Half-integer level shift of vortex bound states in an iron-based superconductor, Nat. Phys. 15(11), 1181 (2019)
CrossRef ADS Google scholar
[22]
S. Y. Zhu, L. Y. Kong, L. Cao, H. Chen, M. Papaj, S. X. Du, Y. Q. Xing, W. Y. Liu, D. F. Wang, C. M. Shen, F. Z. Yang, J. Schneeloch, R. D. Zhong, G. D. Gu, L. Fu, Y. Y. Zhang, H. Ding, and H. J. Gao, Nearly quantized conductance plateau of vortex zero mode in an iron-based superconductor, Science 367(6474), 189 (2020)
CrossRef ADS Google scholar
[23]
Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Unconventional superconductivity in magic-angle graphene superlattices, Nature 556(7699), 43 (2018)
CrossRef ADS Google scholar
[24]
Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, and P. Jarillo- Herrero, Correlated insulator behaviour at half-filling in magic-angle graphene superlattices, Nature 556(7699), 80 (2018)
CrossRef ADS Google scholar
[25]
M. Yankowitz, S. Chen, H. Polshyn, Y. Zhang, K. Watanabe, T. Taniguchi, D. Graf, A. F. Young, and C. R. Dean, Tuning superconductivity in twisted bilayer graphene, Science 363(6431), 1059 (2019)
CrossRef ADS Google scholar
[26]
X. Lu, P. Stepanov, W. Yang, M. Xie, M. A. Aamir, I. Das, C. Urgell, K. Watanabe, T. Taniguchi, G. Zhang, A. Bachtold, A. H. MacDonald, and D. K. Efetov, Superconductors, orbital magnets and correlated states in magicangle bilayer graphene, Nature 574(7780), 653 (2019)
CrossRef ADS Google scholar
[27]
A. R. Wildes, V. Simonet, E. Ressouche, G. J. McIntyre, M. Avdeev, E. Suard, S. A. J. Kimber, D. Lancon, G. Pepe, B. Moubaraki, and T. J. Hicks, Magnetic structure of the quasi-two-dimensional antiferromagnet NiPS3, Phys. Rev. B 92(22), 224408 (2015)
CrossRef ADS Google scholar
[28]
B. L. Chittari, Y. Park, D. Lee, M. Han, A. H. Mac- Donald, E. Hwang, and J. Jung, Electronic and magnetic properties of single-layer MPX3 metal phosphorous trichalcogenides, Phys. Rev. B 94(18), 184428 (2016)
CrossRef ADS Google scholar
[29]
N. Sivadas, M. W. Daniels, R. H. Swendsen, S. Okamoto, and D. Xiao, Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers, Phys. Rev. B 91(23), 235425 (2015)
CrossRef ADS Google scholar
[30]
J. U. Lee, S. Lee, J. H. Ryoo, S. Kang, T. Y. Kim, P. Kim, C. H. Park, J. Park, and H. Cheong, Ising-type magnetic ordering in atomically thin FePS3, Nano Lett. 16(12), 7433 (2016)
CrossRef ADS Google scholar
[31]
C. T. Kuo, M. Neumann, K. Balamurugan, H. J. Park, S. Kang, H. W. Shiu, J. H. Kang, B. H. Hong, M. Han, T. W. Noh, and J. G. Park, Exfoliation and Raman spectroscopic fingerprint of few-layer NiPS3 van der Waals crystals, Sci. Rep. 6(1), 20904 (2016)
CrossRef ADS Google scholar
[32]
Y. G. Wang, J. J. Ying, Z. Y. Zhou, J. L. Sun, T. Wen, Y. N. Zhou, N. N. Li, Q. Zhang, F. Han, Y. M. Xiao, P. Chow, W. G. Yang, V. V. Struzhkin, Y. S. Zhao, and H. K. Mao, Emergent superconductivity in an iron-based honeycomb lattice initiated by pressure-driven spin-crossover, Nat. Commun. 9(1), 1914 (2018)
CrossRef ADS Google scholar
[33]
Y. H. Gu, Q. Zhang, C. C. Le, Y. X. Li, T. Xiang, and J. P. Hu, Ni-based transition metal trichalcogenide monolayer: A strongly correlated quadruple-layer graphene,Phys. Rev. B 100(16), 165405 (2019)
CrossRef ADS Google scholar
[34]
H. Yao and F. Yang, Topological odd-parity superconductivity at type-II two-dimensional van Hove singularities, Phys. Rev. B 92(3), 035132 (2015)
CrossRef ADS Google scholar
[35]
R. Nandkishore, L. S. Levitov, and A. V. Chubukov, Chiral superconductivity from repulsive interactions in doped graphene, Nat. Phys. 8(2), 158 (2012)
CrossRef ADS Google scholar
[36]
