Quantum deleting and cloning in a pseudo-unitary system

Yu-Cheng Chen , Ming Gong , Peng Xue , Hai-Dong Yuan , Cheng-Jie Zhang

Front. Phys. ›› 2021, Vol. 16 ›› Issue (5) : 53601

PDF (650KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (5) : 53601 DOI: 10.1007/s11467-021-1063-z
RESEARCH ARTICLE

Quantum deleting and cloning in a pseudo-unitary system

Author information +
History +
PDF (650KB)

Abstract

In conventional quantum mechanics, quantum no-deleting and no-cloning theorems indicate that two different and nonorthogonal states cannot be perfectly and deterministically deleted and cloned, respectively. Here, we investigate the quantum deleting and cloning in a pseudo-unitary system. We first present a pseudo-Hermitian Hamiltonian with real eigenvalues in a two-qubit system. By using the pseudo-unitary operators generated from this pseudo-Hermitian Hamiltonian, we show that it is possible to delete and clone a class of two different and nonorthogonal states, and it can be generalized to arbitrary two different and nonorthogonal pure qubit states. Furthermore, state discrimination, which is strongly related to quantum no-cloning theorem, is also discussed. Last but not least, we simulate the pseudo-unitary operators in conventional quantum mechanics with post-selection, and obtain the success probability of simulations. Pseudo-unitary operators are implemented with a limited efficiency due to the post-selections. Thus, the success probabilities of deleting and cloning in the simulation by conventional quantum mechanics are less than unity, which maintain the quantum no-deleting and no-cloning theorems.

Keywords

quantum deleting / quantum cloning / pseudo-unitary

Cite this article

Download citation ▾
Yu-Cheng Chen, Ming Gong, Peng Xue, Hai-Dong Yuan, Cheng-Jie Zhang. Quantum deleting and cloning in a pseudo-unitary system. Front. Phys., 2021, 16(5): 53601 DOI:10.1007/s11467-021-1063-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. K. Pati and S. L. Braunstein, Impossibility of deleting an unknown quantum state, Nature 404(6774), 164 (2000)

[2]

W. K. Wootters and W. H. Zurek, A single quantum cannot be cloned, Nature 299(5886), 802 (1982)

[3]

D. Dieks, Communication by EPR devices, Phys. Lett. A 92(6), 271 (1982)

[4]

V. Scarani, S. Iblisdir, N. Gisin, and A. Acín, Quantum cloning, Rev. Mod. Phys. 77(4), 1225 (2005)

[5]

H. Fan, Y. N. Wang, L. Jing, J. D. Yue, H. D. Shi, Y. L. Zhang, and L. Z. Mu, Quantum cloning machines and the applications, Phys. Rep. 544(3), 241 (2014)

[6]

H. P. Yuen, Amplification of quantum states and noiseless photon amplifiers, Phys. Lett. A 113(8), 405 (1986)

[7]

L. M. Duan and G. C. Guo, Probabilistic cloning and identification of linearly independent quantum states, Phys. Rev. Lett. 80(22), 4999 (1998)

[8]

C. M. Bender and S. Boettcher, Real spectra in Non- Hermitian Hamiltonians having PT symmetry, Phys. Rev. Lett. 80(24), 5243 (1998)

[9]

C. M. Bender, S. Boettcher, and P. N. Meisinger, PT symmetric quantum mechanics, J. Math. Phys. 40(5), 2201 (1999)

[10]

C. M. Bender, D. C. Brody, and H. F. Jones, Complex extension of quantum mechanics, Phys. Rev. Lett. 89(27), 270401 (2002)

[11]

A. Ruschhaupt, F. Delgado, and J. G. Muga, Physical realization of PT-symmetric potential scattering in a planar slab waveguide, J. Phys. A 38(9), L171 (2005)

[12]

S. Klaiman, U. Günther, and N. Moiseyev, Visualization of branch points in PT-symmetric waveguides, Phys. Rev. Lett. 101(8), 080402 (2008)

[13]

A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, Observation of PT-symmetry breaking in complex optical potentials, Phys. Rev. Lett. 103(9), 093902 (2009)

[14]

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, Observation of parity-time symmetry in optics, Nat. Phys. 6(3), 192 (2010)

[15]

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies, Nat. Mater. 12(2), 108 (2013)

[16]

L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, Nonreciprocal light propagation in a silicon photonic circuit, Science 333(6043), 729 (2011)

[17]

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Parity–time-symmetric whispering-gallery microcavities, Nat. Phys. 10(5), 394 (2014)

[18]

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, Parity–time symmetry and variable optical isolation in active-passive-coupled microresonators, Nat. Photonics 8(7), 524 (2014)

[19]

Y. D. Chong, L. Ge, and A. D. Stone, PT-symmetry breaking and laser-absorber modes in optical scattering systems, Phys. Rev. Lett. 106(9), 093902 (2011)

[20]

M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci, and S. Rotter, Pump-induced exceptional points in lasers, Phys. Rev. Lett. 108(17), 173901 (2012)

[21]

M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Schöberl, H. E. Türeci, G. Strasser, K. Unterrainer, and S. Rotter, Reversing the pump dependence of a laser at an exceptional point, Nat. Commun. 5(1), 4034 (2014)

[22]

L. Feng, Z. J. Wong, R. M. Ma, Y. Wang, and X. Zhang, Single-mode laser by parity–time symmetry breaking, Science 346(6212), 972 (2014)

[23]

H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, Parity–time symmetric microring lasers, Science 346(6212), 975 (2014)

[24]

A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, Parity–time synthetic photonic lattices, Nature 488(7410), 167 (2012)

[25]

S. Croke, PT-symmetric Hamiltonians and their application in quantum information, Phys. Rev. A 91(5), 052113 (2015)

[26]

C. M. Bender, D. C. Brody, H. F. Jones, and B. K. Meister, Faster than Hermitian quantum mechanics, Phys. Rev. Lett. 98(4), 040403 (2007)

[27]

C. M. Bender, D. C. Brody, J. Caldeira, U. Günther, B. K. Meister, and B. F. Samsonov, PT-symmetric quantum state discrimination, Phil. Trans. R. Soc. A 371(1989), 20120160 (2013)

[28]

Y. C. Lee, M. H. Hsieh, S. T. Flammia, and R. K. Lee, Local PT symmetry violates the no-signaling principle, Phys. Rev. Lett. 112(13), 130404 (2014)

[29]

J. S. Tang, Y. T. Wang, S. Yu, D. Y. He, J. S. Xu, B. H. Liu, G. Chen, Y. N. Sun, K. Sun, Y. J. Han, C. F. Li, and G. C. Guo, Experimental investigation of the nosignalling principle in parity-time symmetric theory using an open quantum system, Nat. Photonics 10(10), 642 (2016)

[30]

Q. Li, C. J. Zhang, Z. D. Cheng, W. Z. Liu, J. F. Wang, F. F. Yan, Z. H. Lin, Y. Xiao, K. Sun, Y. T. Wang, J. S. Tang, J. S. Xu, C. F. Li, and G. C. Guo, Experimental simulation of anti-parity–time symmetric Lorentz dynamics, Optica 6(1), 67 (2019)

[31]

X. Zhan, K. Wang, L. Xiao, Z. Bian, Y. Zhang, B. C. Sanders, C. Zhang, and P. Xue, Experimental quantum cloning in a pseudo-unitary system, Phys. Rev. A 101, 010302(R) (2020)

[32]

A. Mostafazadeh, Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian, J. Math. Phys. 43(1), 205 (2002)

[33]

A. Mostafazadeh, Pseudo-Hermiticity versus PTsymmetry (II): A complete characterization of non-Hermitian Hamiltonians with a real spectrum, J. Math. Phys. 43(5), 2814 (2002)

[34]

A. Mostafazadeh, Pseudo-Hermiticity versus PTsymmetry (III): Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries, J. Math. Phys. 43(8), 3944 (2002)

[35]

A. Mostafazadeh, Quantum Brachistochrone problem and the geometry of the state space in pseudo-Hermitian quantum mechanics, Phys. Rev. Lett. 99(13), 130502 (2007)

[36]

U. Günther and B. F. Samsonov, Naimark-dilated PTsymmetric Brachistochrone, Phys. Rev. Lett. 101(23), 230404 (2008)

[37]

U. Günther and B. F. Samsonov, ü-symmetric brachistochrone problem, Lorentz boosts, and nonunitary operator equivalence classes, Phys. Rev. A 78(4), 042115 (2008)

[38]

M. Znojil, Is ü-symmetric quantum theory false as a fundamental theory? Acta Polytech. 56(3), 254 (2016)

[39]

D. C. Brody, Consistency of PT-symmetric quantum mechanics, J. Phys. A 49(10), 10LT03 (2016)

[40]

C. W. Helstrom, Quantum Detection and Estimation Theory, Academic, 1976

[41]

S. M. Barnett and S. Croke, Quantum state discrimination, Adv. Opt. Photonics 1(2), 238 (2009)

[42]

R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (650KB)

887

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/