Surface plasmon resonance and field confinement in graphene nanoribbons in a nanocavity

Sa Yang, Ren-Long Zhou, Yang-Jun Huang

PDF(2004 KB)
PDF(2004 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (4) : 43504. DOI: 10.1007/s11467-021-1060-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Surface plasmon resonance and field confinement in graphene nanoribbons in a nanocavity

Author information +
History +

Abstract

In this work, we demonstrate surface plasmon resonance properties and field confinement under a strong interaction between a waveguide and graphene nanoribbons (GNRs), obtained by coupling with a nanocavity. The optical transmission of a waveguide–cavity–graphene structure is investigated by finite-difference time-domain simulations and coupled-mode theory. The resonant frequency and intensity of the GNR resonant modes can be precisely controlled by tuning the Fermi energy and carrier mobility of the graphene, respectively. Moreover, the refractive index of the cavity core, the susceptibility χ(3) and the intensity of incident light have little effect on the GNR resonant modes, but have good tunability to the cavity resonant mode. The cavity length also has good tunability to the resonant mode of cavity. A strong interaction between the GNR resonant modes and the cavity resonant mode appears at a cavity length of L1 = 350 nm. We also demonstrate the slow-light effect of this waveguide–cavity–graphene structure and an optical bistability effect in the plasmonic cavity mode by changing the intensity of the incident light. This waveguide–cavity–graphene structure can potentially be utilised to enhance optical confinement in graphene nano-integrated circuits for optical processing applications.

Keywords

graphene nanoribbon / surface plasmon resonance / confinement

Cite this article

Download citation ▾
Sa Yang, Ren-Long Zhou, Yang-Jun Huang. Surface plasmon resonance and field confinement in graphene nanoribbons in a nanocavity. Front. Phys., 2021, 16(4): 43504 https://doi.org/10.1007/s11467-021-1060-2

References

[1]
X. Gan, R. J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, Chipintegrated ultrafast graphene photodetector with high responsivity, Nat. Photon. 7(11), 883 (2013)
CrossRef ADS Google scholar
[2]
J. Liang, W. Hu, Z. Ye, L. Liao, Z. Li, X. Chen, and W. Lu, Improved performance of HgCdTe infrared detector focal plane arrays by modulating light field based on photonic crystal structure, J. Appl. Phys. 115(18), 184504 (2014)
CrossRef ADS Google scholar
[3]
Y. Gong, L. Wang, X. Hu, X. Li, and X. Liu, Broadbandgap and low-sidelobe surface plasmon polariton reflector with Bragg-grating-based MIM waveguide, Opt. Express 17(16), 13727 (2009)
CrossRef ADS Google scholar
[4]
J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu, Surface plasmon-enhanced photodetection in few-layer MoS2 phototransistors with au nanostructure arrays, Small 11(20), 2392 (2015)
CrossRef ADS Google scholar
[5]
H. J. Li, L. L. Wang, B. Sun, Z. R. Huang, and X. Zhai, Tunable mid-infrared plasmonic band-pass filter based on a single graphene ribbon with cavities, J. Appl. Phys. 116(22), 224505 (2014)
CrossRef ADS Google scholar
[6]
Z. Shi, L. Gan, T. Xiao, H. Guo, and Z. Li, All-optical modulation of a graphene-cladded silicon photonic crystal cavity, ACS Photon. 2(11), 1513 (2015)
CrossRef ADS Google scholar
[7]
Y. Li, H. Yan, D. B. Farmer, X. Meng, W. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, Graphene plasmon enhanced vibrational sensing of surface adsorbed layers, Nano Lett. 14(3), 1573 (2014)
CrossRef ADS Google scholar
[8]
X. Huang, L. Liu, S. Zhou, and J. Zhao, Physical properties and device applications of graphene oxide, Front. Phys. 15(3), 33301 (2020)
CrossRef ADS Google scholar
[9]
K. S. Novoselov, D. V. Andreeva, W. Ren, and G. Shan, Graphene and other two-dimensional materials, Front. Phys. 14(1), 13301 (2019)
CrossRef ADS Google scholar
[10]
Y. Fan, Z. Wei, Z. Zhang, and H. Li, Enhancing infrared extinction and absorption in a monolayer graphene ribbon by harvesting the electric dipolar mode of split ring resonators, Opt. Lett. 38(24), 5410 (2013)
CrossRef ADS Google scholar
[11]
X. Hu and J. Wang, High-speed gate-tunable terahertz coherent perfect absorption using a split-ring graphene, Opt. Lett. 40(23), 5538 (2015)
CrossRef ADS Google scholar
[12]
S. Yang, R. Zhou, D. Liu, Q. Lin, and S. Li, Lifetime of enhanced graphene surface plasmon and superstrate sensitivity, Plasmonics 15(4), 1103 (2020)
CrossRef ADS Google scholar
[13]
Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, Gated tunability and hybridization of localized plasmons in nanostructured graphene, ACS Nano 7(3), 2388 (2013)
CrossRef ADS Google scholar
[14]
P. Liu, W. Cai, L. L. Wang, X. Zhang, and J. Xu, Tunable terahertz optical antennas based on graphene ring structures, Appl. Phys. Lett. 100(15), 153111 (2012)
CrossRef ADS Google scholar
[15]
V. V. Popov, T. Y. Bagaeva, T. Otsuji, and V. Ryzhii, Oblique terahertz plasmons in graphene nanoribbon arrays, Phys. Rev. B 81(7), 073404 (2010)
CrossRef ADS Google scholar
[16]
R. Zhou, S. Yang, D. Liu, and G. Cao, Confined surface plasmon of fundamental wave and second harmonic waves in graphene nanoribbon arrays, Opt. Express 25(25), 31478 (2017)
CrossRef ADS Google scholar
[17]
B. Wang, X. Zhang, F. J. Garcíavidal, X. Yuan, and J. Teng, Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays, Phys. Rev. Lett. 109(7), 073901 (2012)
CrossRef ADS Google scholar
[18]
X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, Strong enhancement of lightmatter interaction in graphene coupled to a photonic crystal nanocavity, Nano Lett. 12(11), 5626 (2012)
CrossRef ADS Google scholar
[19]
J. Guo, L. M. Wu, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, Absorption enhancement and total absorption in a graphene-waveguide hybrid structure, AIP Adv. 7(2), 025101 (2017)
CrossRef ADS Google scholar
[20]
T. Xiao, L. Gan, and Z. Li, Graphene surface plasmon polaritons transport on curved substrates, Photon. Res. 3(6), 300 (2015)
CrossRef ADS Google scholar
[21]
W. Gao, J. Shu, C. Qiu, and Q. Xu, Excitation of plasmonic waves in graphene by guided-mode resonances, ACS Nano 6(9), 7806 (2012)
CrossRef ADS Google scholar
[22]
H. Lu, X. Liu, D. Mao, and G. Wang, Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators, Opt. Lett. 37(18), 3780 (2012)
CrossRef ADS Google scholar
[23]
B. Du, L. Lin, W. Liu, S. Zu, Y. Yu, Z. Li, Y. Kang, H. Peng, X. Zhu, and Z. Fang, Plasmonic hot electron tunneling photodetection in vertical Au-graphene hybrid nanostructure, Laser Photon. Rev. 11(1), 1600148 (2017)
CrossRef ADS Google scholar
[24]
K. Chen, Y. Wang, J. Liu, J. Kang, Y. Ge, W. Huang, Z. Lin, Z. Guo, Y. Zhang, and H. Zhang, In situ preparation of CsPbBr3/black phosphorus heterostructure with optimized interface and photodetector application, Nanoscale 11(36), 16852 (2019)
CrossRef ADS Google scholar
[25]
B. Wang, S. Zhong, Z. Zhang, Z. Zheng, Y. Zhang, and H. Zhang, Broadband photodetectors based on 2D group IVA metal chalcogenides semiconductors, Appl. Mater. Today 15, 115 (2019)
CrossRef ADS Google scholar
[26]
H. Shan, Y. Yu, R. Zhang, R. Cheng, D. Zhang, Y. Luo, X. Wang, B. Li, S. Zu, F. Lin, Z. Liu, K. Chang, and Z. Fang, Electron transfer and cascade relaxation dynamics of graphene quantum dots/MoS2 monolayer mixeddimensional van der Waals heterostructures, Mater. Today 24, 10 (2019)
CrossRef ADS Google scholar
[27]
W. Huang, X. Jiang, Y. Wang, F. Zhang, Y. Ge, Y. Zhang, L. Wu, D. Ma, Z. Li, R. Wang, Z. Huang, X. Dai, Y. Xiang, J. Li, and H. Zhang, Two-dimensional beta-lead oxide quantum dots, Nanoscale 10(44), 20540 (2018)
CrossRef ADS Google scholar
[28]
Y. Ge, W. Huang, F. Yang, J. Liu, C. Wang, Y. Wang, J. Guo, F. Zhang, Y. Song, S. Xu, D. Fan, and H. Zhang, Beta-lead oxide quantum dot (β-PbO QD)/polystyrene (PS) composite films and their applications in ultrafast photonics, Nanoscale 11(14), 6828 (2019)
CrossRef ADS Google scholar
[29]
C. Ma, C. Wang, B. Gao, J. Adams, G. Wu, and H. Zhang, Recent progress in ultrafast lasers based on 2D materials as a saturable absorber, Appl. Phys. Rev. 6(4), 041304 (2019)
CrossRef ADS Google scholar
[30]
G. Zhang, X. Tang, X. Fu, W. Chen, B. Shabbir, H. Zhang, Q. Liu, and M. Gong, 2D group-VA fluorinated antimonene: Synthesis and saturable absorption, Nanoscale 11(4), 1762 (2019)
CrossRef ADS Google scholar
[31]
M. Luo, T. Fan, Y. Zhou, H. Zhang, and L. Mei, 2D black phosphorus-based biomedical applications, Adv. Funct. Mater. 29(13), 1808306 (2019)
CrossRef ADS Google scholar
[32]
M. Qiu, W. Ren, T. Jeong, M. Won, G. Y. Park, D. K. Sang, L. Liu, H. Zhang, and J. S. Kim, Omnipotent phosphorene: A next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications, Chem. Soc. Rev. 47(15), 5588 (2018)
CrossRef ADS Google scholar
[33]
J. Mao, Y. Wang, Z. Zheng, and D. Deng, The rise of twodimensional MoS2 for catalysis, Front. Phys. 13(4), 138118 (2018)
CrossRef ADS Google scholar
[34]
W. Zhang, H. Liu, J. Lu, L. Ni, H. Liu, Q. Li, M. Qiu, B. Xu, T. Lee, Z. Zhao, X. Wang, M. Wang, T. Wang, A. Offenhäusser, D. Mayer, W. T. Hwang, and D. Xiang, Atomic switches of metallic point contacts by plasmonic heating, Light Sci. Appl. 8(1), 34 (2019)
CrossRef ADS Google scholar
[35]
P. Ghosh, J. Lu, Z. Chen, H. Yang, M. Qiu, and Q. Li, Photothermal-induced nanowelding of metalsemiconductor heterojunction in integrated nanowire units, Adv. Electron. Mater. 4(5), 1700614 (2018)
CrossRef ADS Google scholar
[36]
D. Li, Y. Gong, Y. Chen, J. Lin, Q. Khan, Y. Zhang, Y. Li, H. Zhang, and H. Xie, Recent progress of two dimensional thermoelectric materials, Nano-Micro Lett. 12(1), 36 (2020)
CrossRef ADS Google scholar
[37]
D. Ma, J. Zhao, R. Wang, C. Xing, Z. Li, W. Huang, X. Jiang, Z. Guo, Z. Luo, Y. Li, J. Li, S. Luo, Y. Zhang, and H. Zhang, Ultrathin GeSe nanosheets: From systematic synthesis to studies of carrier dynamics and applications for a high-performance UV-Vis photodetector, Appl. Mater. Interfaces 11(4), 4278 (2019)
CrossRef ADS Google scholar
[38]
M. Zhao, W. Xia, Y. Wang, M. Luo, Z. Tian, Y. Guo, W. Hu, and J. Xue, Nb2SiTe4: A stable narrow-gap twodimensional material with ambipolar transport and midinfrared response, ACS Nano 13(9), 10705 (2019)
CrossRef ADS Google scholar
[39]
X. Tang, H. Chen, J. S. Ponraj, S. C. Dhanabalan, Q. Xiao, D. Fan, and H. Zhang, Fluorination-enhanced ambient stability and electronic tolerance of black phosphorus quantum dots, Adv. Sci. 5(9), 1800420 (2018)
CrossRef ADS Google scholar
[40]
M. Long, Y. Wang, P. Wang, X. Zhou, H. Xia, C. Luo, S. Huang, G. Zhang, H. Yan, Z. Fan, X. Wu, X. Chen, W. Lu, and W. Hu, Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability, ACS Nano 13, 2511 (2019)
CrossRef ADS Google scholar
[41]
R. Zhou, J. Peng, S. Yang, D. Liu, Y. Xiao, and G. Cao, Lifetime and nonlinearity of modulated surface plasmon for black phosphorus sensing application, Nanoscale 10(39), 18878 (2018)
CrossRef ADS Google scholar
[42]
K. Khan, A. K. Tareen, M. Aslam, R. Wang, Y. Zhang, A. Mahmood, Z. Ouyang, H. Zhang, and Z. Guo, Recent developments in emerging two dimensional materials and their applications, J. Mater. Chem. C 8(2), 387 (2020)
CrossRef ADS Google scholar
[43]
L. Zhang, T. Gong, H. Wang, Z. Guo, and H. Zhang, Memristive devices based on emerging two dimensional materials beyond graphene, Nanoscale 11(26), 12413 (2019)
CrossRef ADS Google scholar
[44]
S. Xia, X. Zhai, L. Wang, B. Sun, J. Liu, and S. Wen, Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers, Opt. Express 24(16), 17886 (2016)
CrossRef ADS Google scholar
[45]
S. Xia, X. Zhai, L. Wang, and S. Wen, Plasmonically induced transparency in double-layered graphene nanoribbons, Photon. Res. 6(7), 692 (2018)
CrossRef ADS Google scholar
[46]
J. Guan, S. Xia, Z. Zhang, J. Wu, H. Meng, J. Yue, X. Zhai, L. Wang, and S. Wen, Two switchable plasmonically induced transparency effects in a system with distinct graphene resonators, Nanoscale Res. Lett. 15(1), 142 (2020)
CrossRef ADS Google scholar
[47]
Q. Li, T. Wang, Y. Su, M. Yan, and M. Qiu, Coupled mode theory analysis of mode-splitting in coupled cavity system, Opt. Express 18(8), 8367 (2010)
CrossRef ADS Google scholar
[48]
H. Xu, H. Li, B. Li, Z. He, Z. Chen, and M. Zheng, Influential and theoretical analysis of nano-defect in the stub resonator, Sci. Rep. 6(1), 30877 (2016)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(2004 KB)

Accesses

Citations

Detail

Sections
Recommended

/