Theoretical progress on direct Z-scheme photocatalysis of two-dimensional heterostructures
Zhaobo Zhou, Shijun Yuan, Jinlan Wang
Theoretical progress on direct Z-scheme photocatalysis of two-dimensional heterostructures
Two-dimensional (2D) materials, due to its excellent mechanical, unique electrical and optical properties, have become hot materials in the field of photocatalysis. Especially, 2D heterostructures can well inhibit the recombination of photogenerated electrons and holes in photocatalysis because of its special energy band structures and carrier transport characteristics, which are conducive to enhancing photoenergy conversion capacity and improving oxidation and reduction ability, so as to purify pollutants and store energy. In this minireview, we summarize recent theoretical progress in direct Z-scheme photocatalysis of 2D heterostructures, focusing on physical mechanism and improving catalytic efficiency. Current challenges and prospects for 2D direct Z-scheme photocatalysts are discussed as well.
two-dimensional heterostructures / direct Z-scheme / photocatalyst / density functional theory
[1] |
J. Di, J. Xiong, H. Li, and Z. Liu, Ultrathin 2D photocatalysts: Electronic-structure tailoring, hybridization, and applications, Adv. Mater. 30(1), 1704548 (2018)
CrossRef
ADS
Google scholar
|
[2] |
J. D. Xiao and H. L. Jiang, Metal–organic frameworks for photocatalysis and photothermal catalysis, Acc. Chem. Res. 52(2), 356 (2019)
CrossRef
ADS
Google scholar
|
[3] |
T. Su, Z. Liu, Y. Liang, Z. Qin, J. Liu, and Y. Huang, Preparation of PbYO composite photocatalysts for degradation of methyl orange under visible-light irradiation, Catal. Commun. 18, 93 (2012)
CrossRef
ADS
Google scholar
|
[4] |
Z. Zhao, H. An, J. Lin, M. Feng, V. Murugadoss, T. Ding, H. Liu, Q. Shao, X. Mai, N. Wang, H. Gu, S. Angaiah, and Z. Guo, Progress on the photocatalytic reduction removal of chromium contamination, Chem. Rec. 19(5), 873 (2019)
CrossRef
ADS
Google scholar
|
[5] |
B. Luo, G. Liu, and L. Wang, Recent advances in 2D materials for photocatalysis, Nanoscale 8(13), 6904 (2016)
CrossRef
ADS
Google scholar
|
[6] |
Y. Huang, H. Xu, H. Yang, Y. Lin, H. Liu, and Y. Tong, Efficient charges separation using advanced BiOI-based hollow spheres decorated with palladium and manganese dioxide nanoparticles, ACS Sustain. Chem. & Eng. 6(2), 2751 (2018)
CrossRef
ADS
Google scholar
|
[7] |
T. Su, R. Peng, Z. D. Hood, M. Naguib, I. N. Ivanov, J. K. Keum, Z. Qin, Z. Guo, and Z. Wu, One-step synthesis of Nb2O5/C/Nb2C (MXene) composites and their use as photocatalysts for hydrogen evolution, ChemSusChem 11(4), 688 (2018)
CrossRef
ADS
Google scholar
|
[8] |
X. Ma, D. Jiang, P. Xiao, Y. Jin, S. Meng, and M. Chen, 2D/2D heterojunctions of WO3 nanosheet/K+Ca2Nb3O−10 ultrathin nanosheet with improved charge separation efficiency for significantly boosting photocatalysis, Catal. Sci. Technol. 7(16), 3481 (2017)
CrossRef
ADS
Google scholar
|
[9] |
Y. R. Lv, R. K. He, Z. Y. Chen, X. Li, and Y. H. Xu, Fabrication of hierarchical copper sulfide/bismuth tungstate p–n heterojunction with two-dimensional (2D) interfacial coupling for enhanced visible-light photocatalytic degradation of glyphosate, J. Colloid Interface Sci. 560, 293 (2020)
CrossRef
ADS
Google scholar
|
[10] |
