Proton mass decomposition: Naturalness and interpretations

Xiangdong Ji

PDF(713 KB)
PDF(713 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (6) : 64601. DOI: 10.1007/s11467-021-1065-x
VIEW & PERSPECTIVE
VIEW & PERSPECTIVE

Proton mass decomposition: Naturalness and interpretations

Author information +
History +

Cite this article

Download citation ▾
Xiangdong Ji. Proton mass decomposition: Naturalness and interpretations. Front. Phys., 2021, 16(6): 64601 https://doi.org/10.1007/s11467-021-1065-x

References

[1]
X.-D. Ji, A QCD analysis of the mass structure of the nucleon, Phys. Rev. Lett. 74, 1071 (1995), arXiv: hepph/ 9410274
CrossRef ADS Google scholar
[2]
E. Hecht, How Einstein confirmed E0= mc2, Am. J. Phys. 79, 591 (2011)
CrossRef ADS Google scholar
[3]
J. Dudek, et al., Physics opportunities with the 12 GeV upgrade at Jefferson Lab, Eur. Phys. J. A 48, 187 (2012), arXiv: 1208.1244 [hep-ex]
CrossRef ADS Google scholar
[4]
A. Accardi, et al., Electron Ion Collider: The next QCD frontier: Understanding the glue that binds us all, Eur. Phys. J. A 52, 268 (2016), arXiv: 1212.1701 [nucl-ex]
[5]
Third Workshop on Proton Mass: Origin and Perspective, https //indico.phy.anl.gov/event/2 (2021)
[6]
D. E. Kharzeev, The mass radius of the proton, arXiv: 2102.00110 [hep-ph] (2021)
[7]
L. B. Okun, The concept of mass, Phys. Today 42, 31 (1989)
CrossRef ADS Google scholar
[8]
G. Buchalla, A. J. Buras, and M. E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys. 68, 1125 (1996), arXiv: hep-ph/9512380
CrossRef ADS Google scholar
[9]
M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory, Addison-Wesley,Reading, USA, 1995
[10]
M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Remarks on Higgs–Boson interactions with nucleons, Phys. Lett. B 78, 443 (1978)
CrossRef ADS Google scholar
[11]
J. C. Collins, A. Duncan, and S. D. Joglekar, Trace and dilatation anomalies in gauge theories, Phys. Rev. D 16, 438 (1977)
CrossRef ADS Google scholar
[12]
N. K. Nielsen, The energy–momentum tensor in a non- Abelian quark gluon theory, Nucl. Phys. B 120, 212 (1977)
CrossRef ADS Google scholar
[13]
Y. Chen, et al., Glueball spectrum and matrix elements on anisotropic lattices, Phys. Rev. D 73, 014516 (2006), arXiv: hep-lat/0510074
CrossRef ADS Google scholar
[14]
A. Abdel-Rehim, C. Alexandrou, M. Constantinou, K. Hadjiyiannakou, K. Jansen, C. Kallidonis, G. Koutsou, and A. Vaquero Aviles-Casco (ETM), Direct evaluation of the quark content of nucleons from lattice QCD at the physical point, Phys. Rev. Lett. 116, 252001 (2016), arXiv: 1601.01624 [hep-lat]
CrossRef ADS Google scholar
[15]
C. Alexandrou, M. Constantinou, K. Hadjiyiannakou, K. Jansen, C. Kallidonis, G. Koutsou, A. Vaquero Avilés-Casco, and C. Wiese, Nucleon spin and momentum decomposition using lattice QCD simulations, Phys. Rev. Lett. 119, 142002 (2017), arXiv: 1706.02973 [hep-lat]
CrossRef ADS Google scholar
[16]
Y.-B. Yang, J. Liang, Y.-J. Bi, Y. Chen, T. Draper, K.-F. Liu, and Z. Liu, Proton mass decomposition from the QCD energy momentum tensor, Phys. Rev. Lett. 121, 212001 (2018), arXiv: 1808.08677 [hep-lat]
CrossRef ADS Google scholar
[17]
F. He, P. Sun, and Y.-B. Yang, A demonstration of hadron mass origin from QCD trace anomaly, arXiv: 2101.04942 [hep-lat] (2021)
[18]
I. Zahed, Mass sum rule of hadrons in the QCD instanton vacuum, arXiv: 2102.08191 [hep-ph] (2021)
[19]
D. Kharzeev, H. Satz, A. Syamtomov, and G. Zinovjev, J/ψ photoproduction and the gluon structure of the nucleon, Eur. Phys. J. C 9, 459 (1999), arXiv: hepph/ 9901375
CrossRef ADS Google scholar
[20]
Y. Hatta and D.-L. Yang, Holographic J/ψ production near threshold and the proton mass problem, Phys. Rev. D 98, 074003 (2018), arXiv: 1808.02163 [hep-ph]
CrossRef ADS Google scholar
[21]
K. A. Mamo and I. Zahed, Diffractive photoproduction of J/ψ and Υ using holographic QCD: Gravitational form factors and GPD of gluons in the proton, Phys. Rev. D 101, 086003 (2020), arXiv: 1910.04707 [hep-ph]
CrossRef ADS Google scholar
[22]
R. Wang, J. Evslin, and X. Chen, The origin of proton mass from J/ψ photo-production data, Eur. Phys. J. C 80, 507 (2020), arXiv: 1912.12040 [hep-ph]
CrossRef ADS Google scholar
[23]
R. Boussarie and Y. Hatta, QCD analysis of near-threshold quarkonium leptoproduction at large photon virtualities, Phys. Rev. D 101, 114004 (2020), arXiv: 2004.12715 [hepph]
CrossRef ADS Google scholar
[24]
Z.-E. Meziani and S. Joosten, Origin of the Proton Mass? Heavy Quarkonium Production at Threshold from Jefferson Lab to an Electron–Ion Collider, in: Probing Nucleons and Nuclei in High Energy Collisions: Dedicated to the Physics of the Electron–Ion Collider, 2020, pp 234–237, doi:10.1142/9789811214950_0048
CrossRef ADS Google scholar
[25]
X. Ji and Y. Liu, Quantum anomalous energy effects on the nucleon mass, arXiv: 2101.04483 [hep-ph] (2021)
[26]
P. Di Francesco, P. Mathieu, and D. Senechal, Conformal Field Theory, Graduate Texts in Contemporary Physics, Springer-Verlag, New York, 1997
CrossRef ADS Google scholar
[27]
F. Karsch, SU(N)gauge theory couplings on asymmetric lattices, Nucl. Phys. B 205, 285 (1982)
CrossRef ADS Google scholar
[28]
H. J. Rothe, Lattice energy sum rule and the trace anomaly, Phys. Lett. B 364, 227 (1995), arXiv: heplat/ 9508005
CrossRef ADS Google scholar
[29]
X.-D. Ji and W. Lu, A modern anatomy of electron mass, arXiv: hep-ph/9802437 (1998)
[30]
B.-D. Sun, Z.-H. Sun, and J. Zhou, Trace anomaly contribution to hydrogen atom mass, arXiv: 2012.09443 [hep-ph] (2020)
[31]
A. Metz, B. Pasquini, and S. Rodini, Revisiting the proton mass decomposition, arXiv: 2006.11171 [hep-ph] (2020)
CrossRef ADS Google scholar
[32]
M. E. Luke, A. V. Manohar, and M. J. Savage, A QCD calculation of the interaction of quarkonium with nuclei, Phys. Lett. B 288, 355 (1992), arXiv: hep-ph/9204219
CrossRef ADS Google scholar
[33]
D. Kharzeev, Quarkonium interactions in QCD, Proc. Int. Sch. Phys. Fermi 130, 105 (1996), arXiv: nucl-th/9601029
[34]
E. V. Shuryak, Probing the boundary of the nonperturbative QCD by small size instantons, arXiv: hepph/ 9909458 (1999)
[35]
A. Chodos, R. Jaffe, K. Johnson, C. B. Thorn, and V. Weisskopf, A new extended model of hadrons, Phys. Rev. D 9, 3471 (1974)
CrossRef ADS Google scholar
[36]
C. D. Roberts and C. Mezrag, Emergent phenomena and partonic structure in hadrons, EPJ Web Conf. 137, 01017 (2017), arXiv: 1611.09863 [nucl-th]
CrossRef ADS Google scholar
[37]
R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. II, Ch. 28, 1963
[38]
X. Ji, Fundamental properties of the proton in lightfront zero modes, Nucl. Phys. B, 115181 (2020), arXiv: 2003.04478 [hep-ph]
CrossRef ADS Google scholar
[39]
Y. Hatta and Y. Zhao, Parton distribution function for the gluon condensate, Phys. Rev. D 102, 034004 (2020), arXiv: 2006.02798 [hep-ph]
CrossRef ADS Google scholar
[40]
Y. Guo, X. Ji, and K. Shiells, Novel twist-three transversespin sum rule for the proton and related generalized parton distributions, arXiv: 2101.05243 [hep-ph] (2021)
[41]
Y. Hatta, A. Rajan, and K. Tanaka, Quark and gluon contributions to the QCD trace anomaly, JHEP 12, 008 (2018), arXiv: 1810.05116 [hep-ph]
CrossRef ADS Google scholar
[42]
K. Tanaka, Three-loop formula for quark and gluon contributions to the QCD trace anomaly, JHEP 01, 120 (2019), arXiv: 1811.07879 [hep-ph]
CrossRef ADS Google scholar
[43]
C. Lorcé, On the hadron mass decomposition, Eur. Phys. J. C 78, 120 (2018), arXiv: 1706.05853 [hep-ph]
CrossRef ADS Google scholar
[44]
L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon Press, 1984
[45]
E. Shuryak, Strongly coupled quark–gluon plasma in heavy ion collisions, Rev. Mod. Phys. 89, 035001 (2017), arXiv: 1412.8393 [hep-ph]
CrossRef ADS Google scholar
[46]
X.-D. Ji, Gauge-invariant decomposition of nucleon spin, Phys. Rev. Lett. 78, 610 (1997), arXiv: hep-ph/9603249
CrossRef ADS Google scholar
[47]
J. Gasser and H. Leutwyler, Chiral perturbation theory: Expansions in the mass of the strange quark, Nucl. Phys. B 250, 465 (1985)
CrossRef ADS Google scholar
[48]
C. Alexandrou, S. Bacchio, M. Constantinou, J. Finkenrath, K. Hadjiyiannakou, K. Jansen, G. Koutsou, and A. Vaquero Aviles-Casco, Nucleon axial, tensor, and scalar charges and σ-terms in lattice QCD, Phys. Rev. D 102, 054517 (2020), arXiv: 1909.00485 [hep-lat]
CrossRef ADS Google scholar
[49]
M. Gong, et al. (XQCD), Strangeness and charmness content of the nucleon from overlap fermions on 2+1- flavor domain-wall fermion configurations, Phys. Rev. D 88, 014503 (2013), arXiv: 1304.1194 [hep-ph]
CrossRef ADS Google scholar
[50]
X.-D. Ji, Breakup of hadron masses and energy– momentum tensor of QCD, Phys. Rev. D 52, 271 (1995), arXiv: hep-ph/9502213
CrossRef ADS Google scholar
[51]
H. Pagels, Energy–momentum structure form factors of particles, Phys. Rev. 144, 1250 (1966)
CrossRef ADS Google scholar
[52]
X.-D. Ji, W. Melnitchouk, and X. Song, Study of offforward parton distributions, Phys. Rev. D 56, 5511 (1997), arXiv: hep-ph/9702379
CrossRef ADS Google scholar
[53]
R. Wang, W. Kou, and X. Chen, Extraction of the proton mass radius from the vector-meson photoproductions near thresholds, arXiv: 2102.01610 [hep-ph], 2021
[54]
K. A. Mamo and I. Zahed, Nucleon mass radii and distribution: Holographic QCD, lattice QCD and GlueX data, arXiv: 2103.03186 [hep-ph] (2021)
[55]
P. Hagler, et al. (LHPC), Nucleon generalized parton distributions from full lattice QCD, Phys. Rev. D 77, 094502 (2008), arXiv: 0705.4295 [hep-lat]
CrossRef ADS Google scholar
[56]
P. Hagler, Hadron structure from lattice quantum chromodynamics, Phys. Rep. 490, 49 (2010), arXiv: 0912.5483 [hep-lat]
CrossRef ADS Google scholar
[57]
P. E. Shanahan and W. Detmold, Gluon gravitational form factors of the nucleon and the pion from lattice QCD, Phys. Rev. D 99, 014511 (2019), arXiv: 1810.04626 [hep-lat]
CrossRef ADS Google scholar
[58]
M. V. Polyakov and P. Schweitzer, Forces inside hadrons: Pressure, surface tension, mechanical radius, and all that, Int. J. Mod. Phys. A33, 1830025 (2018), arXiv: 1805.06596 [hep-ph]
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(713 KB)

Accesses

Citations

Detail

Sections
Recommended

/