Proton mass decomposition: Naturalness and interpretations
Xiangdong Ji
Proton mass decomposition: Naturalness and interpretations
[1] |
X.-D. Ji, A QCD analysis of the mass structure of the nucleon, Phys. Rev. Lett. 74, 1071 (1995), arXiv: hepph/ 9410274
CrossRef
ADS
Google scholar
|
[2] |
E. Hecht, How Einstein confirmed E0= mc2, Am. J. Phys. 79, 591 (2011)
CrossRef
ADS
Google scholar
|
[3] |
J. Dudek, et al., Physics opportunities with the 12 GeV upgrade at Jefferson Lab, Eur. Phys. J. A 48, 187 (2012), arXiv: 1208.1244 [hep-ex]
CrossRef
ADS
Google scholar
|
[4] |
A. Accardi, et al., Electron Ion Collider: The next QCD frontier: Understanding the glue that binds us all, Eur. Phys. J. A 52, 268 (2016), arXiv: 1212.1701 [nucl-ex]
|
[5] |
Third Workshop on Proton Mass: Origin and Perspective, https //indico.phy.anl.gov/event/2 (2021)
|
[6] |
D. E. Kharzeev, The mass radius of the proton, arXiv: 2102.00110 [hep-ph] (2021)
|
[7] |
L. B. Okun, The concept of mass, Phys. Today 42, 31 (1989)
CrossRef
ADS
Google scholar
|
[8] |
G. Buchalla, A. J. Buras, and M. E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys. 68, 1125 (1996), arXiv: hep-ph/9512380
CrossRef
ADS
Google scholar
|
[9] |
M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory, Addison-Wesley,Reading, USA, 1995
|
[10] |
M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Remarks on Higgs–Boson interactions with nucleons, Phys. Lett. B 78, 443 (1978)
CrossRef
ADS
Google scholar
|
[11] |
J. C. Collins, A. Duncan, and S. D. Joglekar, Trace and dilatation anomalies in gauge theories, Phys. Rev. D 16, 438 (1977)
CrossRef
ADS
Google scholar
|
[12] |
N. K. Nielsen, The energy–momentum tensor in a non- Abelian quark gluon theory, Nucl. Phys. B 120, 212 (1977)
CrossRef
ADS
Google scholar
|
[13] |
Y. Chen, et al., Glueball spectrum and matrix elements on anisotropic lattices, Phys. Rev. D 73, 014516 (2006), arXiv: hep-lat/0510074
CrossRef
ADS
Google scholar
|
[14] |
A. Abdel-Rehim, C. Alexandrou, M. Constantinou, K. Hadjiyiannakou, K. Jansen, C. Kallidonis, G. Koutsou, and A. Vaquero Aviles-Casco (ETM), Direct evaluation of the quark content of nucleons from lattice QCD at the physical point, Phys. Rev. Lett. 116, 252001 (2016), arXiv: 1601.01624 [hep-lat]
CrossRef
ADS
Google scholar
|
[15] |
C. Alexandrou, M. Constantinou, K. Hadjiyiannakou, K. Jansen, C. Kallidonis, G. Koutsou, A. Vaquero Avilés-Casco, and C. Wiese, Nucleon spin and momentum decomposition using lattice QCD simulations, Phys. Rev. Lett. 119, 142002 (2017), arXiv: 1706.02973 [hep-lat]
CrossRef
ADS
Google scholar
|
[16] |
Y.-B. Yang, J. Liang, Y.-J. Bi, Y. Chen, T. Draper, K.-F. Liu, and Z. Liu, Proton mass decomposition from the QCD energy momentum tensor, Phys. Rev. Lett. 121, 212001 (2018), arXiv: 1808.08677 [hep-lat]
CrossRef
ADS
Google scholar
|
[17] |
F. He, P. Sun, and Y.-B. Yang, A demonstration of hadron mass origin from QCD trace anomaly, arXiv: 2101.04942 [hep-lat] (2021)
|
[18] |
I. Zahed, Mass sum rule of hadrons in the QCD instanton vacuum, arXiv: 2102.08191 [hep-ph] (2021)
|
[19] |
D. Kharzeev, H. Satz, A. Syamtomov, and G. Zinovjev, J/ψ photoproduction and the gluon structure of the nucleon, Eur. Phys. J. C 9, 459 (1999), arXiv: hepph/ 9901375
CrossRef
ADS
Google scholar
|
[20] |
Y. Hatta and D.-L. Yang, Holographic J/ψ production near threshold and the proton mass problem, Phys. Rev. D 98, 074003 (2018), arXiv: 1808.02163 [hep-ph]
CrossRef
ADS
Google scholar
|
[21] |
K. A. Mamo and I. Zahed, Diffractive photoproduction of J/ψ and Υ using holographic QCD: Gravitational form factors and GPD of gluons in the proton, Phys. Rev. D 101, 086003 (2020), arXiv: 1910.04707 [hep-ph]
CrossRef
ADS
Google scholar
|
[22] |
R. Wang, J. Evslin, and X. Chen, The origin of proton mass from J/ψ photo-production data, Eur. Phys. J. C 80, 507 (2020), arXiv: 1912.12040 [hep-ph]
CrossRef
ADS
Google scholar
|
[23] |
R. Boussarie and Y. Hatta, QCD analysis of near-threshold quarkonium leptoproduction at large photon virtualities, Phys. Rev. D 101, 114004 (2020), arXiv: 2004.12715 [hepph]
CrossRef
ADS
Google scholar
|
[24] |
Z.-E. Meziani and S. Joosten, Origin of the Proton Mass? Heavy Quarkonium Production at Threshold from Jefferson Lab to an Electron–Ion Collider, in: Probing Nucleons and Nuclei in High Energy Collisions: Dedicated to the Physics of the Electron–Ion Collider, 2020, pp 234–237, doi:10.1142/9789811214950_0048
CrossRef
ADS
Google scholar
|
[25] |
X. Ji and Y. Liu, Quantum anomalous energy effects on the nucleon mass, arXiv: 2101.04483 [hep-ph] (2021)
|
[26] |
P. Di Francesco, P. Mathieu, and D. Senechal, Conformal Field Theory, Graduate Texts in Contemporary Physics, Springer-Verlag, New York, 1997
CrossRef
ADS
Google scholar
|
[27] |
F. Karsch, SU(N)gauge theory couplings on asymmetric lattices, Nucl. Phys. B 205, 285 (1982)
CrossRef
ADS
Google scholar
|
[28] |
H. J. Rothe, Lattice energy sum rule and the trace anomaly, Phys. Lett. B 364, 227 (1995), arXiv: heplat/ 9508005
CrossRef
ADS
Google scholar
|
[29] |
X.-D. Ji and W. Lu, A modern anatomy of electron mass, arXiv: hep-ph/9802437 (1998)
|
[30] |
B.-D. Sun, Z.-H. Sun, and J. Zhou, Trace anomaly contribution to hydrogen atom mass, arXiv: 2012.09443 [hep-ph] (2020)
|
[31] |
A. Metz, B. Pasquini, and S. Rodini, Revisiting the proton mass decomposition, arXiv: 2006.11171 [hep-ph] (2020)
CrossRef
ADS
Google scholar
|
[32] |
M. E. Luke, A. V. Manohar, and M. J. Savage, A QCD calculation of the interaction of quarkonium with nuclei, Phys. Lett. B 288, 355 (1992), arXiv: hep-ph/9204219
CrossRef
ADS
Google scholar
|
[33] |
D. Kharzeev, Quarkonium interactions in QCD, Proc. Int. Sch. Phys. Fermi 130, 105 (1996), arXiv: nucl-th/9601029
|
[34] |
E. V. Shuryak, Probing the boundary of the nonperturbative QCD by small size instantons, arXiv: hepph/ 9909458 (1999)
|
[35] |
A. Chodos, R. Jaffe, K. Johnson, C. B. Thorn, and V. Weisskopf, A new extended model of hadrons, Phys. Rev. D 9, 3471 (1974)
CrossRef
ADS
Google scholar
|
[36] |
C. D. Roberts and C. Mezrag, Emergent phenomena and partonic structure in hadrons, EPJ Web Conf. 137, 01017 (2017), arXiv: 1611.09863 [nucl-th]
CrossRef
ADS
Google scholar
|
[37] |
R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. II, Ch. 28, 1963
|
[38] |
X. Ji, Fundamental properties of the proton in lightfront zero modes, Nucl. Phys. B, 115181 (2020), arXiv: 2003.04478 [hep-ph]
CrossRef
ADS
Google scholar
|
[39] |
Y. Hatta and Y. Zhao, Parton distribution function for the gluon condensate, Phys. Rev. D 102, 034004 (2020), arXiv: 2006.02798 [hep-ph]
CrossRef
ADS
Google scholar
|
[40] |
Y. Guo, X. Ji, and K. Shiells, Novel twist-three transversespin sum rule for the proton and related generalized parton distributions, arXiv: 2101.05243 [hep-ph] (2021)
|
[41] |
Y. Hatta, A. Rajan, and K. Tanaka, Quark and gluon contributions to the QCD trace anomaly, JHEP 12, 008 (2018), arXiv: 1810.05116 [hep-ph]
CrossRef
ADS
Google scholar
|
[42] |
K. Tanaka, Three-loop formula for quark and gluon contributions to the QCD trace anomaly, JHEP 01, 120 (2019), arXiv: 1811.07879 [hep-ph]
CrossRef
ADS
Google scholar
|
[43] |
C. Lorcé, On the hadron mass decomposition, Eur. Phys. J. C 78, 120 (2018), arXiv: 1706.05853 [hep-ph]
CrossRef
ADS
Google scholar
|
[44] |
L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon Press, 1984
|
[45] |
E. Shuryak, Strongly coupled quark–gluon plasma in heavy ion collisions, Rev. Mod. Phys. 89, 035001 (2017), arXiv: 1412.8393 [hep-ph]
CrossRef
ADS
Google scholar
|
[46] |
X.-D. Ji, Gauge-invariant decomposition of nucleon spin, Phys. Rev. Lett. 78, 610 (1997), arXiv: hep-ph/9603249
CrossRef
ADS
Google scholar
|
[47] |
J. Gasser and H. Leutwyler, Chiral perturbation theory: Expansions in the mass of the strange quark, Nucl. Phys. B 250, 465 (1985)
CrossRef
ADS
Google scholar
|
[48] |
C. Alexandrou, S. Bacchio, M. Constantinou, J. Finkenrath, K. Hadjiyiannakou, K. Jansen, G. Koutsou, and A. Vaquero Aviles-Casco, Nucleon axial, tensor, and scalar charges and σ-terms in lattice QCD, Phys. Rev. D 102, 054517 (2020), arXiv: 1909.00485 [hep-lat]
CrossRef
ADS
Google scholar
|
[49] |
M. Gong, et al. (XQCD), Strangeness and charmness content of the nucleon from overlap fermions on 2+1- flavor domain-wall fermion configurations, Phys. Rev. D 88, 014503 (2013), arXiv: 1304.1194 [hep-ph]
CrossRef
ADS
Google scholar
|
[50] |
X.-D. Ji, Breakup of hadron masses and energy– momentum tensor of QCD, Phys. Rev. D 52, 271 (1995), arXiv: hep-ph/9502213
CrossRef
ADS
Google scholar
|
[51] |
H. Pagels, Energy–momentum structure form factors of particles, Phys. Rev. 144, 1250 (1966)
CrossRef
ADS
Google scholar
|
[52] |
X.-D. Ji, W. Melnitchouk, and X. Song, Study of offforward parton distributions, Phys. Rev. D 56, 5511 (1997), arXiv: hep-ph/9702379
CrossRef
ADS
Google scholar
|
[53] |
R. Wang, W. Kou, and X. Chen, Extraction of the proton mass radius from the vector-meson photoproductions near thresholds, arXiv: 2102.01610 [hep-ph], 2021
|
[54] |
K. A. Mamo and I. Zahed, Nucleon mass radii and distribution: Holographic QCD, lattice QCD and GlueX data, arXiv: 2103.03186 [hep-ph] (2021)
|
[55] |
P. Hagler, et al. (LHPC), Nucleon generalized parton distributions from full lattice QCD, Phys. Rev. D 77, 094502 (2008), arXiv: 0705.4295 [hep-lat]
CrossRef
ADS
Google scholar
|
[56] |
P. Hagler, Hadron structure from lattice quantum chromodynamics, Phys. Rep. 490, 49 (2010), arXiv: 0912.5483 [hep-lat]
CrossRef
ADS
Google scholar
|
[57] |
P. E. Shanahan and W. Detmold, Gluon gravitational form factors of the nucleon and the pion from lattice QCD, Phys. Rev. D 99, 014511 (2019), arXiv: 1810.04626 [hep-lat]
CrossRef
ADS
Google scholar
|
[58] |
M. V. Polyakov and P. Schweitzer, Forces inside hadrons: Pressure, surface tension, mechanical radius, and all that, Int. J. Mod. Phys. A33, 1830025 (2018), arXiv: 1805.06596 [hep-ph]
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |