An analytical solution for quantum scattering through a
Ying-Tao Zhang, Shan Jiang, Qingming Li, Qing-Feng Sun
An analytical solution for quantum scattering through a
We employ the Lippmann–Schwinger formalism to derive the analytical solutions of the transmission and reflection coefficients through a one-dimensional open quantum system, in which particle loss or gain on one lattice site located at x = 0, or particle loss and gain on the lattice sites located at are considered respectively. The gain and loss on the lattice site are modeled by the delta potential with positive and negative imaginary values. The analytical solution reveals the underlying physics that the sum of the transmission and reflection coefficients through an open quantum system (even a -symmetric open system) may not be 1, i.e., qualitatively explains that the number of particles is not conserved in an open quantum system. Furthermore, we find that the resonance states can be formed in the -symmetric delta potential, which is similar to the case of real delta potential. The results of our analysis can be treated as the starting point of studying quantum transport problems through a non-Hermitian system using Green’s function method, and more general cases for high-dimensional systems may be deduced by the same procedure.
transmission / non-Hermitian / -symmetry / Green function
[1] |
C. M. Bender and S. Boettcher, Real spectra in non- Hermitian Hamiltonians having PT symmetry, Phys. Rev. Lett. 80(24), 5243 (1998)
CrossRef
ADS
Google scholar
|
[2] |
C. M. Bender, D. C. Brody, and H. F. Jones, Complex extension of quantum mechanics, Phys. Rev. Lett. 89(27), 270401 (2002)
CrossRef
ADS
Google scholar
|
[3] |
C. M. Bender, Making sense of non-Hermitian Hamiltonians, Rep. Prog. Phys. 70(6), 947 (2007)
CrossRef
ADS
Google scholar
|
[4] |
A. Mostafazadeh, Pseudo-Hermiticity for a class of nondiagonalizable Hamiltonians, J. Math. Phys. 43(12), 6343 (2002)
CrossRef
ADS
Google scholar
|
[5] |
A. Mostafazadeh, Pseudo-Hermiticity versus PTsymmetry (II): A complete characterization of non-Hermitian Hamiltonians with a real spectrum, J. Math. Phys. 43(5), 2814 (2002)
CrossRef
ADS
Google scholar
|
[6] |
A. Mostafazadeh, Pseudo-Hermiticity versus PTsymmetry (III): Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries, J. Math. Phys. 43(8), 3944 (2002)
CrossRef
ADS
Google scholar
|
[7] |
C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, Observation of parity–time symmetry in optics, Nat. Phys. 6(3), 192 (2010)
CrossRef
ADS
Google scholar
|
[8] |
S. Bittner, B. Dietz, U. Günther, H. L. Harney, M. Miski-Oglu, A. Richter, and F. Schäfer, PT symmetry and spontaneous symmetry breaking in a microwave billiard, Phys. Rev. Lett. 108(2), 024101 (2012)
CrossRef
ADS
Google scholar
|
[9] |
L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators, Nat. Photonics 8(7), 524 (2014)
CrossRef
ADS
Google scholar
|
[10] |
L. Feng, Z. J. Wong, R. M. Ma, Y. Wang, and X. Zhang, Single-mode laser by parity–time symmetry breaking, Science 346(6212), 972 (2014)
CrossRef
ADS
Google scholar
|
[11] |
H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, Parity–time-symmetric microring lasers, Science 346(6212), 975 (2014)
CrossRef
ADS
Google scholar
|
