Theoretical progress on direct Z-scheme photocatalysis of two-dimensional heterostructures

Zhaobo Zhou, Shijun Yuan, Jinlan Wang

PDF(1819 KB)
PDF(1819 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (4) : 43203. DOI: 10.1007/s11467-021-1054-0
TOPICAL REVIEW
TOPICAL REVIEW

Theoretical progress on direct Z-scheme photocatalysis of two-dimensional heterostructures

Author information +
History +

Abstract

Two-dimensional (2D) materials, due to its excellent mechanical, unique electrical and optical properties, have become hot materials in the field of photocatalysis. Especially, 2D heterostructures can well inhibit the recombination of photogenerated electrons and holes in photocatalysis because of its special energy band structures and carrier transport characteristics, which are conducive to enhancing photoenergy conversion capacity and improving oxidation and reduction ability, so as to purify pollutants and store energy. In this minireview, we summarize recent theoretical progress in direct Z-scheme photocatalysis of 2D heterostructures, focusing on physical mechanism and improving catalytic efficiency. Current challenges and prospects for 2D direct Z-scheme photocatalysts are discussed as well.

Keywords

two-dimensional heterostructures / direct Z-scheme / photocatalyst / density functional theory

Cite this article

Download citation ▾
Zhaobo Zhou, Shijun Yuan, Jinlan Wang. Theoretical progress on direct Z-scheme photocatalysis of two-dimensional heterostructures. Front. Phys., 2021, 16(4): 43203 https://doi.org/10.1007/s11467-021-1054-0

References

[1]
J. Di, J. Xiong, H. Li, and Z. Liu, Ultrathin 2D photocatalysts: Electronic-structure tailoring, hybridization, and applications, Adv. Mater. 30(1), 1704548 (2018)
CrossRef ADS Google scholar
[2]
J. D. Xiao and H. L. Jiang, Metal–organic frameworks for photocatalysis and photothermal catalysis, Acc. Chem. Res. 52(2), 356 (2019)
CrossRef ADS Google scholar
[3]
T. Su, Z. Liu, Y. Liang, Z. Qin, J. Liu, and Y. Huang, Preparation of PbYO composite photocatalysts for degradation of methyl orange under visible-light irradiation, Catal. Commun. 18, 93 (2012)
CrossRef ADS Google scholar
[4]
Z. Zhao, H. An, J. Lin, M. Feng, V. Murugadoss, T. Ding, H. Liu, Q. Shao, X. Mai, N. Wang, H. Gu, S. Angaiah, and Z. Guo, Progress on the photocatalytic reduction removal of chromium contamination, Chem. Rec. 19(5), 873 (2019)
CrossRef ADS Google scholar
[5]
B. Luo, G. Liu, and L. Wang, Recent advances in 2D materials for photocatalysis, Nanoscale 8(13), 6904 (2016)
CrossRef ADS Google scholar
[6]
Y. Huang, H. Xu, H. Yang, Y. Lin, H. Liu, and Y. Tong, Efficient charges separation using advanced BiOI-based hollow spheres decorated with palladium and manganese dioxide nanoparticles, ACS Sustain. Chem. & Eng. 6(2), 2751 (2018)
CrossRef ADS Google scholar
[7]
T. Su, R. Peng, Z. D. Hood, M. Naguib, I. N. Ivanov, J. K. Keum, Z. Qin, Z. Guo, and Z. Wu, One-step synthesis of Nb2O5/C/Nb2C (MXene) composites and their use as photocatalysts for hydrogen evolution, ChemSusChem 11(4), 688 (2018)
CrossRef ADS Google scholar
[8]
X. Ma, D. Jiang, P. Xiao, Y. Jin, S. Meng, and M. Chen, 2D/2D heterojunctions of WO3 nanosheet/K+Ca2Nb3O10 ultrathin nanosheet with improved charge separation efficiency for significantly boosting photocatalysis, Catal. Sci. Technol. 7(16), 3481 (2017)
CrossRef ADS Google scholar
[9]
Y. R. Lv, R. K. He, Z. Y. Chen, X. Li, and Y. H. Xu, Fabrication of hierarchical copper sulfide/bismuth tungstate p–n heterojunction with two-dimensional (2D) interfacial coupling for enhanced visible-light photocatalytic degradation of glyphosate, J. Colloid Interface Sci. 560, 293 (2020)
CrossRef ADS Google scholar
[10]
Y. Bao and K. Chen, Novel Z-scheme BiOBr/reduced graphene oxide/protonated g-C3N4 photocatalyst: Synthesis, characterization, visible light photocatalytic activity and mechanism, Appl. Surf. Sci. 437, 51 (2018)
CrossRef ADS Google scholar
[11]
L. Ju, Y. Dai, W. Wei, M. Li, and B. Huang, DFT investigation on two-dimensional GeS/WS2 van der Waals heterostructure for direct Z-scheme photocatalytic overall water splitting, Appl. Surf. Sci. 434, 365 (2018)
CrossRef ADS Google scholar
[12]
C. F. Fu, R. Zhang, Q. Luo, X. Li, and J. Yang, Construction of direct Z-Scheme photocatalysts for overall water splitting using two-dimensional van der waals heterojunctions of metal dichalcogenides, J. Comput. Chem. 40(9), 980 (2019)
CrossRef ADS Google scholar
[13]
B. Wang, X. Wang, H. Yuan, T. Zhou, J. Chang, and H. Chen, Direct Z-scheme photocatalytic overall water splitting on two dimensional MoSe2/SnS2 heterojunction, Int. J. Hydrogen Energy 45(4), 2785 (2020)
CrossRef ADS Google scholar
[14]
P. Xia, B. Zhu, B. Cheng, J. Yu, and J. Xu, 2D/2D g-C3N4/MnO2 nanocomposite as a direct Z-scheme photocatalyst for enhanced photocatalytic activity, ACS Sustain. Chem. & Eng. 6(1), 965 (2018)
CrossRef ADS Google scholar
[15]
Y. Lee, Y. Hwang, and Y. C. Chung, Achieving type I, II, and III heterojunctions using functionalized MXene, ACS Appl. Mater. Interfaces 7(13), 7163 (2015)
[16]
Z. Li, J. Hou, B. Zhang, S. Cao, Y. Wu, Z. Gao, X. Nie, and L. Sun, Two-dimensional Janus heterostructures for superior Z-scheme photocatalytic water splitting, Nano Energy 59, 537 (2019)
CrossRef ADS Google scholar
[17]
B. Wang, H. Yuan, J. Chang, X. Chen, and H. Chen, Two dimensional InSe/C2N van der Waals heterojunction as enhanced visible-light-responsible photocatalyst for water splitting, Appl. Surf. Sci. 485, 375 (2019)
CrossRef ADS Google scholar
[18]
J. Low, J. Yu, M. Jaroniec, S. Wageh, and A. A. Al-Ghamdi, Heterojunction photocatalysts, Adv. Mater. 29(20), 1601694 (2017)
CrossRef ADS Google scholar
[19]
S. Shen, and S. S. Mao, Nanostructure designs for effective solar-to-hydrogen conversion, Nanophotonics 1(1), 31 (2012)
CrossRef ADS Google scholar
[20]
B. Chen, P. Li, S. Zhang, W. Zhang, X. Dong, F. Xi, and J. Liu, The enhanced photocatalytic performance of Z-scheme two-dimensional/two-dimensional heterojunctions from graphitic carbon nitride nanosheets and titania nanosheets, J. Colloid Interface Sci. 478, 263 (2016)
CrossRef ADS Google scholar
[21]
B. Xia, F. Deng, S. Zhang, L. Hua, X. Luo, and M. Ao, Design and synthesis of robust Z-scheme ZnS-SnS2 n–n heterojunctions for highly efficient degradation of pharmaceutical pollutants: Performance, valence/conduction band offset photocatalytic mechanisms and toxicity evaluation, J. Hazard. Mater. 392, 122345 (2020)
CrossRef ADS Google scholar
[22]
Y. Liu, P. Lv, W. Zhou, and J. Hong, Built-in electric field hindering photogenerated carrier recombination in polar bilayer SnO/BiOX (X= Cl, Br, I) for water splitting, J. Phys. Chem. C 124(18), 9696 (2020)
CrossRef ADS Google scholar
[23]
T. Su, Z. Qin, H. Ji, and Z. Wu, An overview of photocatalysis facilitated by 2D heterojunctions, Nanotechnology 30(50), 502002 (2019)
CrossRef ADS Google scholar
[24]
X. Chen, R. Hu, and F. Sun, Particle size effect of Ag catalyst for oxygen reduction reaction: Activity and stability, J. Renew. Sustain. Energy 10(5), 054301 (2018)
CrossRef ADS Google scholar
[25]
J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S. T. Lee, J. Zhou, and Z. Kang, Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway, Science 347(6225), 970 (2015)
CrossRef ADS Google scholar
[26]
X. Lv, W. Wei, Q. Sun, F. Li, B. Huang, and Y. Dai, Two-dimensional germanium monochalcogenides for photocatalytic water splitting with high carrier mobility, Appl. Catal. B 217, 275 (2017)
[27]
D. Er, H. Ye, N. C. Frey, H. Kumar, J. Lou, and V. B. Shenoy, Prediction of enhanced catalytic activity for hydrogen evolution reaction in janus transition metal dichalcogenides, Nano Lett. 18(6), 3943 (2018)
CrossRef ADS Google scholar
[28]
A. K. Geim and I. V. Grigorieva, Van der Waals heterostructures, Nature 499(7459), 419 (2013)
CrossRef ADS Google scholar
[29]
P. Rivera, H. Yu, K. L. Seyler, N. P. Wilson, W. Yao, and X. Xu, Interlayer valley excitons in heterobilayers of transition metal dichalcogenides, Nat. Nanotechnol. 13(11), 1004 (2018)
CrossRef ADS Google scholar
[30]
S. Haastrup, M. Strange, M. Pandey, T. Deilmann, P. S. Schmidt, N. F. Hinsche, M. N. Gjerding, D. Torelli, P. M. Larsen, and A. C. Riis-Jensen, The computational 2D material database: High-throughput modeling and discovery of atomically thin crystals, 2D Mater. 5, 042022 (2018)
CrossRef ADS Google scholar
[31]
K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, G. Ramalingam, S. Raghavan, and A. Ghosh, Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices, Nat. Nanotechnol. 8(11), 826 (2013)
CrossRef ADS Google scholar
[32]
M. Bernardi, M. Palummo, and J. C. Grossman, Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials, Nano Lett. 13(8), 3664 (2013)
CrossRef ADS Google scholar
[33]
Z. Zhou, X. Niu, Y. Zhang, and J. Wang, Janus MoSSe/WSeTe heterostructures: a direct Z-scheme photocatalyst for hydrogen evolution, J. Mater. Chem. A 7(38), 21835 (2019)
CrossRef ADS Google scholar
[34]
K. Maeda, Z-scheme water splitting using two different semiconductor photocatalysts, ACS Catal. 3(7), 1486 (2013)
CrossRef ADS Google scholar
[35]
W. Hu and J. Yang, First-principles study of twodimensional van der Waals heterojunctions, Comput. Mater. Sci. 112, 518 (2016)
CrossRef ADS Google scholar
[36]
J. Liu and E. Hua, High photocatalytic activity of heptazine-based g-C3N4/SnS2 heterojunction and its origin: insights from hybrid DFT, J. Phys. Chem. C 121(46), 25827 (2017)
CrossRef ADS Google scholar
[37]
J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118(18), 8207 (2003)
CrossRef ADS Google scholar
[38]
J. Heyd, G. E. Scuseria, and M. Ernzerhof, Erratum: Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 124(21), 219906 (2006) (J. Chem. Phys. 118, 8207 (2003))
CrossRef ADS Google scholar
[39]
A. Kahn, Fermi level, work function and vacuum level, Mater. Horiz. 3(1), 7 (2016)
CrossRef ADS Google scholar
[40]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef ADS Google scholar
[41]
S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27(15), 1787 (2006)
CrossRef ADS Google scholar
[42]
M. Dion, H. Rydberg, E. Schroder, D. C. Langreth, and B. I. Lundqvist, van der Waals density functional for general geometries, Phys. Rev. Lett. 92(24), 246401 (2004)
CrossRef ADS Google scholar
[43]
M. Jourshabani, B. K. Lee, and Z. Shariatinia, From traditional strategies to Z-scheme configuration in graphitic carbon nitride photocatalysts: Recent progress and future challenges, Appl. Catal. B 276, 119157 (2020)
CrossRef ADS Google scholar
[44]
P. Zhou, J. Yu, and M. Jaroniec, All-solid-state Z-scheme photocatalytic systems, Adv. Mater. 26(29), 4920 (2014)
CrossRef ADS Google scholar
[45]
Y. Tachibana, L. Vayssieres, and J. R. Durrant, Artificial photosynthesis for solar water-splitting, Nat. Photonics 6(8), 511 (2012)
CrossRef ADS Google scholar
[46]
S. J. A. Moniz, S. A. Shevlin, D. J. Martin, Z. X. Guo, and J. Tang, Visible-light driven heterojunction photocatalysts for water splitting — a critical review, Energy Environ. Sci. 8(3), 731 (2015)
CrossRef ADS Google scholar
[47]
J. K. Hyun, S. Zhang, and L. J. Lauhon, Nanowire heterostructures, Annu. Rev. Mater. Res. 43(1), 451 (2013)
CrossRef ADS Google scholar
[48]
J. Fu, Q. Xu, J. Low, C. Jiang, and J. Yu, Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst, Appl. Catal. B 243, 556 (2019)
CrossRef ADS Google scholar
[49]
T. Su, Q. Shao, Z. Qin, Z. Guo, and Z. Wu, Role of interfaces in two-dimensional photocatalyst for water splitting, ACS Catal. 8(3), 2253 (2018)
CrossRef ADS Google scholar
[50]
Q. L. Xu, L. Y. Zhang, J. G. Yu, S. Wageh, A. A. Al-Ghamdi, and M. Jaroniec, Direct Z-scheme photocatalysts: Principles, synthesis, and applications, Mater. Today 21(10), 1042 (2018)
CrossRef ADS Google scholar
[51]
X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, and X. Chen, Engineering heterogeneous semiconductors for solar water splitting, J. Mater. Chem. A 3(6), 2485 (2015)
CrossRef ADS Google scholar
[52]
X. Chen, S. Shen, L. Guo, and S. S. Mao, Semiconductorbased photocatalytic hydrogen generation, Chem. Rev. 110(11), 6503 (2010)
CrossRef ADS Google scholar
[53]
Z. Sun, N. Talreja, H. Tao, J. Texter, M. Muhler, J. Strunk, and J. Chen, Catalysis of carbon dioxide photoreduction on nanosheets: Fundamentals and challenges, Angew. Chem. Int. Ed. 57(26), 7610 (2018)
CrossRef ADS Google scholar
[54]
K. Ren, W. Tang, M. Sun, Y. Cai, Y. Cheng, and G. Zhang, A direct Z-scheme PtS2/arsenene van der Waals heterostructure with high photocatalytic water splitting efficiency, Nanoscale 12(33), 17281 (2020)
CrossRef ADS Google scholar
[55]
I. Man, H. Su, F. Calle-Vallejo, H. Hansen, J. Martinez, N. Inoglu, J. Kitchin, T. Jaramillo, J. Norskov, and J. Rossmeisl, Universality in oxygen evolution electrocatalysis on oxide surfaces, ChemCatChem 3(7), 1159 (2011)
CrossRef ADS Google scholar
[56]
R. Zhang, L. Zhang, Q. Zheng, P. Gao, J. Zhao, and J. Yang, Direct Z-scheme water splitting photocatalyst based on two-dimensional van der Waals heterostructures, J. Phys. Chem. Lett. 9(18), 5419 (2018)
CrossRef ADS Google scholar
[57]
X. Niu, X. Bai, Z. Zhou, and J. Wang, Rational design and characterization of direct Z-scheme photocatalyst for overall water splitting from excited state dynamics simulations, ACS Catal. 10(3), 1976 (2020)
CrossRef ADS Google scholar
[58]
C. Jin, E. Y. Ma, O. Karni, E. C. Regan, F. Wang, and T. F. Heinz, Ultrafast dynamics in van der Waals heterostructures, Nat. Nanotechnol. 13(11), 994 (2018)
CrossRef ADS Google scholar
[59]
R. Long and O. V. Prezhdo, Quantum coherence facilitates efficient charge separation at a MoS2/MoSe2 van der Waals junction, Nano Lett. 16(3), 1996 (2016)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(1819 KB)

Accesses

Citations

Detail

Sections
Recommended

/