BiVO4/TiO2 heterojunction with rich oxygen vacancies for enhanced electrocatalytic nitrogen reduction reaction

Yunliang Liu, Peiji Deng, Ruqiang Wu, Ramadan A. Geioushy, Yaxi Li, Yixian Liu, Fengling Zhou, Haitao Li, Chenghua Sun

PDF(2595 KB)
PDF(2595 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (5) : 53503. DOI: 10.1007/s11467-021-1067-8

BiVO4/TiO2 heterojunction with rich oxygen vacancies for enhanced electrocatalytic nitrogen reduction reaction

Author information +
History +

Abstract

The large-scale production of ammonia mainly depends on the Haber–Bosch process, which will lead to the problems of high energy consumption and carbon dioxide emission. Electrochemical nitrogen fixation is considered to be an environmental friendly and sustainable process, but its efficiency largely depends on the activity and stability of the catalyst. Therefore, it is imperative to develop highefficient electrocatalysts in the field of nitrogen reduction reaction (NRR). In this paper, we developed a BiVO4/TiO2 nanotube (BiVO4/TNT) heterojunction composite with rich oxygen vacancies as an electrocatalytic NRR catalyst. The heterojunction interface and oxygen vacancy of BiVO4/TNT can be the active site of N2 dynamic activation and proton transition. The synergistic effect of TiO2 and BiVO4 shortens the proton transport path and reduces the over potential of chemical reaction. BiVO4/TNT has high ammonia yield of 8.54 μg·h−1·cm−2 and high Faraday efficiency of 7.70% in −0.8 V vs. RHE in 0.1 M Na2SO4 solution.

Graphical abstract

Keywords

TiO2 nanotubes / BiVO4 / interface / oxygen vacancy / NRR

Cite this article

Download citation ▾
Yunliang Liu, Peiji Deng, Ruqiang Wu, Ramadan A. Geioushy, Yaxi Li, Yixian Liu, Fengling Zhou, Haitao Li, Chenghua Sun. BiVO4/TiO2 heterojunction with rich oxygen vacancies for enhanced electrocatalytic nitrogen reduction reaction. Front. Phys., 2021, 16(5): 53503 https://doi.org/10.1007/s11467-021-1067-8

References

[1]
P. Bhattacharya,D. E. Prokopchuk, and M. T. Mock, Exploring the role of pendant amines in transition metal complexes for the reduction of N2 to hydrazine and ammonia, Coord. Chem. Rev. 334, 67 (2017)
CrossRef ADS Google scholar
[2]
J. R. Christianson,D. Zhu, R. J. Hamers, and J. R. Schmidt,Mechanism of N2 reduction to NH3 by aqueous solvated electrons, J. Phys. Chem. B 118(1), 195 (2014)
CrossRef ADS Google scholar
[3]
B. Qin, Y. Li,Q. Zhang,G. Yang,H. Liang, and F. Peng, Understanding of nitrogen fixation electro catalyzed by molybdenum–iron carbide through the experiment and theory, Nano Energy 68, 104374 (2020)
CrossRef ADS Google scholar
[4]
W. Zhao, S. Dou,K. Zhang, L. Wu,Q. Wang,D. Shang, and Q. Zhong, Promotion effect of S and N co-addition on the catalytic performance of V2O5/TiO2 for NH3-SCR of NOx, Chem. Eng. J. 364, 401 (2019)
CrossRef ADS Google scholar
[5]
J. Zhao,Q. Ouyang,Q. Chen, and H. Lin,Simultaneous determination of amino acid nitrogen and total acid in soy sauce using near infrared spectroscopy combined with characteristic variables selection, Food Sci. Technol. Int. 19(4), 305 (2013)
CrossRef ADS Google scholar
[6]
B. Cui, J. Zhang, S. Liu,X. Liu, W. Xiang, L. Liu,H. Xin,M. J. Lefler, and S. Licht, Electrochemical synthesis of ammonia directly from N2 and water over iron-based catalysts supported on activated carbon, Green Chem. 19(1), 298 (2017)
CrossRef ADS Google scholar
[7]
W. Qiu, X. Y. Xie,J. Qiu,W. H. Fang,R. Liang,X. Ren, X. Ji,G. Cui, A. M. Asiri, G. Cui, B. Tang, and X. Sun,High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst, Nat. Commun. 9(1), 3485 (2018)
CrossRef ADS Google scholar
[8]
Z. Cui, W. Du,C. Xiao,Q. Li,R. Sa,C. Sun, and Z. Ma,Enhancing hydrogen evolution of MoS2 Basal planes by combining single-boron catalyst and compressive strain, Front. Phys. 15(6), 63502 (2020)
CrossRef ADS Google scholar
[9]
X. Chen,X. Zhao,Z. Kong, W. J. Ong, and N. Li,Unravelling the electrochemical mechanisms for nitrogen fixation on single transition metal atoms embedded in defective graphitic carbon nitride, J. Mater. Chem. A 6(44), 21941 (2018)
CrossRef ADS Google scholar
[10]
Z. X. Xu,H. Song,X. Q. Deng,Y. Y. Zhang, M. Xue-Qin,S. Q. Tong, Z. X. He,Q. Wang, Y. W. Shao, and X. Hu,Dewatering of sewage sludge via thermal hydrolysis with ammonia-treated Fenton iron sludge as skeleton material, J. Hazard. Mater. 379, 120810 (2019)
CrossRef ADS Google scholar
[11]
C. Liu,Q. Li,C. Wu,J. Zhang,Y. Jin, D. R. MacFarlane, and C. Sun,Single-boron catalysts for nitrogen reduction reaction, J. Am. Chem. Soc. 141(7), 2884 (2019)
CrossRef ADS Google scholar
[12]
Q. Li, C. Liu, S. Qiu, F. Zhou, L. He, X. Zhang, and C. Sun,Exploration of iron borides as electrochemical catalysts for the nitrogen reduction reaction, J. Mater. Chem. A 7(37), 21507 (2019)
CrossRef ADS Google scholar
[13]
Q. Li,S. Qiu, L. He, X. Zhang, and C. Sun, Impact of H-termination on the nitrogen reduction reaction of molybdenum carbide as an electrochemical catalyst, Phys. Chem. Chem. Phys. 20(36), 23338 (2018)
CrossRef ADS Google scholar
[14]
H. Cheng,L. X. Ding, G. F. Chen,L. Zhang, J. Xue, and H. Wang, Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions, Adv. Mater. 30(46), 1803694 (2018)
CrossRef ADS Google scholar
[15]
X. Ren,J. Zhao,Q. Wei,Y. Ma, H. Guo,Q. Liu, Y. Wang,G. Cui, A. M. Asiri, B. Li, B. Tang, and X. Sun,High-performance N2-to-NH3 conversion electrocatalyzed by Mo2C nanorod, ACS Cent. Sci. 5(1), 116 (2019)
CrossRef ADS Google scholar
[16]
Z. Sun,R. Huo, C. Choi, S. Hong,T. S. Wu,J. Qiu, C. Yan,Z. Han, Y. Liu,Y. L. Soo, and Y. Jung,Oxygen vacancy enables electrochemical N2 fixation over WO3 with tailored structure, Nano Energy 62, 869 (2019)
CrossRef ADS Google scholar
[17]
P. Chen,N. Zhang, S. Wang,T. Zhou,Y. Tong,C. Ao, W. Yan,L. Zhang,W. Chu,C. Wu, and Y. Xie,Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis, Proc. Natl. Acad. Sci. USA 116(14), 6635 (2019)
CrossRef ADS Google scholar
[18]
M. Kitano, Y. Inoue, Y. Yamazaki,F. Hayashi,S. Kanbara,S. Matsuishi,T. Yokoyama, S. W. Kim,M. Hara, and H. Hosono,Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store, Nat. Chem. 4(11), 934 (2012)
CrossRef ADS Google scholar
[19]
F. Zhou,L. M. Azofra, M. Ali,M. Kar, A. N. Simonov,C. McDonnell-Worth, C. Sun,X. Zhang, and D. R. Mac- Farlane,Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids, Energy Environ. Sci. 10(12), 2516 (2017)
CrossRef ADS Google scholar
[20]
D. Wang,L. M. Azofra,M. Harb,L. Cavallo,X. Zhang, B. H. R. Suryanto, and D. R. MacFarlane, Energyefficient nitrogen reduction to ammonia at low overpotential in aqueous electrolyte under ambient conditions, Chem.Sus.Chem. 11(19), 3416 (2018)
CrossRef ADS Google scholar
[21]
A. R. Singh,B. A. Rohr,J. A. Schwalbe,M. Cargnello,K. Chan, T. F. Jaramillo,I. Chorkendorff, and J. K. Nørskov,Electrochemical ammonia synthesis — The selectivity challenge, ACS Catal. 7(1), 706 (2017)
CrossRef ADS Google scholar
[22]
S. Z. Andersen,V. Čolić,S. Yang,J. A. Schwalbe,A. C. Nielander,J. M. McEnaney,K. Enemark-Rasmussen,J. G. Baker,A. R. Singh,B. A. Rohr,M. J. Statt,S. J. Blair, S. Mezzavilla,J. Kibsgaard,P. C. K. Vesborg,M. Cargnello,S. F. Bent,T. F. Jaramillo,I. E. L. Stephens,J. K. Nørskov, and I. Chorkendorff,A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements, Nature 570(7762), 504 (2019)
CrossRef ADS Google scholar
[23]
J. Kibsgaard,J. K. Nørskov, and I. Chorkendorff,The Difficulty of Proving Electrochemical Ammonia Synthesis, ACS Energy Lett. 4(12), 2986 (2019)
CrossRef ADS Google scholar
[24]
T. Chen,S. Liu,H. Ying,Z. Li, and J. Hao,Reactive ionic liquid enables the construction of 3D Rh particles with nanowire subunits for electrocatalytic nitrogen reduction, Chem. Asian J. 15(7), 1081 (2020)
CrossRef ADS Google scholar
[25]
H. Xie,Q. Geng, X. Zhu, Y. Luo, L. Chang,X. Niu,X. Shi,A. M. Asiri,S. Gao, Z. Wang, and X. Sun,PdP2 nanoparticles-reduced graphene oxide for electrocatalytic N2 conversion to NH3 under ambient conditions, J. Mater. Chem. A 7(43), 24760 (2019)
CrossRef ADS Google scholar
[26]
Z. Zhang,K. Yao,L. Cong,Z. Yu,L. Qu, and W. Huang,Facile synthesis of a Ru-dispersed N-doped carbon framework catalyst for electrochemical nitrogen reduction, Catal. Sci. Technol. 10(5), 1336 (2020)
CrossRef ADS Google scholar
[27]
X. Zhao,Z. Yang,A. V. Kuklin, G. V. Baryshnikov,H. Ågren, W. Wang, X. Zhou, and H. Zhang,Potassium ions promote electrochemical nitrogen reduction on nano-Au catalysts triggered by bifunctional boron supramolecular assembly, J. Mater. Chem. A 8(26), 13086 (2020)
CrossRef ADS Google scholar
[28]
D. Deng,K. S. Novoselov,Q. Fu,N. Zheng,Z. Tian, and X. Bao,Catalysis with two-dimensional materials and their heterostructures, Nat. Nanotechnol. 11(3), 218 (2016)
CrossRef ADS Google scholar
[29]
D. Gao,Y. Zhang,Z. Zhou,F. Cai, X. Zhao, W. Huang,Y. Li,J. Zhu,P. Liu,F. Yang, G.Wang, and X. Bao,Enhancing CO2 electroreduction with the metal–oxide interface, J. Am. Chem. Soc. 139(16), 5652 (2017)
CrossRef ADS Google scholar
[30]
Y. Guo,J. Zou,X. Shi, P. Rukundo, and Z. Wang, A Ni/CeO2–CDC-SiC catalyst with improved Coke resistance in CO2 reforming of methane, ACS Sustain. Chem. & Eng. 5(3), 2330 (2017)
CrossRef ADS Google scholar
[31]
S. Xie, Y. Liu,J. Deng,J. Yang, X. Zhao,Z. Han, K. Zhang, Y. Lu,F. Liu, and H. Dai, Carbon monoxide oxidation over rGO-mediated gold/cobalt oxide catalysts with strong metal–support interaction, ACS Appl. Mater. Interfaces 12(28), 31467 (2020)
CrossRef ADS Google scholar
[32]
H. C. Song, G. R. Lee,K. Jeon, H. Lee, S. W. Lee, Y. S. Jung, and J. Y. Park,Engineering nanoscale interfaces of metal/oxide nanowires to control catalytic activity, ACS Nano 14(7), 8335 (2020)
CrossRef ADS Google scholar
[33]
J. Lv,S. Wu,Z. Tian,Y. Ye,J. Liu, and C. Liang, Construction of PdO–Pd interfaces assisted by laser irradiation for enhanced electrocatalytic N2 reduction reaction, J. Mater. Chem. A 7(20), 12627 (2019)
CrossRef ADS Google scholar
[34]
B. Xu,L. Xia,F. Zhou, R. Zhao,H. Chen,T. Wang,Q. Zhou, Q. Liu,G. Cui,X. Xiong, F. Gong, and X. Sun,Enhancing Electrocatalytic, N2 reduction to NH3 by CeO2 nanorod with oxygen vacancies, ACS Sustain. Chem. & Eng. 7(3), 2889 (2019)
CrossRef ADS Google scholar
[35]
W. Fu, P. Zhuang,M. OliverLam Chee, P. Dong, M. Ye, and J. Shen, Oxygen vacancies in Ta2O5 nanorods for highly efficient electrocatalytic N2 reduction to NH3 under ambient conditions, ACS Sustain. Chem. & Eng. 7(10), 9622 (2019)
CrossRef ADS Google scholar
[36]
Y. Tong,H. Guo,D. Liu,X. Yan,P. Su,J. Liang,S. Zhou, J. Liu,G. Q. Lu, and S. X. Dou, Vacancy engineering of iron-doped W18O49 nanoreactors for low-barrier electrochemical nitrogen reduction, Angew. Chem. Int. Ed. 59(19), 7356 (2020)
CrossRef ADS Google scholar
[37]
T. Wu,X. Zhu,Z. Xing,S. Mou,C. Li,Y. Qiao,Q. Liu,Y. Luo,X. Shi,Y. Zhang, and X. Sun,Greatly improving electrochemical N2 reduction over TiO2 nanoparticles by iron doping, Angew. Chem. Int. Ed. 58(51), 18449 (2019)
CrossRef ADS Google scholar
[38]
T. Wu, W. Kong,Y. Zhang, Z. Xing,J. Zhao,T. Wang,X. Shi,Y. Luo, and X. Sun, Greatly enhanced electrocatalytic N2 reduction on TiO2 via V doping, Small Methods 3(11), 1900356 (2019)
CrossRef ADS Google scholar
[39]
S. Cheng, Y. J. Gao, Y. L. Yan,X. Gao,S. H. Zhang,G. L. Zhuang,S. W. Deng,Z. Z. Wei, X. Zhong, and J. G. Wang, Oxygen vacancy enhancing mechanism of nitrogen reduction reaction property in Ru/TiO2, J. Energ. Chem. 39, 144 (2019)
CrossRef ADS Google scholar
[40]
Z. Han, C. Choi, S. Hong,T. S. Wu,Y. L. Soo,Y. Jung,J. Qiu, and Z. Sun,Activated TiO2 with tuned vacancy for efficient electrochemical nitrogen reduction, Appl. Catal. B 257, 117896 (2019)
CrossRef ADS Google scholar
[41]
B. Li,X. Zhu,J. Wang,R. Xing,Q. Liu,X. Shi,Y. Luo,S. Liu,X. Niu, and X. Sun,Ti3+ self-doped TiO2−x nanowires for efficient electrocatalytic N2 reduction to NH3, Chem. Commun. (Camb.) 56(7), 1074 (2020)
CrossRef ADS Google scholar
[42]
Y. T. Liu,X. Chen,J. Yu, and B. Ding,Carbonnanoplated CoS@TiO2 nanofibrous membrane: An interface-engineered heterojunction for high-efficiency electrocatalytic nitrogen reduction, Angew. Chem. Int. Ed. 58(52), 18903 (2019)
CrossRef ADS Google scholar
[43]
M. M. Shi,D. Bao,B. R. Wulan,Y. H. Li,Y. F. Zhang,J. M. Yan, and Q. Jiang,Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions, Adv. Mater. 29(17), 1606550 (2017)
CrossRef ADS Google scholar
[44]
J. Zhang,Y. Tian,T. Zhang,Z. Li,X. She, Y. Wu,Y. Wang, and J. Wu,Confinement of intermediates in blue TiO2 nanotube arrays boosts reaction rate of nitrogen electrocatalysis, Chem. Cat. Chem. 12(10), 2760 (2020)
CrossRef ADS Google scholar
[45]
P. Zhao,L. Zhang,J. Song,S. Wen, and Z. Cheng, Phosphorus cation substitution in TiO2 nanorods toward enhanced N2 electroreduction, Appl. Surf. Sci. 523, 146517 (2020)
CrossRef ADS Google scholar
[46]
Q. Hao,C. Liu,G. Jia,Y. Wang,H. Arandiyan,W. Wei, and B. J. Ni,Catalytic reduction of nitrogen to produce ammonia by bismuth-based catalysts: State of the art and future prospects, Mater. Horiz. 7(4), 1014 (2020)
CrossRef ADS Google scholar
[47]
L. Li,C. Tang,B. Xia,H. Jin,Y. Zheng, and S. Z. Qiao,Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction, ACS Catal. 9(4), 2902 (2019)
CrossRef ADS Google scholar
[48]
J. M. Wu,Y. Chen,L. Pan,P. Wang,Y. Cui,D. Kong,L. Wang,X. Zhang, and J. J. Zou, Multi-layer monoclinic BiVO4 with oxygen vacancies and V4+ species for highly efficient visible-light photoelectrochemical applications, Appl. Catal. B 221, 187 (2018)
CrossRef ADS Google scholar
[49]
J. X. Yao,D. Bao,Q. Zhang,M. M. Shi, Y. Wang,R. Gao,J. M. Yan, and Q. Jiang, Tailoring oxygen vacancies of BiVO4 toward highly efficient noble-metal-free electrocatalyst for artificial N2 fixation under ambient conditions, Small Methods 3(6), 1800333 (2019)
CrossRef ADS Google scholar
[50]
C. Ling,Y. Zhang,Q. Li,X. Bai,L. Shi, and J. Wang,New mechanism for N2 reduction: The essential role of surface hydrogenation, J. Am. Chem. Soc. 141(45), 18264 (2019)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(2595 KB)

Accesses

Citations

Detail

Sections
Recommended

/