[12] |
Y. Wu, B. Zhu, S. F. Hu, Z. Zhou, and H. H. Zhong, Floquet control of the gain and loss in a PT-symmetric optical coupler, Front. Phys. 12(1), 121102 (2017)
CrossRef
ADS
Google scholar
|
[13] |
N. Bender, S. Factor, J. D. Bodyfelt, H. Ramezani, D. N. Christodoulides, F. M. Ellis, and T. Kottos, Observation of asymmetric transport in structures with active nonlinearities, Phys. Rev. Lett. 110(23), 234101 (2013)
CrossRef
ADS
Google scholar
|
[14] |
S. Assawaworrarit, X. Yu, and S. Fan, Robust wireless power transfer using a nonlinear parity–time-symmetric circuit, Nature 546(7658), 387 (2017)
CrossRef
ADS
Google scholar
|
[15] |
Y. Choi, C. Hahn, J. W. Yoon, and S. H. Song, Observation of an anti-PT-symmetric exceptional point and energy-difference conserving dynamics in electrical circuit resonators, Nat. Commun. 9(1), 2182 (2018)
CrossRef
ADS
Google scholar
|
[16] |
Y. Wu, W. Liu, J. Geng, X. Song, X. Ye, C. K. Duan, X. Rong, and J. Du, Observation of parity–time symmetry breaking in a single-spin system, Science 364(6443), 878 (2019)
CrossRef
ADS
Google scholar
|
[17] |
G. Lindblad, On the generators of quantum dynamical semigroups, Comm. Math. Phys. 48(2), 119 (1976)
CrossRef
ADS
Google scholar
|
[18] |
V. Gorini, A. Kossakowski, and E. C. Sudarsahan, Completely positive dynamical semigroups of N-level systems, J. Math. Phys. 17(5), 821 (1976)
CrossRef
ADS
Google scholar
|
[19] |
S. Diehl, E. Rico, M. A. Baranov, and P. Zoller, Topology by dissipation in atomic quantum wires, Nat. Phys. 7(12), 971 (2011)
CrossRef
ADS
Google scholar
|
[20] |
F. Verstraete, M. M. Wolf, and J. I. Cirac, Quantum computation and quantum-state engineering driven by dissipation, Nat. Phys. 5(9), 633 (2009)
CrossRef
ADS
Google scholar
|
[21] |
J. Dalibard, Y. Castin, and K. Molmer, Wave-function approach to dissipative processes in quantum optics, Phys. Rev. Lett. 68(5), 580 (1992)
CrossRef
ADS
Google scholar
|
[22] |
H. J. Carmichael, Quantum trajectory theory for cascaded open systems, Phys. Rev. Lett. 70(15), 2273 (1993)
CrossRef
ADS
Google scholar
|
[23] |
L. Jin and Z. Song, Physics counterpart of the PT non- Hermitian tight-binding chain, Phys. Rev. A 81(3), 032109 (2010)
CrossRef
ADS
Google scholar
|
[24] |
A. E. Miroshnichenko, Nonlinear fano-Feshbach resonances, Phys. Rev. E 79(2), 026611 (2009)
CrossRef
ADS
Google scholar
|
[25] |
L. Jin, and Z. Song, Hermitian scattering behavior for a non-Hermitian scattering center, Phys. Rev. A 85(1), 012111 (2012)
CrossRef
ADS
Google scholar
|
[26] |
G. Zhang, X. Q. Li, X. Z. Zhang, and Z. Song, Transmission phase lapse in the non-Hermitian Aharonov–Bohm interferometer near the spectral singularity, Phys. Rev. A 91(1), 012116 (2015)
CrossRef
ADS
Google scholar
|
[27] |
B. G. Zhu, R. Lü, and S. Chen, PT symmetry in the non-Hermitian Su–Schrieffer–Heeger model with complex boundary potentials, Phys. Rev. A 89(6), 062102 (2014)
CrossRef
ADS
Google scholar
|
[28] |
L. L. Zhang, G. H. Zhan, Z. Z. Li, and W. J. Gong, Effect of PT symmetry in a parallel double-quantum-dot structure, Phys. Rev. A 96(6), 062133 (2017)
CrossRef
ADS
Google scholar
|
[29] |
L. L. Zhang, and W. J. Gong, Transport properties in a non-Hermitian triple-quantum-dot structure, Phys. Rev. A 95(6), 062123 (2017)