Y. Bao and K. Chen, Novel Z-scheme BiOBr/reduced graphene oxide/protonated g-C3N4 photocatalyst: Synthesis, characterization, visible light photocatalytic activity and mechanism, Appl. Surf. Sci. 437, 51 (2018)
CrossRef
ADS
Google scholar
|
[11] |
L. Ju, Y. Dai, W. Wei, M. Li, and B. Huang, DFT investigation on two-dimensional GeS/WS2 van der Waals heterostructure for direct Z-scheme photocatalytic overall water splitting, Appl. Surf. Sci. 434, 365 (2018)
CrossRef
ADS
Google scholar
|
[12] |
C. F. Fu, R. Zhang, Q. Luo, X. Li, and J. Yang, Construction of direct Z-Scheme photocatalysts for overall water splitting using two-dimensional van der waals heterojunctions of metal dichalcogenides, J. Comput. Chem. 40(9), 980 (2019)
CrossRef
ADS
Google scholar
|
[13] |
B. Wang, X. Wang, H. Yuan, T. Zhou, J. Chang, and H. Chen, Direct Z-scheme photocatalytic overall water splitting on two dimensional MoSe2/SnS2 heterojunction, Int. J. Hydrogen Energy 45(4), 2785 (2020)
CrossRef
ADS
Google scholar
|
[14] |
P. Xia, B. Zhu, B. Cheng, J. Yu, and J. Xu, 2D/2D g-C3N4/MnO2 nanocomposite as a direct Z-scheme photocatalyst for enhanced photocatalytic activity, ACS Sustain. Chem. & Eng. 6(1), 965 (2018)
CrossRef
ADS
Google scholar
|
[15] |
Y. Lee, Y. Hwang, and Y. C. Chung, Achieving type I, II, and III heterojunctions using functionalized MXene, ACS Appl. Mater. Interfaces 7(13), 7163 (2015)
|
[16] |
Z. Li, J. Hou, B. Zhang, S. Cao, Y. Wu, Z. Gao, X. Nie, and L. Sun, Two-dimensional Janus heterostructures for superior Z-scheme photocatalytic water splitting, Nano Energy 59, 537 (2019)
CrossRef
ADS
Google scholar
|
[17] |
B. Wang, H. Yuan, J. Chang, X. Chen, and H. Chen, Two dimensional InSe/C2N van der Waals heterojunction as enhanced visible-light-responsible photocatalyst for water splitting, Appl. Surf. Sci. 485, 375 (2019)
CrossRef
ADS
Google scholar
|
[18] |
J. Low, J. Yu, M. Jaroniec, S. Wageh, and A. A. Al-Ghamdi, Heterojunction photocatalysts, Adv. Mater. 29(20), 1601694 (2017)
CrossRef
ADS
Google scholar
|
[19] |
S. Shen, and S. S. Mao, Nanostructure designs for effective solar-to-hydrogen conversion, Nanophotonics 1(1), 31 (2012)
CrossRef
ADS
Google scholar
|
[20] |
B. Chen, P. Li, S. Zhang, W. Zhang, X. Dong, F. Xi, and J. Liu, The enhanced photocatalytic performance of Z-scheme two-dimensional/two-dimensional heterojunctions from graphitic carbon nitride nanosheets and titania nanosheets, J. Colloid Interface Sci. 478, 263 (2016)
CrossRef
ADS
Google scholar
|
[21] |
B. Xia, F. Deng, S. Zhang, L. Hua, X. Luo, and M. Ao, Design and synthesis of robust Z-scheme ZnS-SnS2 n–n heterojunctions for highly efficient degradation of pharmaceutical pollutants: Performance, valence/conduction band offset photocatalytic mechanisms and toxicity evaluation, J. Hazard. Mater. 392, 122345 (2020)
CrossRef
ADS
Google scholar
|
[22] |
Y. Liu, P. Lv, W. Zhou, and J. Hong, Built-in electric field hindering photogenerated carrier recombination in polar bilayer SnO/BiOX (X= Cl, Br, I) for water splitting, J. Phys. Chem. C 124(18), 9696 (2020)
CrossRef
ADS
Google scholar
|
[23] |
T. Su, Z. Qin, H. Ji, and Z. Wu, An overview of photocatalysis facilitated by 2D heterojunctions, Nanotechnology 30(50), 502002 (2019)
CrossRef
ADS
Google scholar
|
[24] |
X. Chen, R. Hu, and F. Sun, Particle size effect of Ag catalyst for oxygen reduction reaction: Activity and stability, J. Renew. Sustain. Energy 10(5), 054301 (2018)
CrossRef
ADS
Google scholar
|
[25] |
J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S. T. Lee, J. Zhou, and Z. Kang, Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway, Science 347(6225), 970 (2015)
CrossRef
ADS
Google scholar
|
[26] |
X. Lv, W. Wei, Q. Sun, F. Li, B. Huang, and Y. Dai, Two-dimensional germanium monochalcogenides for photocatalytic water splitting with high carrier mobility, Appl. Catal. B 217, 275 (2017)
|
[27] |
D. Er, H. Ye, N. C. Frey, H. Kumar, J. Lou, and V. B. Shenoy, Prediction of enhanced catalytic activity for hydrogen evolution reaction in janus transition metal dichalcogenides, Nano Lett. 18(6), 3943 (2018)
CrossRef
ADS
Google scholar
|
[28] |
A. K. Geim and I. V. Grigorieva, Van der Waals heterostructures, Nature 499(7459), 419 (2013)
CrossRef
ADS
Google scholar
|
[29] |
P. Rivera, H. Yu, K. L. Seyler, N. P. Wilson, W. Yao, and X. Xu, Interlayer valley excitons in heterobilayers of transition metal dichalcogenides, Nat. Nanotechnol. 13(11), 1004 (2018)
CrossRef
ADS
Google scholar
|
[30] |
S. Haastrup, M. Strange, M. Pandey, T. Deilmann, P. S. Schmidt, N. F. Hinsche, M. N. Gjerding, D. Torelli, P. M. Larsen, and A. C. Riis-Jensen, The computational 2D material database: High-throughput modeling and discovery of atomically thin crystals, 2D Mater. 5, 042022 (2018)
CrossRef
ADS
Google scholar
|
[31] |
K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, G. Ramalingam, S. Raghavan, and A. Ghosh, Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices, Nat. Nanotechnol. 8(11), 826 (2013)
CrossRef
ADS
Google scholar
|
[32] |
M. Bernardi, M. Palummo, and J. C. Grossman, Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials, Nano Lett. 13(8), 3664 (2013)
CrossRef
ADS
Google scholar
|
[33] |
Z. Zhou, X. Niu, Y. Zhang, and J. Wang, Janus MoSSe/WSeTe heterostructures: a direct Z-scheme photocatalyst for hydrogen evolution, J. Mater. Chem. A 7(38), 21835 (2019)
CrossRef
ADS
Google scholar
|
[34] |
K. Maeda, Z-scheme water splitting using two different semiconductor photocatalysts, ACS Catal. 3(7), 1486 (2013)
CrossRef
ADS
Google scholar
|
[35] |
W. Hu and J. Yang, First-principles study of twodimensional van der Waals heterojunctions, Comput. Mater. Sci. 112, 518 (2016)
CrossRef
ADS
Google scholar
|
[36] |
J. Liu and E. Hua, High photocatalytic activity of heptazine-based g-C3N4/SnS2 heterojunction and its origin: insights from hybrid DFT, J. Phys. Chem. C 121(46), 25827 (2017)
CrossRef
ADS
Google scholar
|
[37] |
J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118(18), 8207 (2003)
CrossRef
ADS
Google scholar
|
[38] |
J. Heyd, G. E. Scuseria, and M. Ernzerhof, Erratum: Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 124(21), 219906 (2006) (J. Chem. Phys. 118, 8207 (2003))
CrossRef
ADS
Google scholar
|
[39] |
A. Kahn, Fermi level, work function and vacuum level, Mater. Horiz. 3(1), 7 (2016)
CrossRef
ADS
Google scholar
|
[40] |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef
ADS
Google scholar
|
[41] |
S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27(15), 1787 (2006)
CrossRef
ADS
Google scholar
|
[42] |
M. Dion, H. Rydberg, E. Schroder, D. C. Langreth, and B. I. Lundqvist, van der Waals density functional for general geometries, Phys. Rev. Lett. 92(24), 246401 (2004)
CrossRef
ADS
Google scholar
|
[43] |
M. Jourshabani, B. K. Lee, and Z. Shariatinia, From traditional strategies to Z-scheme configuration in graphitic carbon nitride photocatalysts: Recent progress and future challenges, Appl. Catal. B 276, 119157 (2020)
CrossRef
ADS
Google scholar
|
[44] |
P. Zhou, J. Yu, and M. Jaroniec, All-solid-state Z-scheme photocatalytic systems, Adv. Mater. 26(29), 4920 (2014)
CrossRef
ADS
Google scholar
|
[45] |
Y. Tachibana, L. Vayssieres, and J. R. Durrant, Artificial photosynthesis for solar water-splitting, Nat. Photonics 6(8), 511 (2012)
CrossRef
ADS
Google scholar
|
[46] |
S. J. A. Moniz, S. A. Shevlin, D. J. Martin, Z. X. Guo, and J. Tang, Visible-light driven heterojunction photocatalysts for water splitting — a critical review, Energy Environ. Sci. 8(3), 731 (2015)
CrossRef
ADS
Google scholar
|
[47] |
J. K. Hyun, S. Zhang, and L. J. Lauhon, Nanowire heterostructures, Annu. Rev. Mater. Res. 43(1), 451 (2013)
CrossRef
ADS
Google scholar
|
[48] |
J. Fu, Q. Xu, J. Low, C. Jiang, and J. Yu, Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst, Appl. Catal. B 243, 556 (2019)
CrossRef
ADS
Google scholar
|
[49] |
T. Su, Q. Shao, Z. Qin, Z. Guo, and Z. Wu, Role of interfaces in two-dimensional photocatalyst for water splitting, ACS Catal. 8(3), 2253 (2018)
CrossRef
ADS
Google scholar
|
[50] |
Q. L. Xu, L. Y. Zhang, J. G. Yu, S. Wageh, A. A. Al-Ghamdi, and M. Jaroniec, Direct Z-scheme photocatalysts: Principles, synthesis, and applications, Mater. Today 21(10), 1042 (2018)
CrossRef
ADS
Google scholar
|
[51] |
X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, and X. Chen, Engineering heterogeneous semiconductors for solar water splitting, J. Mater. Chem. A 3(6), 2485 (2015)
CrossRef
ADS
Google scholar
|
[52] |
X. Chen, S. Shen, L. Guo, and S. S. Mao, Semiconductorbased photocatalytic hydrogen generation, Chem. Rev. 110(11), 6503 (2010)
CrossRef
ADS
Google scholar
|
[53] |
Z. Sun, N. Talreja, H. Tao, J. Texter, M. Muhler, J. Strunk, and J. Chen, Catalysis of carbon dioxide photoreduction on nanosheets: Fundamentals and challenges, Angew. Chem. Int. Ed. 57(26), 7610 (2018)
CrossRef
ADS
Google scholar
|
[54] |
K. Ren, W. Tang, M. Sun, Y. Cai, Y. Cheng, and G. Zhang, A direct Z-scheme PtS2/arsenene van der Waals heterostructure with high photocatalytic water splitting efficiency, Nanoscale 12(33), 17281 (2020)
CrossRef
ADS
Google scholar
|
[55] |
I. Man, H. Su, F. Calle-Vallejo, H. Hansen, J. Martinez, N. Inoglu, J. Kitchin, T. Jaramillo, J. Norskov, and J. Rossmeisl, Universality in oxygen evolution electrocatalysis on oxide surfaces, ChemCatChem 3(7), 1159 (2011)
CrossRef
ADS
Google scholar
|
[56] |
R. Zhang, L. Zhang, Q. Zheng, P. Gao, J. Zhao, and J. Yang, Direct Z-scheme water splitting photocatalyst based on two-dimensional van der Waals heterostructures, J. Phys. Chem. Lett. 9(18), 5419 (2018)
CrossRef
ADS
Google scholar
|
[57] |
X. Niu, X. Bai, Z. Zhou, and J. Wang, Rational design and characterization of direct Z-scheme photocatalyst for overall water splitting from excited state dynamics simulations, ACS Catal. 10(3), 1976 (2020)
CrossRef
ADS
Google scholar
|
[58] |
C. Jin, E. Y. Ma, O. Karni, E. C. Regan, F. Wang, and T. F. Heinz, Ultrafast dynamics in van der Waals heterostructures, Nat. Nanotechnol. 13(11), 994 (2018)
CrossRef
ADS
Google scholar
|
[59] |
R. Long and O. V. Prezhdo, Quantum coherence facilitates efficient charge separation at a MoS2/MoSe2 van der Waals junction, Nano Lett. 16(3), 1996 (2016)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |