Organic single crystal phototransistors: Recent approaches and achievements

Changbin Zhao, Muhammad Umair Ali, Jiaoyi Ning, Hong Meng

PDF(5391 KB)
PDF(5391 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (4) : 43202. DOI: 10.1007/s11467-021-1053-1
TOPICAL REVIEW
TOPICAL REVIEW

Organic single crystal phototransistors: Recent approaches and achievements

Author information +
History +

Abstract

Organic phototransistors (OPTs), compared to traditional inorganic counterparts, have attracted a great deal of interest because of their inherent flexibility, light-weight, easy and low-cost fabrication, and are considered as potential candidates for next-generation wearable electronics. Currently, significant advances have been made in OPTs with the development of new organic semiconductors and optimization of device fabrication protocols. Among various types of OPTs, small molecule organic single crystal phototransistors (OSCPTs) standout because of their exciting features, such as long exciton diffusion length and high charge carrier mobility relative to organic thinfilm phototransistors. In this review, a brief introduction to device architectures, working mechanisms and figure of merits for OPTs is presented. We then overview recent approaches employed and achievements made for the development of OSCPTs. Finally, we spotlight potential future directions to tackle the existing challenges in this field and accelerate the advancement of OSCPTs towards practical applications.

Keywords

photodetectors / organic transistors / organic phototransistors / organic single crystals / flexible electronics

Cite this article

Download citation ▾
Changbin Zhao, Muhammad Umair Ali, Jiaoyi Ning, Hong Meng. Organic single crystal phototransistors: Recent approaches and achievements. Front. Phys., 2021, 16(4): 43202 https://doi.org/10.1007/s11467-021-1053-1

References

[1]
P. Peumans, A. Yakimov, and S. R. Forrest, Small molecular weight organic thin-film photodetectors and solar cells, J. Appl. Phys. 93(7), 3693 (2003)
CrossRef ADS Google scholar
[2]
F. P. García de Arquer, A. Armin, P. Meredith, and E. H. Sargent, Solution-processed semiconductors for nextgeneration photodetectors, Nat. Rev. Mater. 2 (2017)
CrossRef ADS Google scholar
[3]
K. J. Baeg, M. Binda, D. Natali, M. Caironi, and Y. Y. Noh, Organic light detectors: Photodiodes and phototransistors, Adv. Mater. 25(31), 4267 (2013)
CrossRef ADS Google scholar
[4]
P. Gu, Y. Yao, L. Feng, S. Niu, and H. Dong, Recent advances in polymer phototransistors, Polym. Chem. 6(46), 7933 (2015)
CrossRef ADS Google scholar
[5]
O. Ostroverkhova, Organic optoelectronic materials: Mechanisms and applications, Chem. Rev. 116(22), 13279 (2016)
CrossRef ADS Google scholar
[6]
E. Manna, T. Xiao, J. Shinar, and R. Shinar, Organic photodetectors in analytical applications, Electronics (Basel) 4(3), 688 (2015)
CrossRef ADS Google scholar
[7]
S. Feruglio, G. N. Lu, P. Garda, and G. Vasilescu, A review of the CMOS buried double junction (BDJ) photodetector and its applications, Sensors (Basel) 8(10), 6566 (2008)
CrossRef ADS Google scholar
[8]
D. Yang and D. Ma, Development of organic semiconductor photodetectors: From mechanism to applications, Adv. Opt. Mater. 7(1), 1800522 (2019)
CrossRef ADS Google scholar
[9]
G. Simone, M. J. Dyson, S. C. J. Meskers, R. A. J. Janssen, and G. H. Gelinck, Organic photodetectors and their application in large area and flexible image sensors: The role of dark current, Adv. Funct. Mater. 30(20), 1904205 (2020)
CrossRef ADS Google scholar
[10]
J. Zhou and J. Huang, Photodetectors based on organicinorganic hybrid lead halide perovskites, Adv. Sci. (Weinh.) 5(1), 1700256 (2018)
CrossRef ADS Google scholar
[11]
Q. Li, Y. Guo, and Y. Liu, Exploration of nearinfrared organic photodetectors, Chem. Mater. 31(17), 6359 (2019)
CrossRef ADS Google scholar
[12]
D. Ji, T. Li, J. Liu, S. Amirjalayer, M. Zhong, Z.Y. Zhang, X. Huang, Z. Wei, H. Dong, W. Hu, and H. Fuchs, Band-like transport in small-molecule thin films toward high mobility and ultrahigh detectivity phototransistor arrays, Nat. Commun. 10(1), 12 (2019)
CrossRef ADS Google scholar
[13]
W. Shockley, M. Sparks, and G. K. Teal, p−njunction transistors, Phys. Rev. 83(1), 151 (1951)
CrossRef ADS Google scholar
[14]
P. C. Y. Chow and T. Someya, Organic photodetectors for next-generation wearable electronics, Adv. Mater. 32(15), 1902045 (2020)
CrossRef ADS Google scholar
[15]
D. H. Kim, N. Lu, R. Ma, Y.S. Kim, R.H. Kim, S. Wang, J. Wu, S. M. Won, H. Tao, A. Islam, K. J. Yu, T. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H.J. Chung, H. Keum, M. McCormick, P. Liu, Y.W. Zhang, F. G. Omenetto, Y. Huang, T. Coleman, and J. A. Rogers, Epidermal electronics, Science 333(6044), 838 (2011)
CrossRef ADS Google scholar
[16]
J. W. Lee, R. Xu, S. Lee, K. I. Jang, Y. Yang, A. Banks, K. J. Yu, J. Kim, S. Xu, S. Ma, S. W. Jang, P. Won, Y. Li, B. H. Kim, J. Y. Choe, S. Huh, Y. H. Kwon, Y. Huang, U. Paik, and J. A. Rogers, Soft, thin skin-mounted power management systems and their use in wireless thermography, Proc. Natl. Acad. Sci. USA 113(22), 6131 (2016)
CrossRef ADS Google scholar
[17]
S. Wang, J. Xu, W. Wang, G.J. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S. K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B. H. Tok, and Z. Bao, Skin electronics from scalable fabrication of an intrinsically stretchable transistor array, Nature 555(7694), 83 (2018)
