Efficient quantum simulation of open quantum dynamics at various Hamiltonians and spectral densities

Na-Na Zhang (张娜娜), Ming-Jie Tao (陶明杰), Wan-Ting He (何宛亭), Xin-Yu Chen (陈鑫宇), Xiang-Yu Kong (孔祥宇), Fu-Guo Deng (邓富国), Neill Lambert, Qing Ai (艾清)

PDF(3982 KB)
PDF(3982 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (5) : 51501. DOI: 10.1007/s11467-021-1064-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Efficient quantum simulation of open quantum dynamics at various Hamiltonians and spectral densities

Author information +
History +

Abstract

Simulation of open quantum dynamics for various Hamiltonians and spectral densities are ubiquitous for studying various quantum systems. On a quantum computer, only log2N qubits are required for the simulation of an N-dimensional quantum system, hence simulation in a quantum computer can greatly reduce the computational complexity compared with classical methods. Recently, a quantum simulation approach was proposed for studying photosynthetic light harvesting [npj Quantum Inf. 4, 52 (2018)]. In this paper, we apply the approach to simulate the open quantum dynamics of various photosynthetic systems. We show that for Drude–Lorentz spectral density, the dimerized geometries with strong couplings within the donor and acceptor clusters respectively exhibit significantly improved efficiency. We also demonstrate that the overall energy transfer can be optimized when the energy gap between the donor and acceptor clusters matches the optimum of the spectral density. The effects of different types of baths, e.g., Ohmic, sub-Ohmic, and super-Ohmic spectral densities are also studied. The present investigations demonstrate that the proposed approach is universal for simulating the exact quantum dynamics of photosynthetic systems.

Video abstract

Keywords

nuclear magnetic resonance / quantum simulation / open quantum system

Cite this article

Download citation ▾
Na-Na Zhang (张娜娜), Ming-Jie Tao (陶明杰), Wan-Ting He (何宛亭), Xin-Yu Chen (陈鑫宇), Xiang-Yu Kong (孔祥宇), Fu-Guo Deng (邓富国), Neill Lambert, Qing Ai (艾清). Efficient quantum simulation of open quantum dynamics at various Hamiltonians and spectral densities. Front. Phys., 2021, 16(5): 51501 https://doi.org/10.1007/s11467-021-1064-y

References

[1]
G. R. Fleming and R. Grondelle, The primary steps of photosynthesis, Phys. Today 47(2), 48 (1994)
CrossRef ADS Google scholar
[2]
Y. C. Cheng and G. R. Fleming, Dynamics of light harvesting in photosynthesis, Annu. Rev. Phys. Chem. 60(1), 241 (2009)
CrossRef ADS Google scholar
[3]
M. J. Tao, N. N. Zhang, P. Y. Wen, F. G. Deng, Q. Ai, and G. L. Long, Coherent and incoherent theories for photosynthetic energy transfer, Sci. Bull. (Beijing) 65(4), 318 (2020)
CrossRef ADS Google scholar
[4]
M. J. Tao, M. Hua, N. N. Zhang, W. T. He, Q. Ai, and F. G. Deng, Quantum simulation of clustered photosynthetic light harvesting in a superconducting quantum circuit, Quantum Eng. 2(3), e53 (2020)
CrossRef ADS Google scholar
[5]
N. Lambert, Y. N. Chen, Y. C. Cheng, C. M. Li, G. Y. Chen, and F. Nori, Quantum biology, Nat. Phys. 9(1), 10 (2013)
CrossRef ADS Google scholar
[6]
J. S. Cao, R. J. Cogdell, D. F. Coker, H. G. Duan, J. Hauer, U. Kleinekathöfer, T. L. C. Jansen, T. Mančal, R. J. D. Miller, J. P. Ogilvie, V. I. Prokhorenko, T. Renger, H. S. Tan, R. Tempelaar, M. Thorwart, E. Thyrhaug, S. Westenhoff, and D. Zigmantas, Quantum biology revisited, Sci. Adv. 6(14), eaaz4888 (2020)
CrossRef ADS Google scholar
[7]
G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mančal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems, Nature 446(7137), 782 (2007)
CrossRef ADS Google scholar
[8]
H. Lee, Y. C. Cheng, and G. R. Fleming, Coherence dynamics in photosynthesis: Protein protection of excitonic coherence, Science 316(5830), 1462 (2007)
CrossRef ADS Google scholar
[9]
P. G. Wolynes, Some quantum weirdness in physiology, Proc. Natl. Acad. Sci. USA 106(41), 17247 (2009)
CrossRef ADS Google scholar
[10]
E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, Coherently wired lightharvesting in photosynthetic marine algae at ambient temperature, Nature 463(7281), 644 (2010)
CrossRef ADS Google scholar
[11]
R. Hildner, D. Brinks, J. B. Nieder, R. J. Cogdell, and N. F. van Hulst, Quantum coherent energy transfer over varying pathways in single light-harvesting complexes, Science 340(6139), 1448 (2013)
CrossRef ADS Google scholar
[12]
M. J. Tao, Q. Ai, F. G. Deng, and Y. C. Cheng, Proposal for probing energy transfer pathway by single-molecule pump-dump experiment, Sci. Rep. 6(1), 27535 (2016)
CrossRef ADS Google scholar
[13]
L. G. Mourokh and F. Nori, Energy transfer efficiency in the chromophore network strongly coupled to a vibrational mode, Phys. Rev. E 92(5), 052720 (2015)
CrossRef ADS Google scholar
[14]
H. P. Breuer, E. M. Laine, J. Piilo, and B. Vacchini, Non-Markovian dynamics in open quantum systems, Rev. Mod. Phys. 88(2), 021002 (2016)
CrossRef ADS Google scholar
[15]
I. de Vega and D. Alonso, Dynamics of non-Markovian open quantum systems, Rev. Mod. Phys. 89(1), 015001 (2017)
CrossRef ADS Google scholar
[16]
L. Li, M. J. W. Hall, and H. M. Wiseman, Concepts of quantum non-Markovianity: A hierarchy, Phys. Rep. 759, 1 (2018)
CrossRef ADS Google scholar
[17]
H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford University Press, New York, 2007
CrossRef ADS Google scholar
[18]
A. Ishizaki and G. R. Fleming, On the adequacy of the Redfield equation and related approaches to the study of quantum dynamics in electronic energy transfer, J. Chem. Phys. 130(23), 234110 (2009)
CrossRef ADS Google scholar
[19]
G. Watanabe, Heat engines using small quantum systems, AAPPS Bull. 29, 30 (2019)
[20]
J. X. Zhao, J. J. Cheng, Y. Q. Chu, Y. X. Wang, F. G. Deng, and Q. Ai, Hyperbolic metamaterial using chiral molecules, Sci. China Phys. Mech. Astron. 63(6), 260311 (2020)
CrossRef ADS Google scholar
[21]
Y. Tanimura, Stochastic Liouville, Langevin, Fokker-Planck, and master equation approaches to quantum dissipative systems, J. Phys. Soc. Jpn. 75(8), 082001 (2006)
CrossRef ADS Google scholar