W. S. Wang, Y. Y. Xiang, Q. H. Wang, F. Wang, F. Yang, and D. H. Lee, Functional renormalization group and variational Monte Carlo studies of the electronic instabilities in graphene near 1/4 doping, Phys. Rev. B 85(3), 035414 (2012)
CrossRef ADS Google scholar
[37]
M. L. Kiesel, C. Platt, W. Hanke, D. A. Abanin, and R. Thomale, Competing many-body instabilities and unconventional superconductivity in graphene, Phys. Rev. B 82(2), 020507 (2012)
CrossRef ADS Google scholar
[38]
T. X. Ma, F. Yang, H. Yao, and H. Q. Lin, Possible triplet p+ip superconductivity in graphene at low filling, Phys. Rev. B 90, 245114 (2014)
CrossRef ADS Google scholar
[39]
Z. Y. Meng, F. Yang, K. S. Chen, H. Yao, and H. Y. Kee, Evidence for spin-triplet odd-parity superconductivity close to type-II van Hove singularities, Phys. Rev. B 91(18), 184509 (2015)
CrossRef ADS Google scholar
[40]
X. Chen, Y. G. Yao, H. Yao, F. Yang, and J. Ni, Topological p+ip superconductivity in doped graphene-like singlesheet materials BC3, Phys. Rev. B 92(17), 174503 (2015)
CrossRef ADS Google scholar
[41]
L. D. Zhang, F. Yang, and Y. G. Yao, Itinerant ferromagnetism and p+ip superconductivity in doped bilayer silicene,Phys. Rev. B 92(10), 104504 (2015)
CrossRef ADS Google scholar
[42]
C. C. Liu, L. D. Zhang, W. Q. Chen, and F. Yang, Chiral spin density wave and d+id superconductivity in the magic-angle-twisted bilayer graphene, Phys. Rev. Lett. 121(21), 217001 (2018)
CrossRef ADS Google scholar
[43]
H. Isobe, N. F. Q. Yuan, and L. Fu, Unconventional superconductivity and density waves in twisted bilayer graphene, Phys. Rev. X 8(4), 041041 (2018)
CrossRef ADS Google scholar
[44]
D. Di Sante, X. Wu, M. Fink, W. Hanke, and R. Thomale, Triplet superconductivity in the Dirac semimetal germanene on a substrate,Phys. Rev. B 99(20), 201106 (2019)
CrossRef ADS Google scholar
[45]
X. X. Wu, M. Fink, W. Hanke, R. Thomale, and D. Di Sante, Unconventional superconductivity in a doped quantum spin Hall insulator, Phys. Rev. B 100(4), 041117 (2019)
CrossRef ADS Google scholar
[46]
Y. X. Li, X. X. Wu, Y. H. Gu, C. C. Le, S. S. Qin, R. Thomale, and J. P. Hu, Topological superconductivity in Ni-based transition metal trichalcogenides,Phys. Rev. B 100, 214513 (2019)
CrossRef ADS Google scholar
[47]
S. Graser, T. A. Maier, P. J. Hirschfeld, and D. J. Scalapino, Near-degeneracy of several pairing channels in multiorbital models for the Fe pnictides, New J. Phys. 11(2), 025016 (2009)
CrossRef ADS Google scholar
[48]
A. F. Kemper, T. A. Maier, S. Graser, H. P. Cheng, P. J. Hirschfeld, and D. J. Scalapino, Sensitivity of the superconducting state and magnetic susceptibility to key aspects of electronic structure in ferropnictides, New J. Phys. 12(7), 073030 (2010)
CrossRef ADS Google scholar
[49]
X. X. Wu, F. Yang, C. C. Le, H. Fan, and J. P. Hu, Triplet pz-wave pairing in quasi-one-dimensional A2Cr3As3 superconductors (A= K, Rb, Cs), Phys. Rev. B 92(10), 104511 (2015)
CrossRef ADS Google scholar
[50]
L. D. Zhang, F. Yang, and Y. G. Yao, Possible electricfield- induced superconducting states in doped silicene, Sci. Rep. 5(1), 8203 (2015)
CrossRef ADS Google scholar
[51]
Y. T. Kang, C. Lu, F. Yang, and D. X. Yao, Single-orbital realization of high-temperature s± superconductivity in the square-octagon lattice, Phys. Rev. B 99(18), 184506 (2019)
CrossRef ADS Google scholar
[52]
L. D. Zhang, X. X. Wu, H. Fan, F. Yang, and J. P. Hu, Revisitation of superconductivity in K2Cr3As3 based on the six-band model, Europhys. Lett. 113(3), 37003 (2016)
CrossRef ADS Google scholar
[53]
F. Liu, C. C. Liu, K. H. Wu, F. Yang, and Y. G. Yao, d+id chiral superconductivity in bilayer silicene, Phys. Rev. Lett. 111(6), 066804 (2013)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(1791 KB)

Accesses

Citations

Detail

Sections
Recommended

/