P T-symmetry,Green function" /> P T-symmetry" /> P T-symmetry,Green function" />

An analytical solution for quantum scattering through a PT-symmetric delta potential

Ying-Tao Zhang , Shan Jiang , Qingming Li , Qing-Feng Sun

Front. Phys. ›› 2021, Vol. 16 ›› Issue (4) : 43503

PDF (774KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (4) : 43503 DOI: 10.1007/s11467-021-1061-1
RESEARCH ARTICLE

An analytical solution for quantum scattering through a PT-symmetric delta potential

Author information +
History +
PDF (774KB)

Abstract

We employ the Lippmann–Schwinger formalism to derive the analytical solutions of the transmission and reflection coefficients through a one-dimensional open quantum system, in which particle loss or gain on one lattice site located at x = 0, or particle loss and gain on the lattice sites located at x=±L2 are considered respectively. The gain and loss on the lattice site are modeled by the delta potential with positive and negative imaginary values. The analytical solution reveals the underlying physics that the sum of the transmission and reflection coefficients through an open quantum system (even a PT-symmetric open system) may not be 1, i.e., qualitatively explains that the number of particles is not conserved in an open quantum system. Furthermore, we find that the resonance states can be formed in the PT-symmetric delta potential, which is similar to the case of real delta potential. The results of our analysis can be treated as the starting point of studying quantum transport problems through a non-Hermitian system using Green’s function method, and more general cases for high-dimensional systems may be deduced by the same procedure.

Keywords

transmission / non-Hermitian / P T-symmetry')"> P T-symmetry / Green function

Cite this article

Download citation ▾
Ying-Tao Zhang, Shan Jiang, Qingming Li, Qing-Feng Sun. An analytical solution for quantum scattering through a PT-symmetric delta potential. Front. Phys., 2021, 16(4): 43503 DOI:10.1007/s11467-021-1061-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. M. Bender and S. Boettcher, Real spectra in non- Hermitian Hamiltonians having PT symmetry, Phys. Rev. Lett. 80(24), 5243 (1998)

[2]

C. M. Bender, D. C. Brody, and H. F. Jones, Complex extension of quantum mechanics, Phys. Rev. Lett. 89(27), 270401 (2002)

[3]

C. M. Bender, Making sense of non-Hermitian Hamiltonians, Rep. Prog. Phys. 70(6), 947 (2007)

[4]

A. Mostafazadeh, Pseudo-Hermiticity for a class of nondiagonalizable Hamiltonians, J. Math. Phys. 43(12), 6343 (2002)

[5]

A. Mostafazadeh, Pseudo-Hermiticity versus PTsymmetry (II): A complete characterization of non-Hermitian Hamiltonians with a real spectrum, J. Math. Phys. 43(5), 2814 (2002)

[6]

A. Mostafazadeh, Pseudo-Hermiticity versus PTsymmetry (III): Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries, J. Math. Phys. 43(8), 3944 (2002)

[7]

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, Observation of parity–time symmetry in optics, Nat. Phys. 6(3), 192 (2010)

[8]

S. Bittner, B. Dietz, U. Günther, H. L. Harney, M. Miski-Oglu, A. Richter, and F. Schäfer, PT symmetry and spontaneous symmetry breaking in a microwave billiard, Phys. Rev. Lett. 108(2), 024101 (2012)

[9]

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators, Nat. Photonics 8(7), 524 (2014)

[10]

L. Feng, Z. J. Wong, R. M. Ma, Y. Wang, and X. Zhang, Single-mode laser by parity–time symmetry breaking, Science 346(6212), 972 (2014)

[11]

H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, Parity–time-symmetric microring lasers, Science 346(6212), 975 (2014)

[12]

Y. Wu, B. Zhu, S. F. Hu, Z. Zhou, and H. H. Zhong, Floquet control of the gain and loss in a PT-symmetric optical coupler, Front. Phys. 12(1), 121102 (2017)

[13]

N. Bender, S. Factor, J. D. Bodyfelt, H. Ramezani, D. N. Christodoulides, F. M. Ellis, and T. Kottos, Observation of asymmetric transport in structures with active nonlinearities, Phys. Rev. Lett. 110(23), 234101 (2013)

[14]

S. Assawaworrarit, X. Yu, and S. Fan, Robust wireless power transfer using a nonlinear parity–time-symmetric circuit, Nature 546(7658), 387 (2017)

[15]

Y. Choi, C. Hahn, J. W. Yoon, and S. H. Song, Observation of an anti-PT-symmetric exceptional point and energy-difference conserving dynamics in electrical circuit resonators, Nat. Commun. 9(1), 2182 (2018)

[16]

Y. Wu, W. Liu, J. Geng, X. Song, X. Ye, C. K. Duan, X. Rong, and J. Du, Observation of parity–time symmetry breaking in a single-spin system, Science 364(6443), 878 (2019)

[17]

G. Lindblad, On the generators of quantum dynamical semigroups, Comm. Math. Phys. 48(2), 119 (1976)

[18]

V. Gorini, A. Kossakowski, and E. C. Sudarsahan, Completely positive dynamical semigroups of N-level systems, J. Math. Phys. 17(5), 821 (1976)

[19]

S. Diehl, E. Rico, M. A. Baranov, and P. Zoller, Topology by dissipation in atomic quantum wires, Nat. Phys. 7(12), 971 (2011)

[20]

F. Verstraete, M. M. Wolf, and J. I. Cirac, Quantum computation and quantum-state engineering driven by dissipation, Nat. Phys. 5(9), 633 (2009)

[21]

J. Dalibard, Y. Castin, and K. Molmer, Wave-function approach to dissipative processes in quantum optics, Phys. Rev. Lett. 68(5), 580 (1992)

[22]

H. J. Carmichael, Quantum trajectory theory for cascaded open systems, Phys. Rev. Lett. 70(15), 2273 (1993)

[23]

L. Jin and Z. Song, Physics counterpart of the PT non- Hermitian tight-binding chain, Phys. Rev. A 81(3), 032109 (2010)

[24]

A. E. Miroshnichenko, Nonlinear fano-Feshbach resonances, Phys. Rev. E 79(2), 026611 (2009)

[25]

L. Jin, and Z. Song, Hermitian scattering behavior for a non-Hermitian scattering center, Phys. Rev. A 85(1), 012111 (2012)

[26]

G. Zhang, X. Q. Li, X. Z. Zhang, and Z. Song, Transmission phase lapse in the non-Hermitian Aharonov–Bohm interferometer near the spectral singularity, Phys. Rev. A 91(1), 012116 (2015)

[27]

B. G. Zhu, R. , and S. Chen, PT symmetry in the non-Hermitian Su–Schrieffer–Heeger model with complex boundary potentials, Phys. Rev. A 89(6), 062102 (2014)

[28]

L. L. Zhang, G. H. Zhan, Z. Z. Li, and W. J. Gong, Effect of PT symmetry in a parallel double-quantum-dot structure, Phys. Rev. A 96(6), 062133 (2017)

[29]

L. L. Zhang, and W. J. Gong, Transport properties in a non-Hermitian triple-quantum-dot structure, Phys. Rev. A 95(6), 062123 (2017)

[30]

L. L. Zhang, Z. Z. Li, G. H. Zhan, G. Y. Yi, and W. J. Gong, Eigenenergies and quantum transport properties in a non-Hermitian quantum-dot chain with side-coupled dots, Phys. Rev. A 99(3), 032119 (2019)

[31]

K. L. Zhang, X. M. Yang, and Z. Song, Quantum transport in non-Hermitian impurity arrays, Phys. Rev. B 100(2), 024305 (2019)

[32]

P. O. Sukhachov and A. V. Balatsky, Non-Hermitian impurities in Dirac systems, Phys. Rev. Research 2(1), 013325 (2020)

[33]

Y. Liu, X. P. Jiang, J. Cao, and S. Chen, Non-Hermitian mobility edges in one-dimensional quasicrystals with parity–time symmetry, Phys. Rev. B 101(17), 174205 (2020)

[34]

C. Wang and X. R. Wang, Level statistics of extended states in random non-Hermitian Hamiltonians, Phys. Rev. B 101(16), 165114 (2020)

[35]

S. Datta, Quantum Transport: From Atoms to Transistors, Cambridge, New York: Cambridge University Press, 2005

[36]

E. N. Economou, Greens Functions in Quantum Physics, 3rd Ed., Springer-Verlag, Germany, 2006

[37]

Here we use the form of Green′s function G0(x, x′)=−imℏ2κeiκ|x−x′|. While the energy E expands into the complex energy E→E±i0, in fact there are two form solutions for the Green′s function G0±(x,x′)=−∓imℏ2κe±iκ|x−x′|. Here we only choose G0+(x,x′) as our solution because it can promise only the scattering waves traveling toward the positive direction exist in the limite x → ∞.

[38]

D. Boese, M. Lischka, and L. E. Reichl, Resonances in a two-dimensional electron waveguide with a single δ-function scatterer, Phys. Rev. B 61(8), 5632 (2000)

[39]

F. Erman, M. Gadella, and H. Uncu, One-dimensional semirelativistic Hamiltonian with multiple Dirac delta potentials, Phys. Rev. D 95(4), 045004 (2017)

[40]

F. Erman, M. Gadella, and H. Uncu, On scattering from the one-dimensional multiple Dirac delta potentials, Eur. J. Phys. 39(3), 035403 (2018)

[41]

P. Molinàs-Mata and P. Molinàs-Mata, Electron absorption by complex potentials: One-dimensional case, Phys. Rev. A 54(3), 2060 (1996)

[42]

H. F. Jones, Scattering from localized non-Hermitian potentials, Phys. Rev. D 76(12), 125003 (2007)

[43]

J. Mehra and H. Rechenberg, The Historical Development of Quantum Theory, Vol. 6, Part 2, Springer-Verlag, New York, 2001; G. Chew, The Analytic S-Matrix, W.A. Benjamin, New York, 1966

[44]

J. G. Muga, J. P. Palao, B. Navarro, and I. L. Egusquiza, Complex absorbing potentials, Phys. Rep. 395(6), 357 (2004)

[45]

R. Zavin and N. Moiseyev, One-dimensional symmetric rectangular well: From bound to resonance via selforthogonal virtual state, J. Phys. Math. Gen. 37(16), 4619 (2004)

[46]

F. Erman, M. Gadella, S. Tunalı, and H. Uncu, A singular one-dimensional bound state problem and its degeneracies, Eur. Phys. J. Plus 132(8), 352 (2017)

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (774KB)

851

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/