CrossRef
ADS
Google scholar
|
[30] |
L. L. Zhang, Z. Z. Li, G. H. Zhan, G. Y. Yi, and W. J. Gong, Eigenenergies and quantum transport properties in a non-Hermitian quantum-dot chain with side-coupled dots, Phys. Rev. A 99(3), 032119 (2019)
CrossRef
ADS
Google scholar
|
[31] |
K. L. Zhang, X. M. Yang, and Z. Song, Quantum transport in non-Hermitian impurity arrays, Phys. Rev. B 100(2), 024305 (2019)
CrossRef
ADS
Google scholar
|
[32] |
P. O. Sukhachov and A. V. Balatsky, Non-Hermitian impurities in Dirac systems, Phys. Rev. Research 2(1), 013325 (2020)
CrossRef
ADS
Google scholar
|
[33] |
Y. Liu, X. P. Jiang, J. Cao, and S. Chen, Non-Hermitian mobility edges in one-dimensional quasicrystals with parity–time symmetry, Phys. Rev. B 101(17), 174205 (2020)
CrossRef
ADS
Google scholar
|
[34] |
C. Wang and X. R. Wang, Level statistics of extended states in random non-Hermitian Hamiltonians, Phys. Rev. B 101(16), 165114 (2020)
CrossRef
ADS
Google scholar
|
[35] |
S. Datta, Quantum Transport: From Atoms to Transistors, Cambridge, New York: Cambridge University Press, 2005
|
[36] |
E. N. Economou, Greens Functions in Quantum Physics, 3rd Ed., Springer-Verlag, Germany, 2006
CrossRef
ADS
Google scholar
|
[37] |
Here we use the form of Green′s function G0(x, x′)=−imℏ2κeiκ|x−x′|. While the energy E expands into the complex energy E→E±i0, in fact there are two form solutions for the Green′s function G0±(x,x′)=−∓imℏ2κe±iκ|x−x′|. Here we only choose G0+(x,x′) as our solution because it can promise only the scattering waves traveling toward the positive direction exist in the limite x → ∞.
|
[38] |
D. Boese, M. Lischka, and L. E. Reichl, Resonances in a two-dimensional electron waveguide with a single δ-function scatterer, Phys. Rev. B 61(8), 5632 (2000)
CrossRef
ADS
Google scholar
|
[39] |
F. Erman, M. Gadella, and H. Uncu, One-dimensional semirelativistic Hamiltonian with multiple Dirac delta potentials, Phys. Rev. D 95(4), 045004 (2017)
CrossRef
ADS
Google scholar
|
[40] |
F. Erman, M. Gadella, and H. Uncu, On scattering from the one-dimensional multiple Dirac delta potentials, Eur. J. Phys. 39(3), 035403 (2018)
CrossRef
ADS
Google scholar
|
[41] |
P. Molinàs-Mata and P. Molinàs-Mata, Electron absorption by complex potentials: One-dimensional case, Phys. Rev. A 54(3), 2060 (1996)
CrossRef
ADS
Google scholar
|
[42] |
H. F. Jones, Scattering from localized non-Hermitian potentials, Phys. Rev. D 76(12), 125003 (2007)
CrossRef
ADS
Google scholar
|
[43] |
J. Mehra and H. Rechenberg, The Historical Development of Quantum Theory, Vol. 6, Part 2, Springer-Verlag, New York, 2001; G. Chew, The Analytic S-Matrix, W.A. Benjamin, New York, 1966
|
[44] |
J. G. Muga, J. P. Palao, B. Navarro, and I. L. Egusquiza, Complex absorbing potentials, Phys. Rep. 395(6), 357 (2004)
CrossRef
ADS
Google scholar
|
[45] |
R. Zavin and N. Moiseyev, One-dimensional symmetric rectangular well: From bound to resonance via selforthogonal virtual state, J. Phys. Math. Gen. 37(16), 4619 (2004)
CrossRef
ADS
Google scholar
|
[46] |
F. Erman, M. Gadella, S. Tunalı, and H. Uncu, A singular one-dimensional bound state problem and its degeneracies, Eur. Phys. J. Plus 132(8), 352 (2017)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |