Narrow-bandgap materials for optoelectronics applications

Xiao-Hui Li, Yi-Xuan Guo, Yujie Ren, Jia-Jun Peng, Ji-Shu Liu, Cong Wang, Han Zhang

PDF(3763 KB)
PDF(3763 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (1) : 13304. DOI: 10.1007/s11467-021-1055-z
REVIEW ARTICLE
REVIEW ARTICLE

Narrow-bandgap materials for optoelectronics applications

Author information +
History +

Abstract

Narrow-bandgap materials possess the intriguing optical-electric properties and unique structures, which can be widely applied in the field of photonics, energy optoelectronic sensing and biomedicine, etc. Nowadays, the researches on nonlinear optical properties of narrow-bandgap materials have attracted extensive attention worldwide. In this paper, we review the progress of narrow-bandgap materials from many aspects, such as background, nonlinear optical properties, energy band structure, methods of preparation, and applications. These materials have obvious nonlinear optical characteristics and the interaction with the short pulse laser excitation shows the extremely strong nonlinear absorption characteristics, which leads to the optical limiting or saturable absorption related to Pauli blocking and excited state absorption. Especially, some of these novel narrow-bandgap materials have been utilized for the generation of ultrashort pulse that covers the range from the visible to midinfrared wavelength regions. Hence, the study on these materials paves a new way for the advancement of optoelctronics devices.

Graphical abstract

Keywords

narrow-bandgap materials / saturable absorber / ultrafast lasers / modulator / photodetectors

Cite this article

Download citation ▾
Xiao-Hui Li, Yi-Xuan Guo, Yujie Ren, Jia-Jun Peng, Ji-Shu Liu, Cong Wang, Han Zhang. Narrow-bandgap materials for optoelectronics applications. Front. Phys., 2022, 17(1): 13304 https://doi.org/10.1007/s11467-021-1055-z

References

[1]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
CrossRef ADS Google scholar
[2]
R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, Fine structure constant defines visual transparency of graphene, Science 320(5881), 1308 (2008)
CrossRef ADS Google scholar
[3]
Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, Graphene thickness determination using reflection and contrast spectroscopy, Nano Lett. 7(9), 2758 (2007)
CrossRef ADS Google scholar
[4]
X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Approaching ballistic transport in suspended graphene, Nat. Nanotechnol. 3(8), 491 (2008)
CrossRef ADS Google scholar
[5]
K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature 457(7230), 706 (2009)
CrossRef ADS Google scholar
[6]
A. Pospischil and T. Mueller, Optoelectronic devices based on atomically thin transition metal dichalcogenides, Appl. Sci. (Basel) 6(3), 78 (2016)
CrossRef ADS Google scholar
[7]
P. F. Chen, N. Li, X. Z. Chen, W.-J. Ong, and X. J. Zhao, The rising star of two-dimensional black phosphorus beyond graphene: Synthesis, properties and electronic applications, 2D Materials 5, 014002 (2017)
CrossRef ADS Google scholar
[8]
A. Zhuang, J. J. Li, Y. C. Wang, X. Wen, Y. Lin, B. Xiang, X. P. Wang, and J. Zeng, Screw-dislocation-driven bidirectional spiral growth of Bi2Se3 nanoplates, Angew. Chem. Int. Ed.53(25), 6425 (2014)
CrossRef ADS Google scholar
[9]
T. Chai, X. Li, T. Feng, P. Guo, Y. Song, Y. Chen, and H. Zhang, Few-layer bismuthene for ultrashort pulse generation in a dissipative system based on an evanescent field, Nanoscale 10(37), 17617 (2018)
CrossRef ADS Google scholar
[10]
C. Wang, L. Wang, X. Li, W. Luo, T. Feng, Y. Zhang, P. Guo, and Y. Ge, Few-layer bismuthene for femtosecond soliton molecules generation in Er-doped fiber laser, Nanotechnology 30(2), 025204 (2019)
CrossRef ADS Google scholar
[11]
M. Chernysheva, A. Rozhin, Y. Fedotov, C. Mou, R. Arif, S. M. Kobtsev, E. M. Dianov, S. K. Turitsyn, Carbon nanotubes for ultrafast fiber lasers, Nanophotonics 6(1), 1 (2016)
CrossRef ADS Google scholar
[12]
Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, Atomic-layer grapheme as a saturable absorber for ultrafast pulsed lasers, Adv. Funct. Mater. 19(19), 3077 (2009)
CrossRef ADS Google scholar
[13]
I. H. Baek, K. J. Ahn, B. J. Kang, S. Bae, B. H. Hong, D. I. Yeom, K. Lee, Y. U. Jeong, and F. Rotermund, Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene, Appl. Phys. Lett. 102(19),191109 (2013)
CrossRef ADS Google scholar
[14]
S. Davide Di Dio Cafiso, E. Ugolotti, A. Schmidt, V. Petrov, U. Griebner, A. Agnesi, W. B. Cho, B. H. Jung, F. Rotermund, S. Bae, B. H. Hong, G. Reali, and F. Pirzio, Sub-100-fs Cr:YAG laser mode-locked by monolayer graphene saturable absorber, Opt. Lett. 38(10), 1745 (2013)
CrossRef ADS Google scholar
[15]
E. Ugolotti, A. Schmidt, V. Petrov, J. Wan Kim, D. I. Yeom, F. Rotermund, S. Bae, B. Hee Hong, A. Agnesi, C. Fiebig, G. Erbert, X. Mateos, M. Aguiló, F. Diaz, and U. Griebner, Graphene mode-locked femtosecond Yb:KLuW laser, Appl. Phys. Lett. 101(16), 161112 (2012)
CrossRef ADS Google scholar
[16]
K. F. Mak, J. Shan, and T. F. Heinz, Seeing many-body effects in single- and few-layer graphene: Observation of two-dimensional saddle-point excitons, Phys. Rev. Lett. 106(4), 046401 (2011)
CrossRef ADS Google scholar
[17]
G. Demetriou, H. T. Bookey, F. Biancalana, E. Abraham, Y. Wang, W. Ji, and A. K. Kar, Nonlinear optical properties of multilayer graphene in the infrared, Opt. Express 24(12), 13033 (2016)
CrossRef ADS Google scholar
[18]
T. Winzer, R. Ciesielski, M. Handloser, A. Comin, A. Hartschuh, and E. Malic, Microscopic view on the ultrafast photoluminescence from photoexcited graphene, Nano Lett. 15(2), 1141 (2015)
CrossRef ADS Google scholar
[19]
K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Z. Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, Photoexcitation cascade and multiple hot-carrier generation in grapheme, Nat. Phys. 9, 248 (2013)
CrossRef ADS Google scholar
[20]
M. Breusing, C. Ropers, and T. Elsaesser, Ultrafast carrier dynamics in graphite, Phys. Rev. Lett. 102(8), 086809 (2009)
CrossRef ADS Google scholar
[21]
M. Breusing, S. Kuehn, T. Winzer, E. Malić, F. Milde, N. Severin, J. P. Rabe, C. Ropers, A. Knorr, and T. Elsaesser, Ultrafast nonequilibrium carrier dynamics in a single graphene layer, Phys. Rev. B 83(15), 153410(2011)
CrossRef ADS Google scholar
[22]
P. A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene, Nano Lett. 8(12), 4248 (2008)
CrossRef ADS Google scholar
[23]
C. H. Lui, K. F. Mak, J. Shan, and T. F. Heinz, Ultrafast photoluminescence from graphene, Phys. Rev. Lett. 105(12), 127404 (2010)
CrossRef ADS Google scholar
[24]
L. Miao, Y. Jiang, S. Lu, B. Shi, C. Zhao, H. Zhang, and S. Wen, Broadband ultrafast nonlinear optical response of few-layers graphene: Toward the mid-infrared regime, Photon. Res. 3(5), 214 (2015)
CrossRef ADS Google scholar
[25]
Y. Wang, H. Mu, X. Li, J. Yuan, J. Chen, S. Xiao, Q. Bao, Y. Gao, and J. He, Observation of large nonlinear responses in a graphene-Bi2Te3 heterostructure at a telecommunication wavelength, Appl. Phys. Lett. 108(22), 221901 (2016)
CrossRef ADS Google scholar
[26]
Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, Atomic-layer grapheme as a saturable absorber for ultrafast pulsed lasers, Adv. Funct. Mater. 19(19), 3077 (2009)
CrossRef ADS Google scholar
[27]
S. R. Bongu, P. B. Bisht, R. C. K. Namboodiri, P. Nayak, S. Ramaprabhu, T. J. Kelly, C. Fallon, and J. T. Costello, Influence of localized surface plasmons on Pauli blocking and optical limiting in graphene under femtosecond pumping, J. Appl. Phys. 116(7), 073101 (2014)
CrossRef ADS Google scholar
[28]
J. J. Dean and H. M. V. Driel, Graphene and few-layer graphite probed by second-harmonic generation: Theory and experiment, Phys. Rev. B 82(12), 3893(2010)
CrossRef ADS Google scholar
[29]
M. Zhang, G. Li, and L. Li, Graphene nanoribbons generate a strong third-order nonlinear optical response upon intercalating hexagonal boron nitride, J. Mater. Chem. C 2(8), 1482 (2014)
CrossRef ADS Google scholar
[30]
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of twodimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)
CrossRef ADS Google scholar
[31]
H. Tian, M. L. Chin, S. Najmaei, Q. Guo, F. Xia, H. Wang, and M. Dubey, Optoelectronic devices based on two-dimensional transition metal dichalcogenides, Nano Res. 9(6), 1543 (2016)
CrossRef ADS Google scholar
[32]
J. Liu, H. Cao, B. Jiang, Y. Xue, and L. Fu, Newborn 2D materials for flexible energy conversion and storage, Science China Mater. 59(6), 459 (2016)
CrossRef ADS Google scholar
[33]
K. F. Mak and J. Shan, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides, Nat. Photonics 10(4), 216 (2016)
CrossRef ADS Google scholar
[34]
R. I. Woodward and Kelleher, Saturable absorbers for fibre lasers, Appl. Sci. (Basel) 5(4), 1440 (2015)
CrossRef ADS Google scholar
[35]
T. Shishidou, A. J. Freeman, and R. Asahi, Effect of GGA on the half-metallicity of the itinerant ferromagnet, Phys. Rev. B 64(18), 180401(2001)
CrossRef ADS Google scholar
[36]
K.Takada, H.Sakurai, E.Takayama-Muromachi, E Izumi, R.Dilanian, and T.Sasaki, Superconductivity in two-dimensional CoO2 layers, Nature 422(6927), 53 (2003)
CrossRef ADS Google scholar
[37]
J. T. Jang, S. Jeong, J. W. Seo, M. C. Kim, E. Sim, Y. Oh, S. Nam, B. Park, and J. Cheon, Ultrathin zirconium disulfide nanodiscs, J. Am. Chem. Soc. 133(20), 7636 (2011)
CrossRef ADS Google scholar
[38]
J. W. Seo, Y. W. Jun, S. W. Park, H. Nah, T. Moon, B. Park, J. G. Kim, Y. J. Kim, and J. Cheon, Twodimensional nanosheet crystals, Angew. Chem. Int. Ed. Engl. 46(46), 8828 (2007)
CrossRef ADS Google scholar
[39]
M. R. Gao, X. Cao, Q. Gao, Y. F. Xu, Y. R. Zheng, J. Jiang, and S. H. Yu, Nitrogen-doped graphene supported CoSe2 nanobelt composite catalyst for efficient water oxidation, ACS Nano 8(4), 3970 (2014)
CrossRef ADS Google scholar
[40]
C. Altavilla, M. Sarno, and P. Ciambelli, A novel wet chemistry approach for the synthesis of hybrid 2D free-floating single or multilayer nanosheets of MS2@oleylamine (M=Mo, W), Chem. Mater. 23(17), 3879 (2011)
CrossRef ADS Google scholar
[41]
S. Jeong, D. Yoo, J. T. Jang, M. Kim, and J. Cheon, Welldefined colloidal 2-D layered transition-metal chalcogenide nanocrystals via generalized synthetic protocols, J. Am. Chem. Soc. 134(44), 18233 (2012)
CrossRef ADS Google scholar
[42]
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol. 6(3), 147 (2011)
CrossRef ADS Google scholar
[43]
B. W. Baugher, H. O. Churchill, Y. Yang, and P. Jarillo-Herrero, Intrinsic electronic transport properties of highquality monolayer and bilayer MoS2, Nano Lett. 13(9), 4212 (2013)
CrossRef ADS Google scholar
[44]
D. Lembke and A. Kis, Breakdown of high-performance monolayer MoS2 transistors, ACS Nano 6(11), 10070 (2012)
CrossRef ADS Google scholar
[45]
G. Eda and S. A. Maier, Two-dimensional crystals: Managing light for optoelectronics, ACS Nano 7(7), 5660 (2013)
CrossRef ADS Google scholar
[46]
L. Yang, K. Majumdar, H. Liu, Y. Du, H. Wu, M. Hatzistergos, P. Y. Hung, R. Tieckelmann, W. Tsai, C. Hobbs, and P. D. Ye, Chloride molecular doping technique on 2D materials: WS2 and MoS2, Nano Lett. 14(11), 6275(2014)
CrossRef ADS Google scholar
[47]
Y. Yoon, K. Ganapathi, and S. Salahuddin, How good can monolayer MoS2 transistors Be? Nano Lett. 11(9), 3768 (2011)
CrossRef ADS Google scholar
[48]
Y. J. Zhang, J. T. Ye, Y. Matsuhashi, and Y. Iwasa, Ambipolar MoS2 thin flake transistors, Nano Lett. 12(3), 1136 (2012)
CrossRef ADS Google scholar
[49]
K. Kaasbjerg, K. S. Thygesen, and K. W. Jacobsen, Phonon-limited mobility in n-type single-layer MoS2 from first principles, Phys. Rev. B 85(11), 115317 (2012)
CrossRef ADS Google scholar
[50]
B. Radisavljevic, M. B. Whitwick, and A. Kis, Correction to integrated circuits and logic operations based on singlelayer MoS2, ACS Nano 7(4), 3729 (2013)
CrossRef ADS Google scholar
[51]
H. Wang, L. L. Yu, Y. H. Lee, Y. M. Shi, A. Hsu, M. L. Chin, L. J. Li, M. Dubey, J. Kong, and T. Palacios, Integrated circuits based on bilayer MoS2 transistors, Nano Lett. 12(9), 4674 (2012)
CrossRef ADS Google scholar
[52]
H. S. Lee, S. W. Min, Y. G. Chang, M. K. Park, T. Nam, H. Kim, J. H. Kim, S. Ryu, and S. Im, MoS2 nanosheet phototransistors with thickness-modulated optical energy gap, Nano Lett. 12(7), 3695 (2012)
CrossRef ADS Google scholar
[53]
F. K. Perkins, A. L. Friedman, E. Cobas, P. M. Campbell, G. G. Jernigan, and B. T. Jonker, Chemical vapor sensing with monolayer MoS2, Nano Lett. 13(2), 668 (2013)
CrossRef ADS Google scholar
[54]
R. S. Sundaram, M. Engel, A. Lombardo, R. Krupke, A. C. Ferrari, P. Avouris, and M. Steiner, Electroluminescence in single layer MoS2, Nano Lett. 13(4), 1416 (2013)
CrossRef ADS Google scholar
[55]
H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics, Opt. Express 22(6), 7249 (2014)
CrossRef ADS Google scholar
[56]
R. Hao, J. M. Jin, X. L. Peng, and E. Li, Dynamic control of wideband slow wave in graphene based waveguides, Opt. Lett. 39(11), 3094 (2014)
CrossRef ADS Google scholar
[57]
H. Xia, H. Li, C. Lan, C. Li, X. Zhang, S. Zhang, and Y. Liu, Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS2) saturable absorber, Opt. Express 22(14), 17341 (2014)
CrossRef ADS Google scholar
[58]
K. Wu, X. Y. Zhang, J. Wang, X. Li, and J. P. Chen, WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers, Opt. Express 23(9), 11453 (2015)
CrossRef ADS Google scholar
[59]
P. G. Yan, A. J. Liu, Y. S. Chen, H. Chen, S. C. Ruan, C. Y. Guo, S. F. Chen, I. L. Li, H. P. Yang, J. G. Hu, and G. Z. Cao, Microfiber-based WS2-film saturable absorber for ultra-fast photonics, Opt. Mater. Express 5(3), 479 (2015)
CrossRef ADS Google scholar
[60]
M. Liu, X. W. Zheng, Y. L. Qi, H. Liu, A. P. Luo, Z. C. Luo, W. C. Xu, C. J. Zhao, and H. Zhang, Microfiberbased few-layer MoS2 saturable absorber for 25 GHz passively harmonic mode-locked fiber laser, Opt. Express 22(19), 22841 (2014)
CrossRef ADS Google scholar
[61]
Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, 1-, 1.5-, and 2-μm fiber lasers Q-switched by a broadband few-layer MoS2 Saturable Absorber, J. Lightwave Technol. 32(24), 4679 (2014)
CrossRef ADS Google scholar
[62]
L. K. Li, Y. J. Yu, G. J. Ye, Q. Q. Ge, X. D. Ou, H. Wu, D. L. Feng, X. H. Chen, and Y. B. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9(5), 372 (2014)
CrossRef ADS Google scholar
[63]
H. H. Churchill and P. Jarillo-Herrero, Phosphorus joins the family, Nat. Nanotechnol. 9(5), 330 (2014)
CrossRef ADS Google scholar
[64]
H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, and P. D. Ye, Phosphorene: An Unexplored 2D semiconductor with a high hole mobility, ACS Nano 8(4), 4033 (2014)
CrossRef ADS Google scholar
[65]
M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors, Nano Lett. 14(6), 3347(2014)
CrossRef ADS Google scholar
[66]
N. Junhong, L. Young Tack, L. Jung Ah, H. Do Kyung, K. Gyu-Tae, C. Won Kook, and S. Yong-Won, Few-layer black phosphorus field-effect transistors with reduced current fluctuation, ACS Nano, 8(11), 11753 (2014)
CrossRef ADS Google scholar
[67]
Z. B. Yang, J. H. Hao, S. G. Yuan, S. H. Lin, H. M. Yau, J. Y. Dai, and S. P. Lau, Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition, Adv. Mater. 27(25), 3748 (2015)
CrossRef ADS Google scholar
[68]
T. Hong, B. Chamlagain, W. Z. Lin, H. J. Chuang, M. H. Pan, Z. X. Zhou, and Y. Q. Xu, Polarized photocurrent response in black phosphorus field-effect transistors, Nanoscale 6(15), 8978 (2014)
CrossRef ADS Google scholar
[69]
Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. F. Yu, Metal-ion-modified black phosphorus with enhanced stability and transistor performance, Adv. Mater. 29, (2017)
CrossRef ADS Google scholar
[70]
Y. Zhou, M. Zhang, Z. Guo, L. Miao, S. T. Han, Z. Wang, X. Zhang, H. Zhang, and Z. Peng, Recent advances in black phosphorus-based photonics, electronics, sensors and energy devices, Mater. Horiz. 4(6), 997 (2017)
CrossRef ADS Google scholar
[71]
M. Qiu, Z. T. Sun, D. K. Sang, X. G. Han, H. Zhang, and C. M. Niu, Current progress in black phosphorus materials and their applications in electrochemical energy storage, Nanoscale 9(36), 13384 (2017)
CrossRef ADS Google scholar
[72]
Y. Xu, J. Yuan, K. Zhang, Y. Hou, Q. Sun, Y. Yao, S. Li, Q. Bao, H. Zhang, and Y. Zhang, Field-induced n-doping of black phosphorus for CMOS compatible 2D logic electronics with high electron mobility, Adv. Funct. Mater. 27(38), 1702211 (2017)
CrossRef ADS Google scholar
[73]
M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors, Nano Lett. 14(6), 3347 (2014)
CrossRef ADS Google scholar
[74]
N. Youngblood, C. Chen, S. J. Koester, and M. Li, Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current, Nat. Photonics 9(4), 247 (2015)
CrossRef ADS Google scholar
[75]
H. T. Yuan, X. G. Liu, F. Afshinmanesh, W. Li, G. Xu, J. Sun, B. Lian, A. G. Curto, G. J. Ye, Y. Hikita, Z. X. Shen, S. C. Zhang, X. H. Chen, M. Brongersma, H. Y. Hwang, and Y. Cui, Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction, Nat. Nanotechnol. 10(8), 707 (2015)
CrossRef ADS Google scholar
[76]
J. S. Qiao, X. H. Kong, Z. X. Hu, F. Yang, and W. Ji, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus, Nat. Commun. 5, 4475 (2014)
CrossRef ADS Google scholar
[77]
Y. Li, S. Yang, and J. Li, Modulation of the electronic properties of ultrathin black phosphorus by strain and electrical field, J. Phys. Chem. C 118(41), 23970 (2014)
CrossRef ADS Google scholar
[78]
J. Dai and X. C. Zeng, Bilayer phosphorene, J. Phys. Chem. Lett. 5(7), 1289 (2014)
CrossRef ADS Google scholar
[79]
A. Zhuang, J. J. Li, Y. C. Wang, X. Wen, Y. Lin, B. Xiang, X. Wang, and J. Zeng, Screw-dislocation-driven bidirectional spiral growth of Bi2Se3 nanoplates, Angew. Chem. Int. Ed. Engl. 53(25), 6425 (2014)
CrossRef ADS Google scholar
[80]
M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
CrossRef ADS Google scholar
[81]
C. Y. Chen, Z. J. Xie, Y. Feng, H. M. Yi, A. J. Liang, S. L. He, D. X. Mou, J. F. He, Y. Y. Peng, X. Liu, Y. Liu, L. Zhao, G. D. Liu, X. L. Dong, J. Zhang, L. Yu, X. Y. Wang, Q. J. Peng, Z. M. Wang, S. J. Zhang, F. Yang, C. T. Chen, Z. Y. Xu, and X. J. Zhou, Tunable Dirac fermion dynamics in topological insulators, Sci. Rep. 3(10), 2411 (2013)
CrossRef ADS Google scholar
[82]
C. J. Zhao, Y. H. Zou, Y. Chen, Z. T. Wang, S. B. Lu, H. Zhang, S. C. Wen, and D. Y. Tang, Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi2Se3 as a mode locker: Erratum, Opt. Express 21(1), 444 (2013)
CrossRef ADS Google scholar
[83]
H. Zhang, X. He, W. Lin, R. Wei, F. Zhang, X. Du, G. Dong, and J. Qiu, Ultrafast saturable absorption in topological insulator Bi2SeTe2 nanosheets, Opt. Express 23(10), 13376 (2015)
CrossRef ADS Google scholar
[84]
X. He, H. Zhang, W. Lin, R. Wei, J. Qiu, M. Zhang, and B. Hu, PVP-assisted solvothermal synthesis of highyielded Bi2Te3 hexagonal nanoplates: Application in passively Q-switched fiber laser, Sci. Rep. 5(1), 15868 (2015)
CrossRef ADS Google scholar
[85]
H. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, Topological insulator as an optical modulator for pulsed solid-state lasers, Laser Photon. Rev. 7(6), L77 (2013)
CrossRef ADS Google scholar
[86]
H. Huang, Y. Li, Q. Li, B. Li, Z. Song, W. Huang, C. Zhao, H. Zhang, S. Wen, D. Carroll, and G. Fang, Field electron emission of layered Bi2Se3 nanosheets with atomthick sharp edges, Nanoscale 6(14), 8306 (2014)
CrossRef ADS Google scholar
[87]
Y. Tan, H. Zhang, C. Zhao, S. Akhmadaliev, S. Zhou, and F. Chen, Bi2Se3 Q-switched Nd:YAG ceramic waveguide laser, Opt. Lett. 40(4), 637 (2015)
CrossRef ADS Google scholar
[88]
X. Jiang, S. Gross, H. Zhang, Z. Guo, M. J. Withford, and A. Fuerbach, Bismuth telluride topological insulator nanosheet saturable absorbers for Q-switched modelocked Tm:ZBLAN waveguide lasers, Ann. Phys. 528(7–8), 543 (2016)
CrossRef ADS Google scholar
[89]
M. Liu, Z. R. Cai, S. Hu, A. P. Luo, C. J. Zhao, H. Zhang, W. C. Xu, and Z. C. Luo, Dissipative rogue waves induced by long-range chaotic multi-pulse interactions in a fiber laser with a topological insulator-deposited microfiber photonic device, Opt. Lett. 40(20), 4767 (2015)
CrossRef ADS Google scholar
[90]
C. R. Ast and H. Hochst, Electronic structure of a bismuth bilayer, Phys. Rev. B 67(11), 181 (2003)
CrossRef ADS Google scholar
[91]
Y. M. Koroteev, G. Bihlmayer, J. E. Gayone, E. V. Chulkov, S. Blugel, P. M. Echenique, and P. Hofmann, Strong spin–orbit splitting on Bi surfaces, Phys. Rev. Lett. 93(4), 046403 (2004)
CrossRef ADS Google scholar
[92]
E. J. Tichovolsky and J. G. Mavroides, Magnetoreflection studies on the band structure of bismuth-antimony alloys, Solid State Commun. 7(13), 927 (1969)
CrossRef ADS Google scholar
[93]
Y. Ohtsubo, L. Perfetti, M. O. Goerbig, P. Le Fevre, F. Bertran, and A. Taleb-Ibrahimi, Non-trivial surface-band dispersion on bi(111), New J. Phys. 15, 033041 (2013)
CrossRef ADS Google scholar
[94]
L. Li, J. G. Checkelsky, Y. S. Hor, C. Uher, A. F. Hebard, R. J. Cava, and N. P. Ong, Phase transitions of Dirac electrons in bismuth, Science 321(5888), 547 (2008)
CrossRef ADS Google scholar
[95]
S. Murakami, Quantum spin Hall effect and enhanced magnetic response by spin–orbit coupling, Phys. Rev. Lett. 97(23), 236805 (2006)
CrossRef ADS Google scholar
[96]
J. P. Issi, Low temperature transport properties of the group V semimetals, Aust. J. Phys. 32(6), 585 (1979)
CrossRef ADS Google scholar
[97]
P. Hofmann, The surfaces of bismuth: Structural and electronic properties, Prog. Surf. Sci. 81(5), 191 (2006)
CrossRef ADS Google scholar
[98]
Y. Guo, Y. F. Zhang, X. Y. Bao, T. Z. Han, Z. Tang, L. X. Zhang, W. G. Zhu, E. G. Wang, Q. Niu, Z. Q. Qiu, J. F. Jia, Z. X. Zhao, and Q. K. Xue, Superconductivity modulated by quantum size effects, Science 306(5703), 1915 (2004)
CrossRef ADS Google scholar
[99]
L. Lu, Z. M. Liang, L. M. Wu, Y. X. Chen, Y. F. Song, S. C. Dhanabalan, J. S. Ponraj, B. Q. Dong, Y. J. Xiang, F. Xing, D. Y. Fan, and H. Zhang, Few-layer bismuthene: Sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability, Laser Photon. Rev. 12(1), 1870012 (2018)
CrossRef ADS Google scholar
[100]
J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman, and W. J. Blau, Broadband nonlinear optical response of graphene dispersions, Adv. Mater. 21(23), 2430 (2009)
CrossRef ADS Google scholar
[101]
H. H. Yu, X. F. Chen, H. J. Zhang, X. G. Xu, X. B. Hu, Z. P. Wang, J. Y. Wang, S. D. Zhuang, and M. H. Jiang, Large energy pulse generation modulated by grapheme epitaxially grown on silicon carbide, ACS Nano 4(12), 7582 (2010)
CrossRef ADS Google scholar
[102]
H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser, Appl. Phys. Lett. 96(11), 111112 (2010)
CrossRef ADS Google scholar
[103]
J. Tang, Y. Chen, Y. Lin, X. Gong, J. Huang, Z. Luo, and Y. Huang, Tm3/Ho3+ co-doped LiGd(MoO4)2 crystal as laser gain medium around 20 μm, Opt. Mater. Express 2(8), 878 (2012)
CrossRef ADS Google scholar
[104]
Z. W. Zheng, C. J. Zhao, S. B. Lu, Y. Chen, Y. Li, H. Zhang, and S. C. Wen, Microwave and optical saturable absorption in graphene, Opt. Express 20(21), 23201 (2012)
CrossRef ADS Google scholar
[105]
E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, Coherent nonlinear optical response of graphene, Phys. Rev. Lett. 105(9), 097401 (2010)
CrossRef ADS Google scholar
[106]
M. B. M. Krishna, V. P. Kumar, N. Venkatramaiah, R. Venkatesan, and D. N. Rao, Nonlinear optical properties of covalently linked graphene-metal porphyrin composite materials, Appl. Phys. Lett. 98(8), 081106 (2011)
CrossRef ADS Google scholar
[107]
W. Chen, G. Wang, S. Qin, C. Wang, J. Fang, J. Qi, X. Zhang, L. Wang, H. Jia, and S. Chang, The nonlinear optical properties of coupling and decoupling grapheme layers, AIP Adv. 3(4), 042123 (2013)
CrossRef ADS Google scholar
[108]
K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, Ultrafast saturable absorption of two-dimensional MoS2 nanosheets, ACS Nano 7(10), 9260 (2013)
CrossRef ADS Google scholar
[109]
X. Zhang, S. Zhang, C. Chang, Y. Feng, Y. Li, N. Dong, K. Wang, L. Zhang, W. J. Blau, and J. Wang, Facile fabrication of wafer-scale MoS2 neat films with enhanced third-order nonlinear optical performance, Nanoscale 7(7), 2978 (2015)
CrossRef ADS Google scholar
[110]
A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, Emerging photoluminescence in monolayer MoS2, Nano Lett. 10(4), 1271 (2010)
CrossRef ADS Google scholar
[111]
A. Pulkin and O. V. Yazyev, Spin- and valley-polarized transport across line defects in monolayer MoS2, Phys. Rev. B 93(4), 041419 (2016)
CrossRef ADS Google scholar
[112]
Q. Ouyang, H. Yu, K. Zhang, and Y. Chen, Saturable absorption and the changeover from saturable absorption to reverse saturable absorption of MoS2 nanoflake array films, J. Mater. Chem. C 2(31), 6319 (2014)
CrossRef ADS Google scholar
[113]
K. G. Zhou, M. Zhao, M. J. Chang, Q. Wang, X. Z. Wu, Y. Song, and H. L. Zhang, Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets, Small 11(6), 694 (2015)
CrossRef ADS Google scholar
[114]
D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, WS2 mode-locked ultrafast fiber laser, Sci. Rep. 5(1), 7965 (2015)
CrossRef ADS Google scholar
[115]
R. F. Wei, H. Zhang, Z. L. Hu, T. Qiao, X. He, Ultrabroadband nonlinear saturable absorption of high-yield MoS2 nanosheets, Nanotechnology 27(30), 305203 (2016)
CrossRef ADS Google scholar
[116]
F. Bernard, Z. Han, S. P. Gorza, and P. Emplit, Towards mode-locked fiber laser using topological insulators, Nonlin. Photon. 5, 2012
CrossRef ADS Google scholar
[117]
C. J. Zhao, Y. H. Zou, Y. Chen, Z. T. Wang, S. B. Lu, H. Zhang, S. C. Wen, and D. Y. Tang, Wavelengthtunable picosecond soliton fiber laser with topological insulator: Bi2Se3 as a mode locker, Opt. Express 20(25), 27888 (2012)
CrossRef ADS Google scholar
[118]
C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, Ultra-short pulse generation by a topological insulator based saturable absorber, Appl. Phys. Lett. 101(21), 118(2012)
CrossRef ADS Google scholar
[119]
S. B. Lu, C. J. Zhao, Y. H. Zou, S. Q. Chen, Y. Chen, Y. Li, H. Zhang, S. C. Wen, and D. Y. Tang, Third order nonlinear optical property of Bi2Se3, Opt. Express 21(2), 2072 (2013)
CrossRef ADS Google scholar
[120]
Z. Q. Luo, C. Liu, Y. Z. Huang, D. D. Wu, J. Y. Wu, H. Y. Xu, Z. P. Cai, Z. Q. Lin, L. P. Sun, and J. Weng, Topological-insulator passively Q-switched double-clad fiber laser at 2 μm wavelength, IEEE J. Sel. Top. Quant. 902708 2014, 20(5)
[121]
M. Jung, J. Lee, J. Koo, J. Park, Y. W. Song, K. Lee, S. Lee, and J. H. Lee, A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator, Opt. Express 22(7), 7865 (2014)
CrossRef ADS Google scholar
[122]
B. Weitzel and H. Micklitz, Superconductivity in granular systems built from well-defined rhombohedral Bi-clusters: Evidence for Bi-surface superconductivity, Phys. Rev. Lett. 66(3), 385 (1991)
CrossRef ADS Google scholar
[123]
L. Gui, X. Li, X. Xiao, H. Zhu, and C. Yang, Widely spaced bound states in a soliton fiber laser with grapheme saturable absorber, IEEE Photon. Technol. Lett. 25(12), 1184 (2013)
CrossRef ADS Google scholar
[124]
L. Cheng, H. Liu, X. Tan, J. Zhang, J. Wei, and H. Lv, Thermoelectric properties of a monolayer bismuth, J. Phys. Chem. C 118(2), 904 (2014)
CrossRef ADS Google scholar
[125]
Y. M. Koroteev, G. Bihlmayer, E. V. Chulkov, and S. Blügel, First-principles investigation of structural and electronic properties of ultrathin Bi films, Phys. Rev. B 77(4), 045428 (2008)
CrossRef ADS Google scholar
[126]
B. Guo, S. H. Wang, Z. X. Wu, Z. X. Wang, D. H. Wang, H. Huang, F. Zhang, Y. Q. Ge, and H. Zhang, Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber, Opt. Express 26(18), 22750 (2018)
CrossRef ADS Google scholar
[127]
Q. Q. Yang, R. T. Liu, C. Huang, Y. F. Huang, L. F. Gao, B. Sun, Z. P. Huang, L. Zhang, C. X. Hu, Z. Q. Zhang, C. L. Sun, Q. Wang, Y. L. Tang, and H. L. Zhang, 2D bismuthene fabricated via acid-intercalated exfoliation showing strong nonlinear near-infrared responses for mode-locking lasers, Nanoscale 10(45), 21106 (2018)
CrossRef ADS Google scholar
[128]
P. Zijlstra, J. W. Chon, and M. Gu, Five-dimensional optical recording mediated by surface plasmons in gold nanorods, Nature 459(7245), 410 (2009)
CrossRef ADS Google scholar
[129]
D. Tan, Y. Yamada, S. Zhou, Y. Shimotsuma, K. Miura, and J. Qiu, Carbon nanodots with strong nonlinear optical response, Carbon 69, 638 (2014)
CrossRef ADS Google scholar
[130]
R. L. Gieseking, S. Mukhopadhyay, C. Risko, and J. L. Brédas, Impact of the nature of the excited-state transition dipole moments on the third-order nonlinear optical response of polymethine dyes for all-optical switching applications, ACS Photon. 1(3), 261 (2014)
CrossRef ADS Google scholar
[131]
W. Man, C. Yu, Z. Han, and W. Shuangchun, Nanosecond Q-switched erbium-doped fiber laser with wide pulse-repetition-rate range based on topological insulator, IEEE J. Quantum Electron. 50, 393 (2014)
CrossRef ADS Google scholar
[132]
Y. Chen, C. Zhao, S. Chen, J. Du, P. Tang, G. Jiang, H. Zhang, S. Wen, and D. Tang, Large energy, wavelength widely tunable, topological insulator Q-switched erbiumdoped fiber laser, IEEE J. Sel. Top. Quantum Electron. 20(5), 315 (2014)
CrossRef ADS Google scholar
[133]
F. Yan, W. Peng, S. Liu, T. Feng, Z. Dong, and G. K. Chang, Dual-wavelength single-longitudinal-mode tmdoped fiber laser using PM-CMFBG, IEEE Photonics Technol. Lett. 27(9), 264 (2015)
CrossRef ADS Google scholar
[134]
C. Li, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, X. Xu, and L. Su, Black phosphorus saturable absorber for a diode-pumped passively Q-switched Er:CaF2 midinfrared laser, Opt. Commun. 406, 158 (2018)
CrossRef ADS Google scholar
[135]
P. Ge, J. LiuS. Jiang, Y. Xu, and B. Man, Compact Q-switched 2 m Tm:GdVO4 laser with MoS2 absorber, Photon. Res. 3(5), 256 (2015)
CrossRef ADS Google scholar
[136]
J. Liu, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, and L. Su, Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region, Opt. Express 24(26), 30289 (2016)
CrossRef ADS Google scholar
[137]
Y. Zhao, P. L. Guo, X. H. Li, and Z. W. Jin, Ultrafast photonics application of graphdiyne in the optical communication region, Carbon 149, 336 (2019)
CrossRef ADS Google scholar
[138]
T. C. Feng, X. H. Li, T. Chai, P. L. Guo, Y. Zhang, R. S. Liu, J. S. Liu, J. B. Lu, and Y. Q. Ge, Bismuthene nanosheets for 1-μm multipulse generation, Langmuir 36(1), 3 (2020)
CrossRef ADS Google scholar
[139]
Z. J. Shi, W. X. Xu, X. H. Li, and Z. Hui, Cuprous sulfide for different laser pulse generation: Q-switching and mode-locking, J. Phys. Chem. C 123(46), 28370 (2019)
CrossRef ADS Google scholar
[140]
J. Feng, X. Li, Z. Shi, C. Zheng, X. Li, D. Leng, Y. Wang, J. Liu, and L. Zhu, 2D ductile transition metal chalcogenides (TMCs): A novel hiah-performance Ag2S nanosheets for ultrafast photonics, Adv. Opt. Mater. 8(6), 1901762 (2020)
CrossRef ADS Google scholar
[141]
J. S. Liu, X. H. Li, Y. X. Guo, A. Qyyum, Z. J. Shi, T. C. Feng, Y. Zhang, C. X. Jiang, and X. F. Liu, SnSe2 nanosheets for subpicosecond harmonic modelocked pulse generation, Small 15(38), 1902811 (2019)
CrossRef ADS Google scholar
[142]
T. C. Feng, D. Zhang, X. H. Li, Q. Abdul, Z. J. Shi, J. B. Lu, P. L. Guo, Y. Zhang, J. S. Liu, and Q. J. Wang, SnS2 nanosheets for Er-doped fiber lasers, ACS Appl. Nanomater. (Basel) 3(1), 674 (2020)
CrossRef ADS Google scholar
[143]
X. H. Li, X. C. Yu, Z. P. Sun, Z. Y. Yan, B. Sun, Y. B. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, High-power graphene mode-locked Tm/Ho co-doped fiber laser with evanescent field interaction, Sci. Rep. 5(1), 16624 (2015)
CrossRef ADS Google scholar
[144]
X. H. Li, K. Wu, Z. P. Sun, B. Meng, Y. G. Wang, Y. S. Wang, X. C. Yu, X. Yu, Y. Zhang, P. P. Shum, and Q. J. Wang, Single-wall carbon nanotubes and graphene oxidebased saturable absorbers for low phase noise modelocked fiber lasers, Sci. Rep. 6(1), 25266 (2016)
CrossRef ADS Google scholar
[145]
L. M. Zhao, D. Y. Tang, X. Wu, H. Zhang, and H. Y. Tam, Coexistence of polarization-locked and polarizationrotating vector solitons in a fiber laser with SESAM, Opt. Lett. 34(20), 3059 (2009)
CrossRef ADS Google scholar
[146]
L. M. Zhao, D. Y. Tang, H. Zhang, and X. Wu, Polarization rotation locking of vector solitons in a fiber ring laser, Opt. Express 16(14), 10053 (2008)
CrossRef ADS Google scholar
[147]
L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, and N. Xiang, Soliton trapping in fiber lasers, Opt. Express 16(13), 9528 (2008)
CrossRef ADS Google scholar
[148]
H. Zhang, D. Y. Tang, L. M. Zhao, and H. Y. Tam, Induced solitons formed by cross-polarization coupling in a birefringent cavity fiber laser, Opt. Lett. 33(20), 2317 (2008)
CrossRef ADS Google scholar
[149]
L. M. Zhao, D. Y. Tang, X. Wu, and H.Zhang, Dissipative soliton trapping in normal dispersion-fiber lasers, Opt. Lett. 35(11), 1902 (2010)
CrossRef ADS Google scholar
[150]
L. M. Zhao, D. Y. Tang, H. Zhang, and X. Wu, Bunch of restless vector solitons in a fiber laser with SESAM, Opt. Express 17(10), 8103 (2009)
CrossRef ADS Google scholar
[151]
J. Ma, Z. Qin, G. Xie, L. Qian, and D. Tang, Review of mid-infrared mode-locked laser sources in the 2.0–3.5 μm spectral region, Appl. Phys. Rev. 6(2), 021317 (2019)
CrossRef ADS Google scholar
[152]
G. Chang and Z. Wei, Ultrafast fiber lasers: An expanding versatile toolbox, iScience 23(5) 101101 (2020)
CrossRef ADS Google scholar
[153]
C. Shang, Y. Zhang, H. Qin, B. He, C. Zhang, J. Sun, J. Li, J. Ma, X. Ji, L. Xu, and B. Fu., Review on wavelengthtunable pulsed fiber lasers based on 2D materials, Opt. Laser Technol. 131, 106375 (2020)
CrossRef ADS Google scholar
[154]
Y. Han, Y. Guo, B. Gao, C. Ma, H. Zhang, and H. Zhang, Generation, optimization, and application of ultrashort femtosecond pulse in mode-locked fiber lasers, Prog. Quantum Electron. 71, 100264 (2020)
CrossRef ADS Google scholar
[155]
T. Jiang, K. Yin, C. Wang, J. You, H. Ouyang, R. Miao, C. Zhang, K. Wei, H. Li, H. Chen, R. Zhang, X. Zheng, Z. Xu, X. Cheng, and H. Zhang, Ultrafast fiber lasers mode-locked by two-dimensional materials: Review and prospect, Photon. Res. 8(1), 78 (2020)
CrossRef ADS Google scholar
[156]
P. L. Huang, S. Lin, C. Yeh, H. Kuo, S. Huang, G. Lin, L. Li, C. Su, and W. Cheng, Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber, Opt. Express 20(3), 2460 (2012)
CrossRef ADS Google scholar
[157]
Z. Zheng, C. Zhao, S. Lu, Y. Chen, H. Li, Y. Zhang, and S. Wen, Microwave and optical saturable absorption in graphene, Opt. Express 20(21), 23201 (2012)
CrossRef ADS Google scholar
[158]
B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2 mm, IEEE J. Sel. Top. Quantum Electron. 20(5), 1100705 (2014)
CrossRef ADS Google scholar
[159]
L. Liu, H. T. Hattori, E. G. Mironov, and A. Khaleque, Composite chromium and graphene oxide as saturable absorber in ytterbium-doped Q-switched fiber lasers, Appl. Opt. 53(6), 1173 (2014)
CrossRef ADS Google scholar
[160]
L. Li, X. Zheng, X. Chen, M. Qi, Z. Ren, J. Bai, and Z. Sun, High-power diode-side-pumped Nd:YAG solid laser mode-locked by CVD graphene, Opt. Comm. 315, 204 (2014)
CrossRef ADS Google scholar
[161]
X. Li, W. Zou, and J. Chen, 419 fs hybridly mode-locked Er-doped fiber laser at 212 MHz repetition rate, Opt. Lett. 39(6), 1553 (2014)
CrossRef ADS Google scholar
[162]
Q. Wen, X. Zhang, Y. Wang, Y. Wang, and H. Niu, Passively Q-switched Nd:YAG laser with graphene oxide in heavy water, IEEE Photon. J. 6(2), 1 (2014)
CrossRef ADS Google scholar
[163]
J. Xu, S. Wu, J. Liu, Y. Li, J. Ren, Q. H. Yang, and P. Wang, All-polarization-maintaining femtosecond fiber lasers using graphene oxide saturable absorber, IEEE Photon. Technol. Lett. 26(4), 346 (2014)
CrossRef ADS Google scholar
[164]
X. He, D. N. Wang, and Z. B. Liu, Pulse-width tuning in a passively mode-locked fiber laser with graphene saturable absorber, IEEE Photon. Technol. Lett. 26(4), 360 (2014)
CrossRef ADS Google scholar
[165]
Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q.Bao, S.Wen, D.Tang, and D.Fan, Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation, Opt. Express 23(10), 12823 (2015)
CrossRef ADS Google scholar
[166]
F. Zhang, Z. Wu, Z. Wang, D. Wang, S. Wang, and X. Xu, Strong optical limiting behavior discovered in black phosphorus, RSC Adv. 6(24), 20027 (2016)
CrossRef ADS Google scholar
[167]
F. Zhang, Z. Wang, D. Wang, Z. Wu, S. Wang, and X. Xu, Nonlinear optical effects in nitrogen-doped graphene, RSC Adv. 6(5), 3526 (2016)
CrossRef ADS Google scholar
[168]
J. L. Wu, B. Gu, N. Sheng, D. Liu, and Y. Cui, Enhanced optical limiting effects in a double-decker bis(phthalocyaninato) rare earth complex using radially polarized beams, Appl. Phys. Lett. 105(17), 171113 (2014)
CrossRef ADS Google scholar
[169]
C. Zheng, W. Chen, S. Cai, X. Xiao, and X. Ye, Enhanced optical limiting properties of graphene oxide/triangular Pd nanocrystal composites, Mater. Lett. 131, 284 (2014)
CrossRef ADS Google scholar
[170]
A. A. Ryzhov, I. M. Belousova, Y. Wang, H. Qi, and J. Wang, Optical limiting properties of a nonlinear multilayer Fabry–Perot resonator containing niobium pentoxide as nonlinear medium, Opt. Lett. 39(16), 4847 (2014)
CrossRef ADS Google scholar
[171]
A. Diallo, S. Zongo, P. Mthunzi, S. Rehman, S. Y. Alqaradawi, W. Soboyejo, and M. Maaza, Z-scan and optical limiting properties of Hibiscus Sabdariffa dye, Appl. Phys. B 117(3), 861 (2014)
CrossRef ADS Google scholar
[172]
I. Papagiannouli, A. B. Bourlinos, A. Bakandritsos, and S. Couris, Nonlinear optical properties of colloidal carbon nanoparticles: Nanodiamonds and carbon dots, RSC Advances 4(76), 40152 (2014)
CrossRef ADS Google scholar
[173]
P. Aloukos, I. Papagiannouli, A. B. Bourlinos, R. Zboril, and S. Couris, Third-order nonlinear optical response and optical limiting of colloidal carbon dots, Opt. Express 22(10), 12013 (2014)
CrossRef ADS Google scholar
[174]
M. J. Weber, D. Milam, and W. L. Smith, Nonlinear refractive index of glasses and crystals, Opt. Eng. 17(5), 463 (1978)
CrossRef ADS Google scholar
[175]
R. Adair, L. L. Chase, and S. A. Payne, Nonlinear refractive-index measurements of glasses using three-wave frequency mixing, J. Opt. Soc. Anier. B 4(6), 875 (1987)
CrossRef ADS Google scholar
[176]
C. Cheng, Z. Li, N. Dong, J. Wang, and F. Chen, Tin diselenide as a new saturable absorber for generation of laser pulses at 1 m, Opt. Express 25(6), 6132 (2017)
CrossRef ADS Google scholar
[177]
S. L. Wong, H. Liu, and D. Chi, Recent progress in chemical vapor deposition growth of two-dimensional transition metal dichalcogenides, Prog. Cryst. Growth Charact. Mater. 62(3), 9 (2016)
CrossRef ADS Google scholar
[178]
K. Yan, L. Fu, H. L. Peng, and Z. F.Liu, Designed CVD growth of graphene via process engineering, Acc. Chem. Res. 46(10), 2263 (2013)
CrossRef ADS Google scholar
[179]
D. Hanlon, C. Backes, E. Doherty, C. S. Cucinotta, N. C. Berner, C. Boland, K. Lee, A. Harvey, P. Lynch, Z. Gholamvand, S. Zhang, K. Wang, G. Moynihan, A. Pokle, Q. M. Ramasse, N. McEvoy, W. J. Blau, J. Wang, G. Abellan, F. Hauke, A. Hirsch, S. Sanvito, D. D. O′ Regan, G. S.Duesberg, V. Nicolosi, and J. N. Coleman, Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics, Nat. Commun. 6(1), 8563 (2015)
CrossRef ADS Google scholar
[180]
H. Li, G. Lu, Y. Wang, Z. Yin, C. Cong, Q. He, L. Wang, F. Ding, T. Yu, and H. Zhang, Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2, Small 9(11), 1974 (2013)
CrossRef ADS Google scholar
[181]
A. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. L. Narasimha-Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema, G. A. Steele, J. V. Alvarez, H. W.Zandbergen, J. J.Palacios, and H. S. J. van der Zant, Isolation and characterization of few-layer black phosphorus, 2D Mater. 1, 025001 (2014)
CrossRef ADS Google scholar
[182]
S. S. Hong, W. Kundhikanjana, J. J. Cha, K. Lai, D. Kong, S. Meister, M. A. Kelly, Z. X. Shen, and Y. Cui, Ultrathin topological insulator Bi2Se3 nanoribbons exfoliated by atomic force microscopy, Nano Lett. 10(8), 3118 (2010)
CrossRef ADS Google scholar
[183]
L. H. Li, Y. Chen, G. Behan, H. Zhang, M. Petravic, and A. M. Glushenkov, Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling, J. Mater. Chem. 21(32), 11862 (2011)
CrossRef ADS Google scholar
[184]
D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev. 39(1), 228 (2010)
CrossRef ADS Google scholar
[185]
J. M. Hughes, D. Aherne, and J. N. Coleman, Generalizing solubility parameter theory to apply to one- and two-dimensional solutes and to incorporate dipolar interactions, J. Appl. Polym. Sci. 127(6), 4483 (2013)
CrossRef ADS Google scholar
[186]
Y. Hernandez, M. Lotya, D. Rickard, S. D. Bergin, and J. N. Coleman, Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery, Langmuir 26(5), 3208 (2010)
CrossRef ADS Google scholar
[187]
A. O’Neill, U. Khan, P. N. Nirmalraj, J. Boland, and J. N. Coleman, Graphene dispersion and exfoliation in low boiling point solvents, J. Phys. Chem. C 115(13), 5422 (2011)
CrossRef ADS Google scholar
[188]
A. B. Bourlinos, V. Georgakilas, R. Zboril, T. A.Steriotis, and A. K. Stubos, Liquid-phase exfoliation of graphite towards solubilized graphenes, Small 5(16), 1841 (2009)
CrossRef ADS Google scholar
[189]
G. Z. Magda, J. Peto, G. Dobrik, C. Hwang, L. P. Biro, and L. Tapaszto, Exfoliation of large-area transition metal chalcogenide single layers, Sci. Rep. 5(1), 14714 (2015)
CrossRef ADS Google scholar
[190]
J. Zheng, H. Zhang, S. Dong, Y. Liu, C. T. Nai, H. S. Shin, H. Y. Jeong, B. Liu, and K. P. Loh, High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide, Nat. Commun. 5(1), 2995 (2014)
CrossRef ADS Google scholar
[191]
G. Cunningham, M. Lotya, C. S. Cucinotta, S. Sanvito, S. D. Bergin, R. Menzel, M. S. P.Shaffer, and J. N. Coleman, Solvent exfoliation of transition metal dichalcogenides: Dispersibility of exfoliated nanosheets varies only weakly between compounds, ACS Nano 6(4), 3468 (2012)
CrossRef ADS Google scholar
[192]
J. R. Brent, N. Savjani, E. A. Lewis, S. J. Haigh, D. J. Lewis, and P. O′ Brien, Production of few-layer phosphorene by liquid exfoliation of black phosphorus, Chem. Commun. (Camb.) 50(87), 13338 (2014)
CrossRef ADS Google scholar
[193]
J. Kang, J. D. Wood, S. A. Wells, J. H. Lee, X. L. Liu, K. S.Chen, and M. C. Hersam, Solvent exfoliation of electronic-grade, two-dimensional black phosphorus, ACS Nano 9(4), 3596 (2015)
CrossRef ADS Google scholar
[194]
Y. Lin, T. V. Williams, and J. W. Connell, Soluble, exfoliated hexagonal boron nitride nanosheets, J. Phys. Chem. Lett. 1(1), 277 (2010)
CrossRef ADS Google scholar
[195]
D. Yoo, M. Kim, S. Jeong, J. Han, and J. Cheon, Chemical synthetic strategy for single-layer transition-metal chalcogenides, J. Am. Chem. Soc. 136(42), 14670 (2014)
CrossRef ADS Google scholar
[196]
A. N. Obraztsov, Making graphene on a large scale, Nat. Nanotechnol. 4(4), 212 (2009)
CrossRef ADS Google scholar
[197]
T. Niu, M. Zhou, J. Zhang, Y. Feng, and W. Chen, Growth intermediates for CVD graphene on Cu(111): Carbon clusters and defective graphene, J. Am. Chem. Soc. 135(22), 8409 (2013)
CrossRef ADS Google scholar
[198]
S. Tang, H. Wang, H. S. Wang, Q. Sun, X. Zhang, C. Cong, H. Xie, X. Liu, X. Zhou, F. Huang, X. Chen, T. Yu, F. Ding, X. Xie, and M. Jiang, Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride, Nat. Commun. 6(1), 6499 (2015)
CrossRef ADS Google scholar
[199]
Y. Shi, C. Hamsen, X. Jia, K. K. Kim, A. Reina, M. Hofmann, A. L. Hsu, K. Zhang, H. Li, Z. Y. Juang, M. S. Dresselhaus, L. J. Li, and J. Kong, Synthesis of fewlayer hexagonal boron nitride thin film by chemical vapor deposition, Nano Lett. 10(10), 4134 (2010)
CrossRef ADS Google scholar
[200]
S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.J. Kim, K. S. Kim, B. Özyilmaz, J.H. Ahn, B. H. Hong, and S. Iijima., Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nat. Nanotechnol. 5(8), 574 (2010)
CrossRef ADS Google scholar
[201]
Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. Bao, S. S. Pei, and Y. P. Chen, Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition, Nat. Mater. 10(6), 443 (2011)
CrossRef ADS Google scholar
[202]
Y. Zhang, Y. F. Zhang, Q. Q. Ji, J. Ju, H. T. Yuan, J. P. Shi, T. Gao, D. L. Ma, M. X. Liu, Y. B. Chen, X. J. Song, H. Y. Hwang, Y. Cui, and Z. F. Liu, Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary, ACS Nano 7(10), 8963 (2013)
CrossRef ADS Google scholar
[203]
Y. Shi, W. Zhou, A. Y. Lu, W. Fang, Y. H. Lee, A. L. Hsu, S. M. Kim, K. K. Kim, H. Y. Yang, L. J. Li, J. C. Idrobo, and J. Kong, van der Waals epitaxy of MoS2 layers using graphene as growth templates, Nano Lett. 12(6), 2784 (2012)
CrossRef ADS Google scholar
[204]
C. Cong, J. Shang, X. Wu, B. Cao, N. Peimyoo, C. Qiu, L. Sun, and T. Yu, Synthesis and optical properties of largearea single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition, Adv. Opt. Mater. 2(2), 131 (2014)
CrossRef ADS Google scholar
[205]
W. W. Piper and S. J. Polich, Vapor‐phase growth of single crystals of II–VI compounds, J. Appl. Phys. 32(7), 1278 (1961)
CrossRef ADS Google scholar
[206]
H. Li, J. Cao, W. Zheng, Y. Chen, D. Wu, W. Dang, K. Wang, H. Peng, and Z. Liu, Controlled synthesis of topological insulator nanoplate arrays on mica, J. Am. Chem. Soc. 134(14), 6132 (2012)
CrossRef ADS Google scholar
[207]
Z. H. Sun and H. X. Chang, Graphene and graphenelike two-dimensional materials in photodetection: Mechanisms and methodology, ACS Nano 8(5), 4133 (2014)
CrossRef ADS Google scholar
[208]
D. Kong, W. Dang, J. J. Cha, H. Li, S. Meister, H. Peng, Z.Liu, and Y. Cui, Few-layer nanoplates of Bi2Se3 and Bi2Te3 with highly tunable chemical potential, Nano Lett. 10(6), 2245 (2010)
CrossRef ADS Google scholar
[209]
K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Hofmann, D. Nezich, J. F. Rodriguez-Nieva, M. Dresselhaus, T. Palacios, and J. Kong, Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition, Nano Lett. 12(1), 161 (2012)
CrossRef ADS Google scholar
[210]
P. Sutter, J. Lahiri, P. Albrecht, and E. Sutter, Chemical vapor deposition and etching of high-quality monolayer hexagonal boron nitride films, ACS Nano 5(9), 7303 (2011)
CrossRef ADS Google scholar
[211]
K. H. Lee, H. J. Shin, J. Lee, I. Y. Lee, G. H. Kim, J. Y. Choi, and S. W. Kim, Large-scale synthesis of highquality hexagonal boron nitride nanosheets for large-area graphene electronics, Nano Lett. 12(2), 714 (2012)
CrossRef ADS Google scholar
[212]
K. Ueno, K. Saiki, T. Shimada, and A. Koma, Epitaxial growth of transition metal dichalcogenides on cleaved faces of mica, J. Vac. Sci. Technol. A 8(1), 68 (1990)
CrossRef ADS Google scholar
[213]
Y. C. Lin, C. Y. Chang, R. K. Ghosh, J. Li, H. Zhu, R. Addou, B. Diaconescu, T. Ohta, X. Peng, N. Lu, M. J. Kim, J. T. Robinson, R. M. Wallace, T. S. Mayer, S. Datta, L. J. Li, and J. A. Robinson, Atomically thin heterostructures based on single-layer tungsten diselenide and graphene, Nano Lett. 14(12), 6936 (2014)
CrossRef ADS Google scholar
[214]
W. Yang, G. Chen, Z. Shi, C. C. Liu, L. Zhang, G. Xie, M. Cheng, D. Wang, R. Yang, D. Shi, K. Watanabe, T. Taniguchi, Y. Yao, Y. Zhang, and G. Zhang, Epitaxial growth of single-domain graphene on hexagonal boron nitride, Nat. Mater. 12(9), 792 (2013)
CrossRef ADS Google scholar
[215]
P. Yan, H. Chen, J. Yin, Z. Xu, J. Li, Z. Jiang, W. Zhang, J. Wang, I. L. Li, Z. Sun, and S. Ruan, Largearea tungsten disulfide for ultrafast photonics, Nanoscale 9(5), 1871 (2017)
CrossRef ADS Google scholar
[216]
A. Azizi, S. Eichfeld, G. Geschwind, K. H. Zhang, B. Jiang, D. Mukherjee, L. Hossain, A. F.Piasecki, B. Kabius, J. A. Robinson, and N. Alem, Freestanding van der Waals heterostructures of graphene and transition metal dichalcogenides, ACS Nano 9(5), 4882 (2015)
CrossRef ADS Google scholar
[217]
X. Liu, I. Balla, H. Bergeron, G. P. Campbell, M. J. Bedzyk, and M. C. Hersam, Rotationally commensurate growth of MoS2 on epitaxial graphene, ACS Nano 10(1), 1067 (2016)
CrossRef ADS Google scholar
[218]
Y. F. Song, H. Zhang, D. Y. Tang, and D. Y. Shen, Polarization rotation vector solitons in a graphene mode-locked fiber laser, Opt. Express 20(24), 27283 (2012)
CrossRef ADS Google scholar
[219]
Y. Jiang, L. Miao, G. Jiang, Y. Chen, X. Qi, X. F. Jiang, H. Zhang, and S. Wen, Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications, Sci. Rep. 5(1), 16372 (2015)
CrossRef ADS Google scholar
[220]
G. Zheng, Y. Chen, H. Huang, C. Zhao, S. Lu, S. Chen, H. Zhang, and S. Wen, Improved transfer quality of CVDgrown graphene by ultrasonic processing of target substrates: Applications for ultra-fast laser photonics, ACS Appl. Mater. Interfaces 5(20), 10288 (2013)
CrossRef ADS Google scholar
[221]
Z. T.Wang, Y. Chen, C. J.Zhao, H. Zhang, and S. C.Wen, Switchable dual-wavelength synchronously Qswitched erbium-doped fiber laser based on graphene saturable absorber, IEEE Photon. J. 4(3), 869 (2012)
CrossRef ADS Google scholar
[222]
Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X.Shen, K. P.Loh, and D. Y.Tang, Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers, Adv. Funct. Mater. 19(19), 3077 (2009)
CrossRef ADS Google scholar
[223]
M. Zhang, E. J. R.Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C.Ferrari, S. V.Popov, and J. R.Taylor, Tm-doped fiber laser mode-locked by graphenepolymer composite, Opt. Express 20(22), 25077 (2012).
CrossRef ADS Google scholar
[224]
D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C.Ferrari, Graphene Q-switched, tunable fiber laser, Appl. Phys. Lett. 98(7), 073106 (2011)
CrossRef ADS Google scholar
[225]
X. Liu, Q. Guo, and J. Qiu, Emerging low-dimensional materials for nonlinear optics and ultrafast photonics, Adv. Mater. 29(14), 1605886 (2017)
CrossRef ADS Google scholar
[226]
S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, Broadband few-layer MoS2 saturable absorbers, Adv. Mater. 26(21), 3538 (2014)
CrossRef ADS Google scholar
[227]
H. Chen, X. Wen, J. Zhang, T. Wu, Y. Gong, X. Zhang, J. Yuan, C. Yi, J. Lou, P. M.Ajayan, W. Zhuang, G. Zhang, and J. Zheng, Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures, Nat. Commun. 7(1), 12512 (2016)
CrossRef ADS Google scholar
[228]
P. Yan, H. Chen, J. Yin, Z. Xu, J. Li, Z. Jiang, W. Zhang, J. Wang, I. L.Li, Z. Sun, and S. Ruan, Largearea tungsten disulfide for ultrafast photonics, Nanoscale 9(5), 1871 (2017)
CrossRef ADS Google scholar
[229]
X. Li, S. Zhang, Y. Hao, and Z. Yang, Pulse bursts with a controllable number of pulses from a mode-locked Ybdoped all fiber laser system, Opt. Express 22(6), 6699 (2014)
CrossRef ADS Google scholar
[230]
Z. Wang, Y. Xu, S. C.Dhanabalan, J. Sophia, C. Zhao, C. Xu, Y. Xiang, J. Li, and H. Zhang, Black phosphorus quantum dots as an efficient saturable absorber for bound soliton operation in an erbium doped fiber laser, IEEE Photonics J. 8(5), 1503310 (2016)
CrossRef ADS Google scholar
[231]
J. Ma, S. Lu, Z. Guo, X. Xu, H. Zhang, D. Tang, and D. Fan, Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers, Opt. Express 23(17), 22643 (2015)
CrossRef ADS Google scholar
[232]
Y. Song, S. Chen, Q. Zhang, L. Li, L. Zhao, H. Zhang, and D. Tang, Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber, Opt. Express 24(23), 25933 (2016)
CrossRef ADS Google scholar
[233]
Y. Xu, X. F.Jiang, Y. Ge, Z. Guo, Z. Zeng, Q. H.Xu, H. Zhang, X. F. Yu, and D. Fan, Size-dependent nonlinear optical properties of black phosphorus nanosheets and their applications in ultrafast photonics, J. Mater. Chem. C 5(12), 3007 (2017)
CrossRef ADS Google scholar
[234]
J. Liu, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, and L. Su, Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region, Opt. Express 24(26), 30289 (2016)
CrossRef ADS Google scholar
[235]
J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu, G. Hu, P. Peng, Z. Zheng, and H. Zhang, Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers, Sci. Rep. 7(1), 42357 (2017)
CrossRef ADS Google scholar
[236]
Y. Wang, J. Li, L. Han, R. Lu, Y. Hu, Z. Li, and Y. Liu, Q-switched Tm3+-doped fiber laser with a microfiber based black phosphorus saturable absorber, Laser Phys. 26(6), 065104 (2016)
CrossRef ADS Google scholar
[237]
Y. Zhang, X. Li, A. Qyyum, T. Feng, P. Guo, J. Jiang, and H. Zheng, PbS nanoparticles for ultrashort pulse generation in optical communication region, Particle & Particle Systems Characterization 35(11), 1800341 (2018)
CrossRef ADS Google scholar
[238]
L. Yun, Y. Qiu, C. Yang, J. Xing, K. Yu, X. Xu, and W. Wei, PbS quantum dots as a saturable absorber for ultrafast laser, Photon. Res. 6(11), 1028 (2018)
CrossRef ADS Google scholar
[239]
J. Liu, H. Huang, F. Zhang, Z. Zhang, J. Liu, H. Zhang, and L. Su, Bismuth nanosheets as a Q-switcher for a midinfrared erbium-doped SrF2 laser, Photon. Res. 6(8), 762 (2018)
CrossRef ADS Google scholar
[240]
M. Pumera and Z. Sofer, 2D monoelemental arsenene, antimonene, and bismuthene: Beyond black phosphorus, Adv. Mater. 29(21), 1605299 (2017)
CrossRef ADS Google scholar
[241]
L. Lu, W. Wang, L. Wu, X. Jiang, Y. Xiang, J. Li, D. Fan, and H. Zhang, All-optical switching of two continuous waves in few layer bismuthene based on spatial crossphase modulation, ACS Photon. 4(11), 2852 (2017)
CrossRef ADS Google scholar
[242]
Q. Wang, Y. Chen, G. Jiang, L. Miao, C. Zhao, X. Fu, S. Wen, and H. Zhang, Drop-casted self-assembled topological insulator membrane as an effective saturable absorber for ultrafast laser photonics, IEEE Photon. J. 7(2), 1500911 (2015)
CrossRef ADS Google scholar
[243]
Q. Wang, Y. Chen, L. Miao, G. Jiang, S. Chen, J. Liu, X. Fu, C. Zhao, and H. Zhang, Wide spectral and wavelength-tunable dissipative soliton fiber laser with topological insulator nano-sheets self-assembly films sandwiched by PMMA polymer, Opt. Express 23(6), 7681 (2015)
CrossRef ADS Google scholar
[244]
M. Liu, N. A.Zhao, H. Liu, X.W. Zheng, A.P. Luo, Z.C. Luo, W.C. Xu, C.J. Zhao, H. Zhang, and S.C. Wen, Dualwavelength harmonically mode-locked fiber laser with topological insulator saturable absorber, IEEE Photon. Technol. Lett. 26(10), 983 (2014)
CrossRef ADS Google scholar
[245]
X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, Broadband nonlinear photonics in fewlayer MXene Ti3C2Tx (T= F, O, or OH), Laser Photon. Rev. 12(2), 1700229 (2018)
CrossRef ADS Google scholar
[246]
X. Y.Feng, B. Y.Ding, W. Y.Liang, F. Zhang, T. Y.Ning, J. Liu, and H. Zhang, MXene Ti3C2Tx absorber for a 1.06 μm passively Q-switched ceramic laser, Laser Phys. Lett. 15(8), 085805 (2018)
CrossRef ADS Google scholar
[247]
Y. Zu, C. Zhang, X. Guo, W. Liang, J. Liu, L. Su, and H. Zhang, A solid-state passively Q-switched Tm,Gd:CaF2 laser with a Ti3C2Tx MXene absorber near 2 μm, Laser Phys. Lett. 16(1), 015803 (2019)
CrossRef ADS Google scholar
[248]
Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, S. Lu, J. Ji, and H. Zhang, Few-layer antimonene decorated microfiber: Ultra-short pulse generation and all-optical thresholding with enhanced long term stability, 2D Mater. 4(4), 045010 (2017)
CrossRef ADS Google scholar
[249]
P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N.Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers, ACS Appl. Mater. Interfaces 9(14), 12759 (2017)
CrossRef ADS Google scholar
[250]
Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M.Basko, and A. C.Ferrari, Graphene mode-locked ultrafast laser, ACS Nano 4(2), 803 (2010)
CrossRef ADS Google scholar
[251]
W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R.Shen, Ultrafast all-optical graphene modulator, Nano Lett. 14(2), 955 (2014)
CrossRef ADS Google scholar
[252]
J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, Black phosphorus: A two-dimension saturable absorption material for mid-infrared Q-switched and modelocked fiber lasers, Sci. Rep. 6(1), 30361 (2016)
CrossRef ADS Google scholar
[253]
X. M.Liu, H. R.Yang, Y. D.Cui, G. W.Chen, Y. Yang, X. Q.Wu, X. K.Yao, D. D.Han, X. X.Han, C. Zeng, J. Guo, W. L.Li, G. Cheng, and L. M.Tong, Graphene-clad microfibre saturable absorber for ultrafast fibre lasers, Sci. Rep. 6(1), 26024 (2016)
CrossRef ADS Google scholar
[254]
S. Yu, X. Wu, Y. Wang, X. Guo, and L. Tong, 2D materials for optical modulation: Challenges and opportunities, Adv. Mater. 29(14), 1606128 (2017)
CrossRef ADS Google scholar
[255]
F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R.Shen, Gate-variable optical transitions in graphene, Science 320(5873), 206 (2008)
CrossRef ADS Google scholar
[256]
Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M.Basko, and A. C.Ferrari, Graphene mode-locked ultrafast laser, ACS Nano 4(2), 803 (2010)
CrossRef ADS Google scholar
[257]
D. B. S.Soh, R. Hamerly, and H. Mabuchi, Comprehensive analysis of the optical Kerr coefficient of graphene, Phys. Rev. A 94, 023845 (2016)
CrossRef ADS Google scholar
[258]
E. Pop, V. Varshney, and A. K.Roy, Thermal properties of graphene: Fundamentals and applications, MRS Bull. 37(12), 1273 (2012)
CrossRef ADS Google scholar
[259]
Y. Wu, X. Yan, P. Meng, P. Sun, G. Cheng, and R. Zheng, Carbon black/octadecane composites for room temperature electrical and thermal regulation, Carbon 94, 417 (2015)
CrossRef ADS Google scholar
[260]
L. Wu, X. Jiang, J. Zhao, W. Liang, Z. Li, W. Huang, Z. Lin, Y. Wang, F. Zhang, S. Lu, Y. Xiang, S. Xu, J. Li, and H. Zhang, MXene-based nonlinear optical information converter for all-optical modulator and switcher, Laser Photon. Rev. 12(12), 215 (2018)
CrossRef ADS Google scholar
[261]
G. M.Paternò, L. Moretti, A. J.Barker, Q. Chen, K. Müllen, A. Narita, G. Cerullo, F. Scotognella, and G. Lanzani, Pump-push-probe for ultrafast all-optical switching: The case of a nanographene molecule, Adv. Funct. Mater. 29(21), 1805249 (2018)
CrossRef ADS Google scholar
[262]
J. Zheng, Z. Yang, C. Si, Z. Liang, X. Chen, R. Cao, Z. Guo, K. Wang, Y. Zhang, J. Ji, M. Zhang, D. Fan, and H. Zhang, Black phosphorus based all-optical-signalprocessing: Toward high performances and enhanced stability, ACS Photon. 4(6), 1466 (2017)
CrossRef ADS Google scholar
[263]
S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao, S. Datta, Y. Li, Q. Bao, H. Zhang, Y. Liu, S. Wen, and D. Fan, Few-layer topological insulator for all-optical signal processing using the nonlinear Kerr effect, Adv. Opt. Mater. 3(12), 1769 (2015)
CrossRef ADS Google scholar
[264]
Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song, J. Liu, D. Zhang, J. Li, and H. Zhang, All-optical phosphorene phase modulator with enhanced stability under ambient conditions, Laser Photon. Rev. 12(6), 1800016 (2018)
CrossRef ADS Google scholar
[265]
J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen, K. Wang, Y. Song, Y. Zhang, J. Ji, Y. Liu, D. Fan, and H. Zhang, Few-layer phosphorene-decorated microfiber for all-optical thresholding and optical modulation, Adv. Opt. Mater. 5(9), 1700026 (2017)
CrossRef ADS Google scholar
[266]
B. Sensale-Rodriguez, R. Yan, M. M.Kelly, T. Fang, K. Tahy, W. S.Hwang, D. Jena, L. Liu, and H. G.Xing, Broadband graphene terahertz modulators enabled by intraband transitions, Nat. Commun. 3(1), 780 (2012)
CrossRef ADS Google scholar
[267]
B. Sensale-Rodriguez, T. Fang, R. Yan, M. M.Kelly, D. Jena, L. Liu, and H. Xing, Unique prospects for graphenebased terahertz modulators, Appl. Phys. Lett. 99(11), 113104 (2011)
CrossRef ADS Google scholar
[268]
Q. Y.Wen, W. Tian, Q. Mao, Z. Chen, W. W.Liu, Q. H.Yang, M. Sanderson, and H. W.Zhang, Graphene based all-optical spatial terahertz modulator, Sci. Rep. 4(1), 7409 (2015)
CrossRef ADS Google scholar
[269]
Y. Yao, M. A.Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, Wide wavelength tuning of optical antennas on graphene with nanosecond response time, Nano Lett. 14(1), 214 (2014)
CrossRef ADS Google scholar
[270]
N. K.Emani, T. F.Chung, X. Ni, A. V.Kildishev, Y. P.Chen, and A. Boltasseva, Electrically tunable damping of plasmonic resonances with graphene, Nano Lett. 12(10), 5202 (2012)
CrossRef ADS Google scholar
[271]
Z. Shi, L. Gan, T. H.Xiao, H. L.Guo, and Z. Y.Li, Alloptical modulation of a graphene-cladded silicon photonic crystal cavity, ACS Photon. 2(11), 1513 (2015)
CrossRef ADS Google scholar
[272]
S. H.Lee, M. Choi, T. T.Kim, S. Lee, M. Liu, X. Yin, H. K.Choi, S. S.Lee, C. G.Choi, S. Y.Choi, X. Zhang, and B. Min, Switching terahertz waves with gate-controlled active graphene metamaterials, Nat. Mater. 11(11), 936 (2012)
CrossRef ADS Google scholar
[273]
Z. Huang, W. Han, H. Tang, L. Ren, D. S.Chander, X. Qi, and H. Zhang, Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure, 2D Mater. 2(3), 035011 (2015).
CrossRef ADS Google scholar
[274]
X. Ren, Z. Li, Z. Huang, D. Sang, H. Qiao, X. Qi, J. Li, J. Zhong, and H. Zhang, Environmentally robust black phosphorus nanosheets in solution: Application for self-powered photodetector, Adv. Funct. Mater. 27(18), 1606834 (2017)
CrossRef ADS Google scholar
[275]
P. Guo, J. Xu, K. Gong, X. Shen, Y. Lu, Y. Qiu, J. Xu, Z. Zou, C. Wang, H. Yan, Y. Luo, A. Pan, H. Zhang, J. design for high-performance photodetectors, ACS Nano 10(9), 8474 (2016)
CrossRef ADS Google scholar
[276]
Z. Sun, Y. Zhao, Z. Li, H. Cui, Y. Zhou, W. Li, W. Tao, H. Zhang, H. Wang, P. K.Chu, and X. F.Yu, TiL4-coordinated black phosphorus quantum dots as an efficient contrast agent for in vivo photoacoustic imaging of cancer, Small 13(11), 1602896 (2017)
CrossRef ADS Google scholar
[277]
H. Xie, Z. Li, Z. Sun, J. Shao, X. F.Yu, Z. Guo, J. Wang, Q. Xiao, H. Wang, Q. Q.Wang, H. Zhang, and P. K.Chu, Metabolizable ultrathin Bi2Se3 nanosheets in imaging-guided photothermal therapy, Small 12(30), 4136 (2016)
CrossRef ADS Google scholar
[278]
W. Tao, X. Ji, X. Xu, M. A.Islam, Z. Li, S. Chen, P. E.Saw, H. Zhang, Z. Bharwani, Z. Guo, J. Shi, and O. C.Farokhzad, Antimonene quantum dots: Synthesis and application as near-infrared photothermal agents for effective cancer therapy, Angew. Chem. Int. Ed. Engl. 56(39), 11896 (2017)
CrossRef ADS Google scholar
[279]
F. Yin, K. Hu, S. Chen, D. Wang, J. Zhang, M. Xie, D. Yang, M. Qiu, H. Zhang, and Z. Li, Black phosphorus quantum dot based novel siRNA delivery systems in human pluripotent teratoma PA-1 cells, J. Mater. Chem. B 5(27), 5433 (2017)
CrossRef ADS Google scholar
[280]
M. Qiu, D. Wang, W. Liang, L. Liu, Y. Zhang, X. Chen, D. K.Sang, C. Xing, Z. Li, B. Dong, F. Xing, D. Fan, S. Bao, H. Zhang, and Y. Cao, Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy, Proc. Natl. Acad. Sci. USA 115(3), 501 (2018)
CrossRef ADS Google scholar
[281]
T. Wang, Y. Guo, P. Wan, H. Zhang, X. Chen, and X. Sun, Flexible transparent electronic gas sensors, Small 12(28), 3748 (2016)
CrossRef ADS Google scholar
[282]
P. Wan, X. Wen, C. Sun, B. K.Chandran, H. Zang, X. Sun, and X. Chen, Flexible transparent films based on nanocomposite networks of polyaniline and carbon nanotubes for high-performance gas sensing, Small 11(40), 5409 (2015)
CrossRef ADS Google scholar
[283]
T. Wang, Y. Guo, P. Wan, X. Sun, H. Zhang, Z. Yu, and X. Chen, A flexible transparent colorimetric wrist strap sensor, Nanoscale 9(2), 869 (2017)
CrossRef ADS Google scholar
[284]
X. Chen, G. Xu, X. Ren, Z. Li, X. Qi, K. Huang, H. Zhang, Z. Huang, and J. Zhong, A black/red phosphorus hybrid as an electrode material for high-performance Li-ion batteries and supercapacitors, J. Mater. Chem. A 5(14), 6581 (2017)
CrossRef ADS Google scholar
[285]
R. Wang, X. Li, Z. Wang, and H. Zhang, Electrochemical analysis graphite/electrolyte interface in lithium-ion batteries: p-toluenesulfonyl isocyanate as electrolyte additive, Nano Energy 34, 131 (2017)
CrossRef ADS Google scholar
[286]
D. Mao, S. L.Zhang, Y. D.Wang, X. T.Gan, W. D.Zhang, T. Mei, Y. G.Wang, Y. S.Wang, H. B.Zeng, and J. L.Zhao, WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55 m, Opt. Express 23(21), 27509 (2015)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(3763 KB)

Accesses

Citations

Detail

Sections
Recommended

/