Quantum deleting and cloning in a pseudo-unitary system

Yu-Cheng Chen, Ming Gong, Peng Xue, Hai-Dong Yuan, Cheng-Jie Zhang

PDF(650 KB)
PDF(650 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (5) : 53601. DOI: 10.1007/s11467-021-1063-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Quantum deleting and cloning in a pseudo-unitary system

Author information +
History +

Abstract

In conventional quantum mechanics, quantum no-deleting and no-cloning theorems indicate that two different and nonorthogonal states cannot be perfectly and deterministically deleted and cloned, respectively. Here, we investigate the quantum deleting and cloning in a pseudo-unitary system. We first present a pseudo-Hermitian Hamiltonian with real eigenvalues in a two-qubit system. By using the pseudo-unitary operators generated from this pseudo-Hermitian Hamiltonian, we show that it is possible to delete and clone a class of two different and nonorthogonal states, and it can be generalized to arbitrary two different and nonorthogonal pure qubit states. Furthermore, state discrimination, which is strongly related to quantum no-cloning theorem, is also discussed. Last but not least, we simulate the pseudo-unitary operators in conventional quantum mechanics with post-selection, and obtain the success probability of simulations. Pseudo-unitary operators are implemented with a limited efficiency due to the post-selections. Thus, the success probabilities of deleting and cloning in the simulation by conventional quantum mechanics are less than unity, which maintain the quantum no-deleting and no-cloning theorems.

Keywords

quantum deleting / quantum cloning / pseudo-unitary

Cite this article

Download citation ▾
Yu-Cheng Chen, Ming Gong, Peng Xue, Hai-Dong Yuan, Cheng-Jie Zhang. Quantum deleting and cloning in a pseudo-unitary system. Front. Phys., 2021, 16(5): 53601 https://doi.org/10.1007/s11467-021-1063-z

References

[1]
A. K. Pati and S. L. Braunstein, Impossibility of deleting an unknown quantum state, Nature 404(6774), 164 (2000)
CrossRef ADS Google scholar
[2]
W. K. Wootters and W. H. Zurek, A single quantum cannot be cloned, Nature 299(5886), 802 (1982)
CrossRef ADS Google scholar
[3]
D. Dieks, Communication by EPR devices, Phys. Lett. A 92(6), 271 (1982)
CrossRef ADS Google scholar
[4]
V. Scarani, S. Iblisdir, N. Gisin, and A. Acín, Quantum cloning, Rev. Mod. Phys. 77(4), 1225 (2005)
CrossRef ADS Google scholar
[5]
H. Fan, Y. N. Wang, L. Jing, J. D. Yue, H. D. Shi, Y. L. Zhang, and L. Z. Mu, Quantum cloning machines and the applications, Phys. Rep. 544(3), 241 (2014)
CrossRef ADS Google scholar
[6]
H. P. Yuen, Amplification of quantum states and noiseless photon amplifiers, Phys. Lett. A 113(8), 405 (1986)
CrossRef ADS Google scholar
[7]
L. M. Duan and G. C. Guo, Probabilistic cloning and identification of linearly independent quantum states, Phys. Rev. Lett. 80(22), 4999 (1998)
CrossRef ADS Google scholar
[8]
C. M. Bender and S. Boettcher, Real spectra in Non- Hermitian Hamiltonians having PT symmetry, Phys. Rev. Lett. 80(24), 5243 (1998)
CrossRef ADS Google scholar
[9]
C. M. Bender, S. Boettcher, and P. N. Meisinger, PT symmetric quantum mechanics, J. Math. Phys. 40(5), 2201 (1999)
CrossRef ADS Google scholar
[10]
C. M. Bender, D. C. Brody, and H. F. Jones, Complex extension of quantum mechanics, Phys. Rev. Lett. 89(27), 270401 (2002)
CrossRef ADS Google scholar
[11]
A. Ruschhaupt, F. Delgado, and J. G. Muga, Physical realization of PT-symmetric potential scattering in a planar slab waveguide, J. Phys. A 38(9), L171 (2005)
CrossRef ADS Google scholar
[12]
S. Klaiman, U. Günther, and N. Moiseyev, Visualization of branch points in PT-symmetric waveguides, Phys. Rev. Lett. 101(8), 080402 (2008)
CrossRef ADS Google scholar
[13]
A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, Observation of PT-symmetry breaking in complex optical potentials, Phys. Rev. Lett. 103(9), 093902 (2009)
CrossRef ADS Google scholar
[14]
C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, Observation of parity-time symmetry in optics, Nat. Phys. 6(3), 192 (2010)
CrossRef ADS Google scholar
[15]
L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies, Nat. Mater. 12(2), 108 (2013)
CrossRef ADS Google scholar
[16]
L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, Nonreciprocal light propagation in a silicon photonic circuit, Science 333(6043), 729 (2011)
CrossRef ADS Google scholar
[17]
B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Parity–time-symmetric whispering-gallery microcavities, Nat. Phys. 10(5), 394 (2014)
CrossRef ADS Google scholar
[18]
L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, Parity–time symmetry and variable optical isolation in active-passive-coupled microresonators, Nat. Photonics 8(7), 524 (2014)
CrossRef ADS Google scholar
[19]
Y. D. Chong, L. Ge, and A. D. Stone, PT-symmetry breaking and laser-absorber modes in optical scattering systems, Phys. Rev. Lett. 106(9), 093902 (2011)
CrossRef ADS Google scholar
[20]
M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci, and S. Rotter, Pump-induced exceptional points in lasers, Phys. Rev. Lett. 108(17), 173901 (2012)
CrossRef ADS Google scholar
[21]
M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Schöberl, H. E. Türeci, G. Strasser, K. Unterrainer, and S. Rotter, Reversing the pump dependence of a laser at an exceptional point, Nat. Commun. 5(1), 4034 (2014)
CrossRef ADS Google scholar
[22]
L. Feng, Z. J. Wong, R. M. Ma, Y. Wang, and X. Zhang, Single-mode laser by parity–time symmetry breaking, Science 346(6212), 972 (2014)
CrossRef ADS Google scholar
[23]
H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, Parity–time symmetric microring lasers, Science 346(6212), 975 (2014)
CrossRef ADS Google scholar
[24]
A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, Parity–time synthetic photonic lattices, Nature 488(7410), 167 (2012)
CrossRef ADS Google scholar
[25]
S. Croke, PT-symmetric Hamiltonians and their application in quantum information, Phys. Rev. A 91(5), 052113 (2015)
CrossRef ADS Google scholar
[26]
C. M. Bender, D. C. Brody, H. F. Jones, and B. K. Meister, Faster than Hermitian quantum mechanics, Phys. Rev. Lett. 98(4), 040403 (2007)
CrossRef ADS Google scholar
[27]
C. M. Bender, D. C. Brody, J. Caldeira, U. Günther, B. K. Meister, and B. F. Samsonov, PT-symmetric quantum state discrimination, Phil. Trans. R. Soc. A 371(1989), 20120160 (2013)
CrossRef ADS Google scholar
[28]
Y. C. Lee, M. H. Hsieh, S. T. Flammia, and R. K. Lee, Local PT symmetry violates the no-signaling principle, Phys. Rev. Lett. 112(13), 130404 (2014)
CrossRef ADS Google scholar
[29]
J. S. Tang, Y. T. Wang, S. Yu, D. Y. He, J. S. Xu, B. H. Liu, G. Chen, Y. N. Sun, K. Sun, Y. J. Han, C. F. Li, and G. C. Guo, Experimental investigation of the nosignalling principle in parity-time symmetric theory using an open quantum system, Nat. Photonics 10(10), 642 (2016)
CrossRef ADS Google scholar
[30]
Q. Li, C. J. Zhang, Z. D. Cheng, W. Z. Liu, J. F. Wang, F. F. Yan, Z. H. Lin, Y. Xiao, K. Sun, Y. T. Wang, J. S. Tang, J. S. Xu, C. F. Li, and G. C. Guo, Experimental simulation of anti-parity–time symmetric Lorentz dynamics, Optica 6(1), 67 (2019)
CrossRef ADS Google scholar
[31]
X. Zhan, K. Wang, L. Xiao, Z. Bian, Y. Zhang, B. C. Sanders, C. Zhang, and P. Xue, Experimental quantum cloning in a pseudo-unitary system, Phys. Rev. A 101, 010302(R) (2020)
CrossRef ADS Google scholar
[32]
A. Mostafazadeh, Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian, J. Math. Phys. 43(1), 205 (2002)
CrossRef ADS Google scholar
[33]
A. Mostafazadeh, Pseudo-Hermiticity versus PTsymmetry (II): A complete characterization of non-Hermitian Hamiltonians with a real spectrum, J. Math. Phys. 43(5), 2814 (2002)
CrossRef ADS Google scholar
[34]
A. Mostafazadeh, Pseudo-Hermiticity versus PTsymmetry (III): Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries, J. Math. Phys. 43(8), 3944 (2002)
CrossRef ADS Google scholar
[35]
A. Mostafazadeh, Quantum Brachistochrone problem and the geometry of the state space in pseudo-Hermitian quantum mechanics, Phys. Rev. Lett. 99(13), 130502 (2007)
CrossRef ADS Google scholar
[36]
U. Günther and B. F. Samsonov, Naimark-dilated PTsymmetric Brachistochrone, Phys. Rev. Lett. 101(23), 230404 (2008)
CrossRef ADS Google scholar
[37]
U. Günther and B. F. Samsonov, ü-symmetric brachistochrone problem, Lorentz boosts, and nonunitary operator equivalence classes, Phys. Rev. A 78(4), 042115 (2008)
CrossRef ADS Google scholar
[38]
M. Znojil, Is ü-symmetric quantum theory false as a fundamental theory? Acta Polytech. 56(3), 254 (2016)
CrossRef ADS Google scholar
[39]
D. C. Brody, Consistency of PT-symmetric quantum mechanics, J. Phys. A 49(10), 10LT03 (2016)
CrossRef ADS Google scholar
[40]
C. W. Helstrom, Quantum Detection and Estimation Theory, Academic, 1976
[41]
S. M. Barnett and S. Croke, Quantum state discrimination, Adv. Opt. Photonics 1(2), 238 (2009)
CrossRef ADS Google scholar
[42]
R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(650 KB)

Accesses

Citations

Detail

Sections
Recommended

/