
An analytical solution for quantum scattering through a
Ying-Tao Zhang, Shan Jiang, Qingming Li, Qing-Feng Sun
Front. Phys. ›› 2021, Vol. 16 ›› Issue (4) : 43503.
An analytical solution for quantum scattering through a
We employ the Lippmann–Schwinger formalism to derive the analytical solutions of the transmission and reflection coefficients through a one-dimensional open quantum system, in which particle loss or gain on one lattice site located at x = 0, or particle loss and gain on the lattice sites located at
transmission /
non-Hermitian /
[1] |
C. M. Bender and S. Boettcher, Real spectra in non- Hermitian Hamiltonians having PT symmetry, Phys. Rev. Lett. 80(24), 5243 (1998)
CrossRef
ADS
Google scholar
|
[2] |
C. M. Bender, D. C. Brody, and H. F. Jones, Complex extension of quantum mechanics, Phys. Rev. Lett. 89(27), 270401 (2002)
CrossRef
ADS
Google scholar
|
[3] |
C. M. Bender, Making sense of non-Hermitian Hamiltonians, Rep. Prog. Phys. 70(6), 947 (2007)
CrossRef
ADS
Google scholar
|
[4] |
A. Mostafazadeh, Pseudo-Hermiticity for a class of nondiagonalizable Hamiltonians, J. Math. Phys. 43(12), 6343 (2002)
CrossRef
ADS
Google scholar
|
[5] |
A. Mostafazadeh, Pseudo-Hermiticity versus PTsymmetry (II): A complete characterization of non-Hermitian Hamiltonians with a real spectrum, J. Math. Phys. 43(5), 2814 (2002)
CrossRef
ADS
Google scholar
|
[6] |
A. Mostafazadeh, Pseudo-Hermiticity versus PTsymmetry (III): Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries, J. Math. Phys. 43(8), 3944 (2002)
CrossRef
ADS
Google scholar
|
[7] |
C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, Observation of parity–time symmetry in optics, Nat. Phys. 6(3), 192 (2010)
CrossRef
ADS
Google scholar
|
[8] |
S. Bittner, B. Dietz, U. Günther, H. L. Harney, M. Miski-Oglu, A. Richter, and F. Schäfer, PT symmetry and spontaneous symmetry breaking in a microwave billiard, Phys. Rev. Lett. 108(2), 024101 (2012)
CrossRef
ADS
Google scholar
|
[9] |
L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators, Nat. Photonics 8(7), 524 (2014)
CrossRef
ADS
Google scholar
|
[10] |
L. Feng, Z. J. Wong, R. M. Ma, Y. Wang, and X. Zhang, Single-mode laser by parity–time symmetry breaking, Science 346(6212), 972 (2014)
CrossRef
ADS
Google scholar
|
[11] |
H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, Parity–time-symmetric microring lasers, Science 346(6212), 975 (2014)
CrossRef
ADS
Google scholar
|
[12] |
Y. Wu, B. Zhu, S. F. Hu, Z. Zhou, and H. H. Zhong, Floquet control of the gain and loss in a PT-symmetric optical coupler, Front. Phys. 12(1), 121102 (2017)
CrossRef
ADS
Google scholar
|
[13] |
N. Bender, S. Factor, J. D. Bodyfelt, H. Ramezani, D. N. Christodoulides, F. M. Ellis, and T. Kottos, Observation of asymmetric transport in structures with active nonlinearities, Phys. Rev. Lett. 110(23), 234101 (2013)
CrossRef
ADS
Google scholar
|
[14] |
S. Assawaworrarit, X. Yu, and S. Fan, Robust wireless power transfer using a nonlinear parity–time-symmetric circuit, Nature 546(7658), 387 (2017)
CrossRef
ADS
Google scholar
|
[15] |
Y. Choi, C. Hahn, J. W. Yoon, and S. H. Song, Observation of an anti-PT-symmetric exceptional point and energy-difference conserving dynamics in electrical circuit resonators, Nat. Commun. 9(1), 2182 (2018)
CrossRef
ADS
Google scholar
|
[16] |
Y. Wu, W. Liu, J. Geng, X. Song, X. Ye, C. K. Duan, X. Rong, and J. Du, Observation of parity–time symmetry breaking in a single-spin system, Science 364(6443), 878 (2019)
CrossRef
ADS
Google scholar
|
[17] |
G. Lindblad, On the generators of quantum dynamical semigroups, Comm. Math. Phys. 48(2), 119 (1976)
CrossRef
ADS
Google scholar
|
[18] |
V. Gorini, A. Kossakowski, and E. C. Sudarsahan, Completely positive dynamical semigroups of N-level systems, J. Math. Phys. 17(5), 821 (1976)
CrossRef
ADS
Google scholar
|
[19] |
S. Diehl, E. Rico, M. A. Baranov, and P. Zoller, Topology by dissipation in atomic quantum wires, Nat. Phys. 7(12), 971 (2011)
CrossRef
ADS
Google scholar
|
[20] |
F. Verstraete, M. M. Wolf, and J. I. Cirac, Quantum computation and quantum-state engineering driven by dissipation, Nat. Phys. 5(9), 633 (2009)
CrossRef
ADS
Google scholar
|
[21] |
J. Dalibard, Y. Castin, and K. Molmer, Wave-function approach to dissipative processes in quantum optics, Phys. Rev. Lett. 68(5), 580 (1992)
CrossRef
ADS
Google scholar
|
[22] |
H. J. Carmichael, Quantum trajectory theory for cascaded open systems, Phys. Rev. Lett. 70(15), 2273 (1993)