[22]
A. Ishizaki and G. R. Fleming, Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: Reduced hierarchy equation approach, J. Chem. Phys. 130(23), 234111 (2009)
CrossRef ADS Google scholar
[23]
Y. Yan, F. Yan, Y. Liu, and J. Shao, Hierarchical approach based on stochastic decoupling to dissipative systems, Chem. Phys. Lett. 395(4–6), 216 (2004)
CrossRef ADS Google scholar
[24]
Y. Zhou, Y. Yan, and J. Shao, Stochastic simulation of quantum dissipative dynamics, Europhys. Lett. 72(3), 334 (2005)
CrossRef ADS Google scholar
[25]
J. Shao, Decoupling quantum dissipation interaction via stochastic fields, J. Chem. Phys. 120(11), 5053 (2004)
CrossRef ADS Google scholar
[26]
Z. F. Tang, X. L. Ouyang, Z. H. Gong, H. B. Wang, and J. L. Wu, Extended hierarchy equation of motion for the spin-boson model, J. Chem. Phys. 143(22), 224112 (2015)
CrossRef ADS Google scholar
[27]
H. Liu, L. L. Zhu, S. M. Bai, and Q. Shi, Reduced quantum dynamics with arbitrary bath spectral densities: Hierarchical equations of motion based on several different bath decomposition schemes, J. Chem. Phys. 140(13), 134106 (2014)
CrossRef ADS Google scholar
[28]
M. Schröder, M. Schreiber, and U. Kleinekathöfer, Reduced dynamics of coupled harmonic and anharmonic oscillators using higherorder perturbation theory, J. Chem. Phys. 126(11), 114102 (2007)
CrossRef ADS Google scholar
[29]
A. Olaya-Castro, C. F. Lee, F. F. Olsen, and N. F. Johnson, Efficiency of energy transfer in a light-harvesting system under quantum coherence, Phys. Rev. B 78(8), 085115 (2008)
CrossRef ADS Google scholar
[30]
Q. Ai, Y. J. Fan, B. Y. Jin, and Y. C. Cheng, An efficient quantum jump method for coherent energy transfer dynamics in photosynthetic systems under the influence of laser fields, New J. Phys. 16(5), 053033 (2014)
CrossRef ADS Google scholar
[31]
S. Jang, Y. C. Cheng, D. R. Reichman, and J. D. Eaves, Theory of coherent resonance energy transfer, J. Chem. Phys. 129(10), 101104 (2008)
CrossRef ADS Google scholar
[32]
M. Yang and G. R. Fleming, Influence of phonons on exciton transfer dynamics: Comparison of the Redfield, F rster, and modified Redfield equations, Chem. Phys. 282(1), 163 (2002)
CrossRef ADS Google scholar
[33]
Y. H. Hwang-Fu, W. Chen, and Y. C. Cheng, A coherent modified Redfield theory for excitation energy transfer in molecular aggregates, Chem. Phys. 447, 46 (2015)
CrossRef ADS Google scholar
[34]
H. Dong, D. Z. Xu, J. F. Huang, and C. P. Sun, Coherent excitation transfer via the dark-state channel in a bionic system, Light Sci. Appl. 1(3), e2 (2012)
CrossRef ADS Google scholar
[35]
S. Mostarda, F. Levi, D. Prada-Gracia, F. Mintert, and F. Rao, Structure-dynamics relationship in coherent transport through disordered systems, Nat. Commun. 4(1), 2296 (2013)
CrossRef ADS Google scholar
[36]
G. C. Knee, P. Rowe, L. D. Smith, A. Troisi, and A. Datta, Structure-dynamics relation in physically-plausible multichromophore systems, J. Phys. Chem. Lett. 8(10), 2328 (2017)
CrossRef ADS Google scholar
[37]
T. Zech, R. Mulet, T. Wellens, and A. Buchleitner, Centrosymmetry enhances quantum transport in disordered molecular networks, New J. Phys. 16(5), 055002 (2014)
CrossRef ADS Google scholar
[38]
L. Xu, Z. R. Gong, M. J. Tao, and Q. Ai, Artificial light harvesting by dimerized Möbius ring, Phys. Rev. E 97(4), 042124 (2018)
CrossRef ADS Google scholar
[39]
Y. H. Lui, B. Zhang, and S. Hu, Rational design of photoelectrodes for photoelectrochemical water splitting and CO2 reduction, Front. Phys. 14(5), 53402 (2019)
CrossRef ADS Google scholar
[40]
L. Ju, M. Bie, X. Zhang, X. Chen, and L. Kou, Twodimensional Janus van der Waals heterojunctions: A review of recent research progresses, Front. Phys. 16(1), 13201 (2021)
CrossRef ADS Google scholar
[41]
B. X. Wang, M. J. Tao, Q. Ai, T. Xin, N. Lambert, D. Ruan, Y. C. Cheng, F. Nori, F. G. Deng, and G. L. Long, Efficient quantum simulation of photosynthetic light harvesting, npj Quantum Inf. 4, 52 (2018)
CrossRef ADS Google scholar
[42]
Q. Ai, T. C. Yen, B. Y. Jin, and Y. C. Cheng, Clustered geometries exploiting quantum coherence effects for efficient energy transfer in light harvesting, J. Phys. Chem. Lett. 4(15), 2577 (2013)
CrossRef ADS Google scholar
[43]
Q. Shi, L. Chen, G. Nan, R. X. Xu, and Y. J. Yan, Efficient hierarchical liouville space propagetor to quantum dissipative dynamics, J. Chem. Phys. 130(8), 084105 (2009)
CrossRef ADS Google scholar
[44]
I. Buluta and F. Nori, Quantum simulators, Science 326(5949), 108 (2009)
CrossRef ADS Google scholar
[45]
I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation, Rev. Mod. Phys. 86(1), 153 (2014)
CrossRef ADS Google scholar
[46]
J. Xu, S. Li, T. Chen, and Z.Y. Xue, Nonadiabatic geometric quantum computation with optimal control on superconducting circuits, Front. Phys. 15(4), 41503 (2020)
CrossRef ADS Google scholar
[47]
Z. D. Ye, D. Pan, Z. Sun, C. G. Du, L. G. Yin, and G. L. Long, Generic security analysis framework for quantum secure direct communication, Front. Phys. 16(2), 21503 (2021)
CrossRef ADS Google scholar
[48]
Y. F. Yan, L. Zhou, W. Zhong, and Y. B. Sheng, Measurementdevice-independent quantum key distribution of multiple degrees of freedom of a single photon, Front. Phys. 16(1), 11501 (2021)
CrossRef ADS Google scholar
[49]
M. Rey, A. W. Chin, S. F. Huelga, and M. B. Plenio, Exploiting structured environments for efficient energy transfer: The phonon antenna mechanism, J. Phys. Chem. Lett. 4(6), 903 (2013)
CrossRef ADS Google scholar
[50]
D. J. Gorman, B. Hemmerling, E. Megidish, S. A. Moeller, P. Schindler, M. Sarovar, and H. Haeffner, Engineering vibrationally assisted energy transfer in a trapped-ion quantum simulator, Phys. Rev. X 8(1), 011038 (2018)
CrossRef ADS Google scholar
[51]
Y. Chang and Y. C. Cheng, On the accuracy of coherent modified Redfield theory in simulating excitation energy transfer dynamics, J. Chem. Phys. 142(3), 034109 (2015)
CrossRef ADS Google scholar
[52]
C. Meier and D. J. Tannor, Non-Markovian evolution of the density operator in the presence of strong laser fields, J. Chem. Phys. 111(8), 3365 (1999)
CrossRef ADS Google scholar
[53]
A. Soare, H. Ball, D. Hayes, J. Sastrawan, M. C. Jarratt, J. J. McLoughlin, X. Zhen, T. J. Green, and M. J. Biercuk, Experimental noise filtering by quantum control, Nat. Phys. 10(11), 825 (2014)
CrossRef ADS Google scholar
[54]
A. Soare, H. Ball, D. Hayes, X. Zhen, M. C. Jarratt, J. Sastrawan, H. Uys, and M. J. Biercuk, Experimental bath engineering for quantitative studies of quantum control, Phys. Rev. A 89(4), 042329 (2014)
CrossRef ADS Google scholar
[55]
N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, and S. J. Glaser, Optimal control of coupled spin dynamics: Design of NMR pulse sequences by gradient ascent algorithms, J. Magn. Reson. 172(2), 296 (2005)
CrossRef ADS Google scholar
[56]
J. Li, X. D. Yang, X. H. Peng, and C. P. Sun, Hybrid quantum-classical approach to quantum optimal control, Phys. Rev. Lett. 118(15), 150503 (2017)
CrossRef ADS Google scholar
[57]
P. Fulde, Wavefunctions for extended electron systems, AAPPS Bull. 29, 50 (2019)
[58]
L. Valkunas, D. Abramavicius, and T. Mančal, Molecular Excitation Dynamics and Relaxation: Quantum Theory and Spectroscopy, Wiley-VCH, Weinheim, Germany, 2013
CrossRef ADS Google scholar
[59]
A. Ishizaki, and G. R. Fleming, Theoretical examination of quantum coherence in a photosythetic system at physiological temperature, Proc. Natl. Acad. Sci. USA 106(41), 17255 (2009)
CrossRef ADS Google scholar
[60]
W. Jiang, F. Z. Wu, and G. J. Yang, Non-Markovian entanglement dynamics of open quantum systems with continuous measurement feedback, Phys. Rev. A 98(5), 052134 (2018)
