Proton mass decomposition: Naturalness and interpretations

Xiangdong Ji

Front. Phys. ›› 2021, Vol. 16 ›› Issue (6) : 64601

PDF (713KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (6) : 64601 DOI: 10.1007/s11467-021-1065-x
VIEW & PERSPECTIVE

Proton mass decomposition: Naturalness and interpretations

Author information +
History +
PDF (713KB)

Cite this article

Download citation ▾
Xiangdong Ji. Proton mass decomposition: Naturalness and interpretations. Front. Phys., 2021, 16(6): 64601 DOI:10.1007/s11467-021-1065-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

X.-D. Ji, A QCD analysis of the mass structure of the nucleon, Phys. Rev. Lett. 74, 1071 (1995), arXiv: hepph/ 9410274

[2]

E. Hecht, How Einstein confirmed E0= mc2, Am. J. Phys. 79, 591 (2011)

[3]

J. Dudek, et al., Physics opportunities with the 12 GeV upgrade at Jefferson Lab, Eur. Phys. J. A 48, 187 (2012), arXiv: 1208.1244 [hep-ex]

[4]

A. Accardi, et al., Electron Ion Collider: The next QCD frontier: Understanding the glue that binds us all, Eur. Phys. J. A 52, 268 (2016), arXiv: 1212.1701 [nucl-ex]

[5]

Third Workshop on Proton Mass: Origin and Perspective, 2021)

[6]

D. E. Kharzeev, The mass radius of the proton, arXiv: 2102.00110 [hep-ph] (2021)

[7]

L. B. Okun, The concept of mass, Phys. Today 42, 31 (1989)

[8]

G. Buchalla, A. J. Buras, and M. E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys. 68, 1125 (1996), arXiv: hep-ph/9512380

[9]

M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory, Addison-Wesley,Reading, USA, 1995

[10]

M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Remarks on Higgs–Boson interactions with nucleons, Phys. Lett. B 78, 443 (1978)

[11]

J. C. Collins, A. Duncan, and S. D. Joglekar, Trace and dilatation anomalies in gauge theories, Phys. Rev. D 16, 438 (1977)

[12]

N. K. Nielsen, The energy–momentum tensor in a non- Abelian quark gluon theory, Nucl. Phys. B 120, 212 (1977)

[13]

Y. Chen, et al., Glueball spectrum and matrix elements on anisotropic lattices, Phys. Rev. D 73, 014516 (2006), arXiv: hep-lat/0510074

[14]

A. Abdel-Rehim, C. Alexandrou, M. Constantinou, K. Hadjiyiannakou, K. Jansen, C. Kallidonis, G. Koutsou, and A. Vaquero Aviles-Casco (ETM), Direct evaluation of the quark content of nucleons from lattice QCD at the physical point, Phys. Rev. Lett. 116, 252001 (2016), arXiv: 1601.01624 [hep-lat]

[15]

C. Alexandrou, M. Constantinou, K. Hadjiyiannakou, K. Jansen, C. Kallidonis, G. Koutsou, A. Vaquero Avilés-Casco, and C. Wiese, Nucleon spin and momentum decomposition using lattice QCD simulations, Phys. Rev. Lett. 119, 142002 (2017), arXiv: 1706.02973 [hep-lat]

[16]

Y.-B. Yang, J. Liang, Y.-J. Bi, Y. Chen, T. Draper, K.-F. Liu, and Z. Liu, Proton mass decomposition from the QCD energy momentum tensor, Phys. Rev. Lett. 121, 212001 (2018), arXiv: 1808.08677 [hep-lat]

[17]

F. He, P. Sun, and Y.-B. Yang, A demonstration of hadron mass origin from QCD trace anomaly, arXiv: 2101.04942 [hep-lat] (2021)

[18]

I. Zahed, Mass sum rule of hadrons in the QCD instanton vacuum, arXiv: 2102.08191 [hep-ph] (2021)

[19]

D. Kharzeev, H. Satz, A. Syamtomov, and G. Zinovjev, J/ψ photoproduction and the gluon structure of the nucleon, Eur. Phys. J. C 9, 459 (1999), arXiv: hepph/ 9901375

[20]

Y. Hatta and D.-L. Yang, Holographic J/ψ production near threshold and the proton mass problem, Phys. Rev. D 98, 074003 (2018), arXiv: 1808.02163 [hep-ph]

[21]

K. A. Mamo and I. Zahed, Diffractive photoproduction of J/ψ and Υ using holographic QCD: Gravitational form factors and GPD of gluons in the proton, Phys. Rev. D 101, 086003 (2020), arXiv: 1910.04707 [hep-ph]

[22]

R. Wang, J. Evslin, and X. Chen, The origin of proton mass from J/ψ photo-production data, Eur. Phys. J. C 80, 507 (2020), arXiv: 1912.12040 [hep-ph]

[23]

R. Boussarie and Y. Hatta, QCD analysis of near-threshold quarkonium leptoproduction at large photon virtualities, Phys. Rev. D 101, 114004 (2020), arXiv: 2004.12715 [hepph]

[24]

Z.-E. Meziani and S. Joosten, Origin of the Proton Mass? Heavy Quarkonium Production at Threshold from Jefferson Lab to an Electron–Ion Collider, in: Probing Nucleons and Nuclei in High Energy Collisions: Dedicated to the Physics of the Electron–Ion Collider, 2020, pp 234–237, doi:10.1142/9789811214950_0048

[25]

X. Ji and Y. Liu, Quantum anomalous energy effects on the nucleon mass, arXiv: 2101.04483 [hep-ph] (2021)

[26]

P. Di Francesco, P. Mathieu, and D. Senechal, Conformal Field Theory, Graduate Texts in Contemporary Physics, Springer-Verlag, New York, 1997

[27]

F. Karsch, SU(N)gauge theory couplings on asymmetric lattices, Nucl. Phys. B 205, 285 (1982)

[28]

H. J. Rothe, Lattice energy sum rule and the trace anomaly, Phys. Lett. B 364, 227 (1995), arXiv: heplat/ 9508005

[29]

X.-D. Ji and W. Lu, A modern anatomy of electron mass, arXiv: hep-ph/9802437 (1998)

[30]

B.-D. Sun, Z.-H. Sun, and J. Zhou, Trace anomaly contribution to hydrogen atom mass, arXiv: 2012.09443 [hep-ph] (2020)

[31]

A. Metz, B. Pasquini, and S. Rodini, Revisiting the proton mass decomposition, arXiv: 2006.11171 [hep-ph] (2020)

[32]

M. E. Luke, A. V. Manohar, and M. J. Savage, A QCD calculation of the interaction of quarkonium with nuclei, Phys. Lett. B 288, 355 (1992), arXiv: hep-ph/9204219

[33]

D. Kharzeev, Quarkonium interactions in QCD, Proc. Int. Sch. Phys. Fermi 130, 105 (1996), arXiv: nucl-th/9601029

[34]

E. V. Shuryak, Probing the boundary of the nonperturbative QCD by small size instantons, arXiv: hepph/ 9909458 (1999)

[35]

A. Chodos, R. Jaffe, K. Johnson, C. B. Thorn, and V. Weisskopf, A new extended model of hadrons, Phys. Rev. D 9, 3471 (1974)

[36]

C. D. Roberts and C. Mezrag, Emergent phenomena and partonic structure in hadrons, EPJ Web Conf. 137, 01017 (2017), arXiv: 1611.09863 [nucl-th]

[37]

R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. II, Ch. 28, 1963

[38]

X. Ji, Fundamental properties of the proton in lightfront zero modes, Nucl. Phys. B, 115181 (2020), arXiv: 2003.04478 [hep-ph]

[39]

Y. Hatta and Y. Zhao, Parton distribution function for the gluon condensate, Phys. Rev. D 102, 034004 (2020), arXiv: 2006.02798 [hep-ph]

[40]

Y. Guo, X. Ji, and K. Shiells, Novel twist-three transversespin sum rule for the proton and related generalized parton distributions, arXiv: 2101.05243 [hep-ph] (2021)

[41]

Y. Hatta, A. Rajan, and K. Tanaka, Quark and gluon contributions to the QCD trace anomaly, JHEP 12, 008 (2018), arXiv: 1810.05116 [hep-ph]

[42]

K. Tanaka, Three-loop formula for quark and gluon contributions to the QCD trace anomaly, JHEP 01, 120 (2019), arXiv: 1811.07879 [hep-ph]

[43]

C. Lorcé, On the hadron mass decomposition, Eur. Phys. J. C 78, 120 (2018), arXiv: 1706.05853 [hep-ph]

[44]

L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon Press, 1984

[45]

E. Shuryak, Strongly coupled quark–gluon plasma in heavy ion collisions, Rev. Mod. Phys. 89, 035001 (2017), arXiv: 1412.8393 [hep-ph]

[46]

X.-D. Ji, Gauge-invariant decomposition of nucleon spin, Phys. Rev. Lett. 78, 610 (1997), arXiv: hep-ph/9603249

[47]

J. Gasser and H. Leutwyler, Chiral perturbation theory: Expansions in the mass of the strange quark, Nucl. Phys. B 250, 465 (1985)

[48]

C. Alexandrou, S. Bacchio, M. Constantinou, J. Finkenrath, K. Hadjiyiannakou, K. Jansen, G. Koutsou, and A. Vaquero Aviles-Casco, Nucleon axial, tensor, and scalar charges and σ-terms in lattice QCD, Phys. Rev. D 102, 054517 (2020), arXiv: 1909.00485 [hep-lat]

[49]

M. Gong, et al. (XQCD), Strangeness and charmness content of the nucleon from overlap fermions on 2+1- flavor domain-wall fermion configurations, Phys. Rev. D 88, 014503 (2013), arXiv: 1304.1194 [hep-ph]

[50]

X.-D. Ji, Breakup of hadron masses and energy– momentum tensor of QCD, Phys. Rev. D 52, 271 (1995), arXiv: hep-ph/9502213

[51]

H. Pagels, Energy–momentum structure form factors of particles, Phys. Rev. 144, 1250 (1966)

[52]

X.-D. Ji, W. Melnitchouk, and X. Song, Study of offforward parton distributions, Phys. Rev. D 56, 5511 (1997), arXiv: hep-ph/9702379

[53]

R. Wang, W. Kou, and X. Chen, Extraction of the proton mass radius from the vector-meson photoproductions near thresholds, arXiv: 2102.01610 [hep-ph], 2021

[54]

K. A. Mamo and I. Zahed, Nucleon mass radii and distribution: Holographic QCD, lattice QCD and GlueX data, arXiv: 2103.03186 [hep-ph] (2021)

[55]

P. Hagler, et al. (LHPC), Nucleon generalized parton distributions from full lattice QCD, Phys. Rev. D 77, 094502 (2008), arXiv: 0705.4295 [hep-lat]

[56]

P. Hagler, Hadron structure from lattice quantum chromodynamics, Phys. Rep. 490, 49 (2010), arXiv: 0912.5483 [hep-lat]

[57]

P. E. Shanahan and W. Detmold, Gluon gravitational form factors of the nucleon and the pion from lattice QCD, Phys. Rev. D 99, 014511 (2019), arXiv: 1810.04626 [hep-lat]

[58]

M. V. Polyakov and P. Schweitzer, Forces inside hadrons: Pressure, surface tension, mechanical radius, and all that, Int. J. Mod. Phys. A33, 1830025 (2018), arXiv: 1805.06596 [hep-ph]

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (713KB)

1199

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/