CrossRef
ADS
Google scholar
|
[23] |
L. Jin and Z. Song, Physics counterpart of the PT non- Hermitian tight-binding chain, Phys. Rev. A 81(3), 032109 (2010)
CrossRef
ADS
Google scholar
|
[24] |
A. E. Miroshnichenko, Nonlinear fano-Feshbach resonances, Phys. Rev. E 79(2), 026611 (2009)
CrossRef
ADS
Google scholar
|
[25] |
L. Jin, and Z. Song, Hermitian scattering behavior for a non-Hermitian scattering center, Phys. Rev. A 85(1), 012111 (2012)
CrossRef
ADS
Google scholar
|
[26] |
G. Zhang, X. Q. Li, X. Z. Zhang, and Z. Song, Transmission phase lapse in the non-Hermitian Aharonov–Bohm interferometer near the spectral singularity, Phys. Rev. A 91(1), 012116 (2015)
CrossRef
ADS
Google scholar
|
[27] |
B. G. Zhu, R. Lü, and S. Chen, PT symmetry in the non-Hermitian Su–Schrieffer–Heeger model with complex boundary potentials, Phys. Rev. A 89(6), 062102 (2014)
CrossRef
ADS
Google scholar
|
[28] |
L. L. Zhang, G. H. Zhan, Z. Z. Li, and W. J. Gong, Effect of PT symmetry in a parallel double-quantum-dot structure, Phys. Rev. A 96(6), 062133 (2017)
CrossRef
ADS
Google scholar
|
[29] |
L. L. Zhang, and W. J. Gong, Transport properties in a non-Hermitian triple-quantum-dot structure, Phys. Rev. A 95(6), 062123 (2017)
CrossRef
ADS
Google scholar
|
[30] |
L. L. Zhang, Z. Z. Li, G. H. Zhan, G. Y. Yi, and W. J. Gong, Eigenenergies and quantum transport properties in a non-Hermitian quantum-dot chain with side-coupled dots, Phys. Rev. A 99(3), 032119 (2019)
CrossRef
ADS
Google scholar
|
[31] |
K. L. Zhang, X. M. Yang, and Z. Song, Quantum transport in non-Hermitian impurity arrays, Phys. Rev. B 100(2), 024305 (2019)
CrossRef
ADS
Google scholar
|
[32] |
P. O. Sukhachov and A. V. Balatsky, Non-Hermitian impurities in Dirac systems, Phys. Rev. Research 2(1), 013325 (2020)
CrossRef
ADS
Google scholar
|
[33] |
Y. Liu, X. P. Jiang, J. Cao, and S. Chen, Non-Hermitian mobility edges in one-dimensional quasicrystals with parity–time symmetry, Phys. Rev. B 101(17), 174205 (2020)
CrossRef
ADS
Google scholar
|
[34] |
C. Wang and X. R. Wang, Level statistics of extended states in random non-Hermitian Hamiltonians, Phys. Rev. B 101(16), 165114 (2020)
CrossRef
ADS
Google scholar
|
[35] |
S. Datta, Quantum Transport: From Atoms to Transistors, Cambridge, New York: Cambridge University Press, 2005
|
[36] |
E. N. Economou, Greens Functions in Quantum Physics, 3rd Ed., Springer-Verlag, Germany, 2006
CrossRef
ADS
Google scholar
|
[37] |
Here we use the form of Green′s function G0(x, x′)=−imℏ2κeiκ|x−x′|. While the energy E expands into the complex energy E→E±i0, in fact there are two form solutions for the Green′s function G0±(x,x′)=−∓imℏ2κe±iκ|x−x′|. Here we only choose G0+(x,x′) as our solution because it can promise only the scattering waves traveling toward the positive direction exist in the limite x → ∞.
|
[38] |
D. Boese, M. Lischka, and L. E. Reichl, Resonances in a two-dimensional electron waveguide with a single δ-function scatterer, Phys. Rev. B 61(8), 5632 (2000)
CrossRef
ADS
Google scholar
|
[39] |
F. Erman, M. Gadella, and H. Uncu, One-dimensional semirelativistic Hamiltonian with multiple Dirac delta potentials, Phys. Rev. D 95(4), 045004 (2017)
CrossRef
ADS
Google scholar
|
[40] |
F. Erman, M. Gadella, and H. Uncu, On scattering from the one-dimensional multiple Dirac delta potentials, Eur. J. Phys. 39(3), 035403 (2018)
CrossRef
ADS
Google scholar
|
[41] |
P. Molinàs-Mata and P. Molinàs-Mata, Electron absorption by complex potentials: One-dimensional case, Phys. Rev. A 54(3), 2060 (1996)
CrossRef
ADS
Google scholar
|
[42] |
H. F. Jones, Scattering from localized non-Hermitian potentials, Phys. Rev. D 76(12), 125003 (2007)
CrossRef
ADS
Google scholar
|
[43] |
J. Mehra and H. Rechenberg, The Historical Development of Quantum Theory, Vol. 6, Part 2, Springer-Verlag, New York, 2001; G. Chew, The Analytic S-Matrix, W.A. Benjamin, New York, 1966
|
[44] |
J. G. Muga, J. P. Palao, B. Navarro, and I. L. Egusquiza, Complex absorbing potentials, Phys. Rep. 395(6), 357 (2004)
CrossRef
ADS
Google scholar
|
[45] |
R. Zavin and N. Moiseyev, One-dimensional symmetric rectangular well: From bound to resonance via selforthogonal virtual state, J. Phys. Math. Gen. 37(16), 4619 (2004)
CrossRef
ADS
Google scholar
|
[46] |
F. Erman, M. Gadella, S. Tunalı, and H. Uncu, A singular one-dimensional bound state problem and its degeneracies, Eur. Phys. J. Plus 132(8), 352 (2017)
CrossRef
ADS
Google scholar
|
/
〈 |
|
〉 |