CrossRef ADS Google scholar
[61]
X. L. Zhen, F. H. Zhang, G. Y. Feng, L. Hang, and G. L. Long, Optimal experimental dynamical decoupling of both longitudinal and transverse relaxations, Phys. Rev. A 93(2), 022304 (2016)
CrossRef ADS Google scholar
[62]
Y. H. Ma, H. Dong, H. T. Quan, and C. P. Sun, The uniqueness of the integration factor associated with the exchanged heat in thermodynamics, Fundamental Research 1(1), 6 (2021)
CrossRef ADS Google scholar
[63]
A. J. Leggett, S. Chakravarty, A. Dorsey, M. Fisher, A. Garg, and W. Zwerger, Dynamics of the dissipative twostate system, Rev. Mod. Phys. 59(1), 1 (1987)
CrossRef ADS Google scholar
[64]
U. Weiss, Quantum Dissipative Systems, World Scientific, Singapore, 2008
CrossRef ADS Google scholar
[65]
A. W. Chin, S. F. Huelga, and M. B. Plenio, Quantum metrology in non-Markovian environments, Phys. Rev. Lett. 109(23), 233601 (2012)
CrossRef ADS Google scholar
[66]
H. G. Duan, V. I. Prokhorenko, E. Wientjes, R. Croce, M. Thorwart, and R. J. D. Miller, Primary charge separation in the photosystem II reaction center revealed by a global analysis of the two-dimensional electronic spectra, Sci. Rep. 7(1), 12347 (2017)
CrossRef ADS Google scholar
[67]
K. L. M. Lewis, F. D. Fuller, J. A. Myers, C. F. Yocum, D. Abramavicius, and J. P. Ogilvie, Simulations of the twodimensional electronic spectroscopy of the photosystem II reaction center, J. Phys. Chem. A 117(1), 34 (2013)
CrossRef ADS Google scholar
[68]
L. Zhang, D. A. Silva, H. D. Zhang, A. Yue, Y. J. Yan, and X. H. Huang, Dynamic protein conformations preferentially drive energy transfer along the active chain of the photosystem II reaction centre, Nat. Commun. 5(1), 4170 (2014)
CrossRef ADS Google scholar
[69]
H. Robbins, A remark on Stirling’s formula, Am. Math. Mon. 62, 26 (1955)
CrossRef ADS Google scholar
[70]
V. I. Novoderezhkin, M. A. Palacios, H. van Amerongen, and R. van Grondelle, Energy-transfer dynamics in the LHCII complex of higher plants: Modified Redfield approach, J. Phys. Chem. B 108(29), 10363 (2004)
CrossRef ADS Google scholar
[71]
J. W. Goodman, Statistical Optics, 2nd Ed., Wiley, Hoboken, NJ, 2015
[72]
D. W. Lu, N. Y. Xu, R. X. Xu, H. W. Chen, J. B. Gong, X. H. Peng, and J. F. Du, Simulation of chemical isomerization reaction dynamics on a NMR quantum simulator, Phys. Rev. Lett. 107(2), 020501 (2011)
CrossRef ADS Google scholar
[73]
I. L. Chuang, L. M. K. Vandersypen, X. L. Zhou, D. W. Leung, and S. Lloyd, Experimental realization of a quantum algorithm, Nature 393(6681), 143 (1998)
CrossRef ADS Google scholar
[74]
L. M. K. Vandersypen and I. Chuang, NMR techniques for quantum control and computation, Rev. Mod. Phys. 76(4), 1037 (2005)
CrossRef ADS Google scholar
[75]
E. Knill, I. Chuang, and R. Laflamme, Effective pure states for bulk quantum computation, Phys. Rev. A 57(5), 3348 (1998)
CrossRef ADS Google scholar
[76]
D. G. Cory, M. D. Price, and T. F. Havel, Nuclear magnetic resonance spectroscopy: An experimentally accessible paradigm for quantum computing, Physica D 120(1–2), 82 (1998)
CrossRef ADS Google scholar
[77]
J. S. Lee, The quantum state tomography on an NMR system, Phys. Lett. A 305(6), 349 (2002)
CrossRef ADS Google scholar
[78]
D. W. Lu, T. Xin, N. K. Yu, Z. F. Ji, J. X. Chen, G. L. Long, J. Baugh, X. H. Peng, B. Zeng, and R. Laflamme, Tomography is necessary for universal entanglement detection with single-copy observables, Phys. Rev. Lett. 116(23), 230501 (2016)
CrossRef ADS Google scholar
[79]
T. Xin, D. W. Lu, J. Klassen, N. K. Yu, Z. F. Ji, J. X. Chen, X. Ma, G. L. Long, B. Zeng, and R. Laflamme, Quantum state tomography via reduced density matrices, Phys. Rev. Lett. 118(2), 020401 (2017)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(3982 KB)

Accesses

Citations

Detail

Sections
Recommended

/