CrossRef ADS Google scholar
[18]
D. J. Lipomi and Z. Bao, Stretchable and ultraflexible organic electronics, MRS Bull. 42(02), 93 (2017)
CrossRef ADS Google scholar
[19]
W. Gao, S. Emaminejad, H. Y. Y. Nyein, S. Challa, K. Chen, A. Peck, H. M. Fahad, H. Ota, H. Shiraki, D. Kiriya, D. H. Lien, G. A. Brooks, R. W. Davis, and A. Javey, Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis, Nature 529(7587), 509 (2016)
CrossRef ADS Google scholar
[20]
A. F. Paterson, S. Singh, K. J. Fallon, T. Hodsden, Y. Han, B. C. Schroeder, H. Bronstein, M. Heeney, I. Mc-Culloch, and T. D. Anthopoulos, Recent progress in highmobility organic transistors: A reality check, Adv. Mater. 30(36), 1801079 (2018)
CrossRef ADS Google scholar
[21]
J. T. E. Quinn, J. Zhu, X. Li, J. Wang, and Y. Li, Recent progress in the development of n-type organic semiconductors for organic field effect transistors, J. Mater. Chem. C 5(34), 8654 (2017)
CrossRef ADS Google scholar
[22]
Z. Qi, X. Liao, J. Zheng, C. Di, X. Gao, and J. Wang, High-performance n-type organic thin-film phototransistors based on a core-expanded naphthalene diimide, Appl. Phys. Lett. 103(5), 053301 (2013)
CrossRef ADS Google scholar
[23]
T. Hasegawa and J. Takeya, Organic field-effect transistors using single crystals, Sci. Technol. Adv. Mater. 10(2), 024314 (2009)
CrossRef ADS Google scholar
[24]
Q. F. Li, S. Liu, H. Z. Chen, and H. Y. Li, Alignment and patterning of organic single crystals for field-effect transistors, Chin. Chem. Lett. 27(8), 1421 (2016)
CrossRef ADS Google scholar
[25]
C. S. Choi, H. S. Kang, W.-Y. Choi, H. J. Kim, W. J. Choi, D. H. Kim, K. C. Jang, and K. S. Seo, High optical responsivity of InAlAs-InGaAs metamorphic highelectron mobility transistor on GaAs substrate with composite channels, IEEE Photon. Technol. Lett. 15(6), 846 (2003)
CrossRef ADS Google scholar
[26]
H. S. Kang, C. S. Choi, W. Y. Choi, D. H. Kim, and K. S. Seo, Characterization of phototransistor internal gain in metamorphic high-electron-mobility transistors, Appl. Phys. Lett. 84(19), 3780 (2004)
CrossRef ADS Google scholar
[27]
Y. Xu, P. R. Berger, J. N. Wilson, and U. H. F. Bunz, Photoresponsivity of polymer thin-film transistors based on polyphenyleneethynylene derivative with improved hole injection, Appl. Phys. Lett. 85(18), 4219 (2004)
CrossRef ADS Google scholar
[28]
Y. Lei, N. Li, W. K. E. Chan, B. S. Ong, and F. Zhu, Highly sensitive near infrared organic phototransistors based on conjugated polymer nanowire networks, Org. Electron. 48, 12 (2017)
CrossRef ADS Google scholar
[29]
J. Park, J. H. Seo, S.W. Yeom, C. Yao, V. W. Yang, Z. Cai, Y. M. Jhon, and B. K. Ju, Flexible and transparent organic phototransistors on biodegradable cellulose nanofibrillated fiber substrates, Adv. Opt. Mater. 6(9), 1701140 (2018)
CrossRef ADS Google scholar
[30]
L. Shi, Q. Liang, W. Wang, Y. Zhang, G. Li, T. Ji, Y. Hao, and Y. Cui, Research progress in organic photomultiplication photodetectors, Nanomaterials (Basel) 8(9), 713 (2018)
CrossRef ADS Google scholar
[31]
X. Zhang, J. Jie, W. Deng, Q. Shang, J. Wang, H. Wang, X. Chen, and X. Zhang, Alignment and patterning of ordered small-molecule organic semiconductor micro-/nanocrystals for device applications, Adv. Mater. 28(13), 2475 (2016)
CrossRef ADS Google scholar
[32]
X. Zhang, H. Dong, and W. Hu, Organic semiconductor single crystals for electronics and photonics, Adv. Mater. 30(44), 1801048 (2018)
CrossRef ADS Google scholar
[33]
H. Dong, H. Zhu, Q. Meng, X. Gong, and W. Hu, Organic photoresponse materials and devices, Chem. Soc. Rev. 41(5), 1754 (2012)
CrossRef ADS Google scholar
[34]
G. Wu, C. Chen, S. Liu, C. Fan, H. Li, and H. Chen, Solution-grown organic single-crystal field-effect transistors with ultrahigh response to visible-blind and deep UV signals, Adv. Electron. Mater. 1(8), 1500136 (2015)
CrossRef ADS Google scholar
[35]
G. Zhao, J. Liu, Q. Meng, D. Ji, X. Zhang, Y. Zou, Y. Zhen, H. Dong, and W. Hu, High-performance UV-sensitive organic phototransistors based on benzo 1,2-b:4,5-b’ dithiophene dimers linked with unsaturated bonds, Adv. Electron. Mater. 1(8), 1500071 (2015)
CrossRef ADS Google scholar
[36]
J. Tao, D. Liu, Z. Qin, B. Shao, J. Jing, H. Li, H. Dong, B. Xu, and W. Tian, Organic UV-sensitive phototransistors based on distriphenylamineethynylpyrene derivatives with ultra-high detectivity approaching 1018, Adv. Mater. 32(12), 1907791 (2020)
CrossRef ADS Google scholar
[37]
A. Li, L. Yan, M. Liu, I. Murtaza, C. He, D. Zhang, Y. He, and H. Meng, Highly responsive phototransistors based on 2,6-bis(4-methoxyphenyl)anthracene single crystal, J. Mater. Chem. C 5(22), 5304 (2017)
CrossRef ADS Google scholar
[38]
J. Liu, K. Zhou, J. Liu, J. Zhu, Y. Zhen, H. Dong, and W. Hu, Organic-single-crystal vertical field-effect transistors and phototransistors, Adv. Mater. 30(44), 1803655 (2018)
CrossRef ADS Google scholar
[39]
A. Li, X. Wei, Y. He, C. He, M. U. Ali, H. Yang, O. Goto, and H. Meng, Traps induced memory effect in rubrene single crystal phototransistor, Appl. Phys. Lett. 113(10), 103301 (2018)
CrossRef ADS Google scholar
[40]
R. M. Pinto, W. Gouveia, A. I. S. Neves, and H. Alves, Ultrasensitive organic phototransistors with multispectral response based on thin-film/single-crystal bilayer structures, Appl. Phys. Lett. 107(22), 223301 (2015)
CrossRef ADS Google scholar
[41]
G. F. Jones, R. M. Pinto, A. De Sanctis, V. K. Nagareddy, C. D. Wright, H. Alves, M. F. Craciun, and S. Russo, Highly efficient rubrene-graphene charge-transfer interfaces as phototransistors in the visible regime, Adv. Mater. 29(41), 1702993 (2017)
CrossRef ADS Google scholar
[42]
X. Chen, X. Liu, B. Wu, H. Nan, H. Guo, Z. Ni, F. Wang, X. Wang, Y. Shi, and X. Wang, Improving the performance of graphene phototransistors using a heterostructure as the light-absorbing layer, Nano Lett. 17(10), 6391 (2017)
CrossRef ADS Google scholar
[43]
X. Liu, X. Chen, J. Yi, Z. Luo, H. Nan, H. Guo, Z. Ni, Y. Ding, S. Dai, and X. Wang, Organic charge-transfer interface enhanced graphene hybrid phototransistors, Org. Electron. 64, 22 (2019)
CrossRef ADS Google scholar
[44]
X. Xu, W. Deng, X. Zhang, L. Huang, W. Wang, R. Jia, D. Wu, X. Zhang, J. Jie, and S. T. Lee, Dual-band, highperformance phototransistors from hybrid perovskite and organic crystal array for secure communication applications, ACS Nano 13(5), 5910 (2019)
CrossRef ADS Google scholar
[45]
Q. Tang, L. Li, Y. Song, Y. Liu, H. Li, W. Xu, Y. Liu, W. Hu, and D. Zhu, Photoswitches and phototransistors from organic single-crystalline sub-micro/nanometer ribbons, Adv. Mater. 19(18), 2624 (2007)
CrossRef ADS Google scholar
[46]
Y. Guo, C. Du, G. Yu, C. Di, S. Jiang, H. Xi, J. Zheng, S. Yan, C. Yu, W. Hu, and Y. Liu, High-performance phototransistors based on organic microribbons prepared by a solution self-assembly process, Adv. Funct. Mater. 20(6), 1019 (2010)
CrossRef ADS Google scholar
[47]
K. H. Kim, S. Y. Bae, Y. S. Kim, J. A. Hur, M. H. Hoang, T. W. Lee, M. J. Cho, Y. Kim, M. Kim, J. I. Jin, S. J. Kim, K. Lee, S. J. Lee, and D. H. Choi, Highly photosensitive J-aggregated single-crystalline organic transistors, Adv. Mater. 23(27), 3095 (2011)
CrossRef ADS Google scholar
[48]
Y. S. Kim, S. Y. Bae, K. H. Kim, T. W. Lee, J. A. Hur, M. H. Hoang, M. J. Cho, S. J. Kim, Y. Kim, M. Kim, K. Lee, S. J. Lee, and D. H. Choi, Highly sensitive phototransistor with crystalline microribbons from new pi-extended pyrene derivative via solution-phase self-assembly, Chem. Commun. (Camb.) 47(31), 8907 (2011)
CrossRef ADS Google scholar
[49]
H. Yu, Z. Bao, and J. H. Oh, High-performance phototransistors based on single-crystalline n-channel organic nanowires and photogenerated charge-carrier behaviors, Adv. Funct. Mater. 23(5), 629 (2013)
CrossRef ADS Google scholar
[50]
I. Song, S. C. Lee, X. Shang, J. Ahn, H. J. Jung, C. U. Jeong, S. W. Kim, W. Yoon, H. Yun, O. P. Kwon, and J. H. Oh, High-performance visible-blind UV phototransistors based on n-type naphthalene diimide nanomaterials, ACS Appl. Mater. Inter. 10(14), 11826 (2018)
CrossRef ADS Google scholar
[51]
B. Mukherjee, K. Sim, T. J. Shin, J. Lee, M. Mukherjee, M. Ree, and S. Pyo, Organic phototransistors based on solution grown, ordered single crystalline arrays of a piconjugated molecule, J. Mater. Chem. 22(7), 3192 (2012)
CrossRef ADS Google scholar
[52]
C. Wang, X. Ren, C. Xu, B. Fu, R. Wang, X. Zhang, R. Li, H. Li, H. Dong, Y. Zhen, S. Lei, L. Jiang, and W. Hu, N-type 2D organic single crystals for high-performance organic field-effect transistors and near-infrared phototransistors, Adv. Mater. 30(16), 1706260 (2018)
CrossRef ADS Google scholar
[53]
H. Jiang, X. Yang, Z. Cui, Y. Liu, H. Li, and W. Hu, Micro-organic single crystalline phototransistors of 7,7,8,8-tetracyanoquinodimethane and tetrathiafulvalene, Appl. Phys. Lett. 94(12), 123308 (2009)
CrossRef ADS Google scholar
[54]
B. Mukherjee, M. Mukherjee, K. Sim, and S. Pyo, Solution processed, aligned arrays of TCNQ micro crystals for low-voltage organic phototransistor, J. Mater. Chem. 21(6), 1931 (2011)
CrossRef ADS Google scholar
[55]
C. Wang, Y. Liu, Z. Wei, H. Li, W. Xu, and W. Hu, Biphase micro/nanometer sized single crystals of organic semiconductors: Control synthesis and their strong phase dependent optoelectronic properties, Appl. Phys. Lett. 96(14), 143302 (2010)
CrossRef ADS Google scholar
[56]
L. N. Nguyen, S. Kumar Pradhan, C. N. Yen, M. C. Lin, C. H. Chen, C. S. Wu, K. S. Chang-Liao, M. T. Lin, and C. D. Chen, High performance phototransistors based on single crystalline perylene-tetracarboxylic-dianhydride nanoparticle, Appl. Phys. Lett. 103(18), 183301 (2013)
CrossRef ADS Google scholar
[57]
X. Liu, L. Tavares, A. Osadnik, J. L. Lausen, J. Kongsted, A. Lützen, H. G. Rubahn, and J. Kjelstrup-Hansen, Lowvoltage organic phototransistors based on naphthyl endcapped oligothiophene nanofibers, Org. Electron. 15(6), 1273 (2014)
CrossRef ADS Google scholar
[58]
Y. Yao, L. Zhang, T. Leydecker, and P. Samori, Direct photolithography on molecular crystals for high performance organic optoelectronic devices, J. Am. Chem. Soc. 140(22), 6984 (2018)
CrossRef ADS Google scholar
[59]
C. A. Gunawardana and C. B. Aakeröy, Co-crystal synthesis: Fact, fancy, and great expectations, Chem. Commun. (Camb.) 54(100), 14047 (2018)
CrossRef ADS Google scholar
[60]
J. Zhang, J. Tan, Z. Ma, W. Xu, G. Zhao, H. Geng, C. Di, W. Hu, Z. Shuai, K. Singh, and D. Zhu, Fullerene/sulfurbridged annulene cocrystals: Two-dimensional segregated heterojunctions with ambipolar transport properties and photoresponsivity, J. Am. Chem. Soc. 135(2), 558 (2013)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(5391 KB)

Accesses

Citations

Detail

Sections
Recommended

/