Organic single crystal phototransistors: Recent approaches and achievements
Changbin Zhao, Muhammad Umair Ali, Jiaoyi Ning, Hong Meng
Organic single crystal phototransistors: Recent approaches and achievements
Organic phototransistors (OPTs), compared to traditional inorganic counterparts, have attracted a great deal of interest because of their inherent flexibility, light-weight, easy and low-cost fabrication, and are considered as potential candidates for next-generation wearable electronics. Currently, significant advances have been made in OPTs with the development of new organic semiconductors and optimization of device fabrication protocols. Among various types of OPTs, small molecule organic single crystal phototransistors (OSCPTs) standout because of their exciting features, such as long exciton diffusion length and high charge carrier mobility relative to organic thinfilm phototransistors. In this review, a brief introduction to device architectures, working mechanisms and figure of merits for OPTs is presented. We then overview recent approaches employed and achievements made for the development of OSCPTs. Finally, we spotlight potential future directions to tackle the existing challenges in this field and accelerate the advancement of OSCPTs towards practical applications.
photodetectors / organic transistors / organic phototransistors / organic single crystals / flexible electronics
[1] |
P. Peumans, A. Yakimov, and S. R. Forrest, Small molecular weight organic thin-film photodetectors and solar cells, J. Appl. Phys. 93(7), 3693 (2003)
CrossRef
ADS
Google scholar
|
[2] |
F. P. García de Arquer, A. Armin, P. Meredith, and E. H. Sargent, Solution-processed semiconductors for nextgeneration photodetectors, Nat. Rev. Mater. 2 (2017)
CrossRef
ADS
Google scholar
|
[3] |
K. J. Baeg, M. Binda, D. Natali, M. Caironi, and Y. Y. Noh, Organic light detectors: Photodiodes and phototransistors, Adv. Mater. 25(31), 4267 (2013)
CrossRef
ADS
Google scholar
|
[4] |
P. Gu, Y. Yao, L. Feng, S. Niu, and H. Dong, Recent advances in polymer phototransistors, Polym. Chem. 6(46), 7933 (2015)
CrossRef
ADS
Google scholar
|
[5] |
O. Ostroverkhova, Organic optoelectronic materials: Mechanisms and applications, Chem. Rev. 116(22), 13279 (2016)
CrossRef
ADS
Google scholar
|
[6] |
E. Manna, T. Xiao, J. Shinar, and R. Shinar, Organic photodetectors in analytical applications, Electronics (Basel) 4(3), 688 (2015)
CrossRef
ADS
Google scholar
|
[7] |
S. Feruglio, G. N. Lu, P. Garda, and G. Vasilescu, A review of the CMOS buried double junction (BDJ) photodetector and its applications, Sensors (Basel) 8(10), 6566 (2008)
CrossRef
ADS
Google scholar
|
[8] |
D. Yang and D. Ma, Development of organic semiconductor photodetectors: From mechanism to applications, Adv. Opt. Mater. 7(1), 1800522 (2019)
CrossRef
ADS
Google scholar
|
[9] |
G. Simone, M. J. Dyson, S. C. J. Meskers, R. A. J. Janssen, and G. H. Gelinck, Organic photodetectors and their application in large area and flexible image sensors: The role of dark current, Adv. Funct. Mater. 30(20), 1904205 (2020)
CrossRef
ADS
Google scholar
|
[10] |
J. Zhou and J. Huang, Photodetectors based on organicinorganic hybrid lead halide perovskites, Adv. Sci. (Weinh.) 5(1), 1700256 (2018)
CrossRef
ADS
Google scholar
|
[11] |
Q. Li, Y. Guo, and Y. Liu, Exploration of nearinfrared organic photodetectors, Chem. Mater. 31(17), 6359 (2019)
CrossRef
ADS
Google scholar
|
[12] |
D. Ji, T. Li, J. Liu, S. Amirjalayer, M. Zhong, Z.Y. Zhang, X. Huang, Z. Wei, H. Dong, W. Hu, and H. Fuchs, Band-like transport in small-molecule thin films toward high mobility and ultrahigh detectivity phototransistor arrays, Nat. Commun. 10(1), 12 (2019)
CrossRef
ADS
Google scholar
|
[13] |
W. Shockley, M. Sparks, and G. K. Teal, p−njunction transistors, Phys. Rev. 83(1), 151 (1951)
CrossRef
ADS
Google scholar
|
[14] |
P. C. Y. Chow and T. Someya, Organic photodetectors for next-generation wearable electronics, Adv. Mater. 32(15), 1902045 (2020)
CrossRef
ADS
Google scholar
|
[15] |
D. H. Kim, N. Lu, R. Ma, Y.S. Kim, R.H. Kim, S. Wang, J. Wu, S. M. Won, H. Tao, A. Islam, K. J. Yu, T. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H.J. Chung, H. Keum, M. McCormick, P. Liu, Y.W. Zhang, F. G. Omenetto, Y. Huang, T. Coleman, and J. A. Rogers, Epidermal electronics, Science 333(6044), 838 (2011)
CrossRef
ADS
Google scholar
|
[16] |
J. W. Lee, R. Xu, S. Lee, K. I. Jang, Y. Yang, A. Banks, K. J. Yu, J. Kim, S. Xu, S. Ma, S. W. Jang, P. Won, Y. Li, B. H. Kim, J. Y. Choe, S. Huh, Y. H. Kwon, Y. Huang, U. Paik, and J. A. Rogers, Soft, thin skin-mounted power management systems and their use in wireless thermography, Proc. Natl. Acad. Sci. USA 113(22), 6131 (2016)
CrossRef
ADS
Google scholar
|
[17] |
S. Wang, J. Xu, W. Wang, G.J. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S. K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B. H. Tok, and Z. Bao, Skin electronics from scalable fabrication of an intrinsically stretchable transistor array, Nature 555(7694), 83 (2018)
CrossRef
ADS
Google scholar
|
[18] |
D. J. Lipomi and Z. Bao, Stretchable and ultraflexible organic electronics, MRS Bull. 42(02), 93 (2017)
CrossRef
ADS
Google scholar
|
[19] |
W. Gao, S. Emaminejad, H. Y. Y. Nyein, S. Challa, K. Chen, A. Peck, H. M. Fahad, H. Ota, H. Shiraki, D. Kiriya, D. H. Lien, G. A. Brooks, R. W. Davis, and A. Javey, Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis, Nature 529(7587), 509 (2016)
CrossRef
ADS
Google scholar
|
[20] |
A. F. Paterson, S. Singh, K. J. Fallon, T. Hodsden, Y. Han, B. C. Schroeder, H. Bronstein, M. Heeney, I. Mc-Culloch, and T. D. Anthopoulos, Recent progress in highmobility organic transistors: A reality check, Adv. Mater. 30(36), 1801079 (2018)
CrossRef
ADS
Google scholar
|
[21] |
J. T. E. Quinn, J. Zhu, X. Li, J. Wang, and Y. Li, Recent progress in the development of n-type organic semiconductors for organic field effect transistors, J. Mater. Chem. C 5(34), 8654 (2017)
CrossRef
ADS
Google scholar
|
[22] |
Z. Qi, X. Liao, J. Zheng, C. Di, X. Gao, and J. Wang, High-performance n-type organic thin-film phototransistors based on a core-expanded naphthalene diimide, Appl. Phys. Lett. 103(5), 053301 (2013)
CrossRef
ADS
Google scholar
|
[23] |
T. Hasegawa and J. Takeya, Organic field-effect transistors using single crystals, Sci. Technol. Adv. Mater. 10(2), 024314 (2009)
CrossRef
ADS
Google scholar
|
[24] |
Q. F. Li, S. Liu, H. Z. Chen, and H. Y. Li, Alignment and patterning of organic single crystals for field-effect transistors, Chin. Chem. Lett. 27(8), 1421 (2016)
CrossRef
ADS
Google scholar
|
[25] |
C. S. Choi, H. S. Kang, W.-Y. Choi, H. J. Kim, W. J. Choi, D. H. Kim, K. C. Jang, and K. S. Seo, High optical responsivity of InAlAs-InGaAs metamorphic highelectron mobility transistor on GaAs substrate with composite channels, IEEE Photon. Technol. Lett. 15(6), 846 (2003)
CrossRef
ADS
Google scholar
|
[26] |
H. S. Kang, C. S. Choi, W. Y. Choi, D. H. Kim, and K. S. Seo, Characterization of phototransistor internal gain in metamorphic high-electron-mobility transistors, Appl. Phys. Lett. 84(19), 3780 (2004)
CrossRef
ADS
Google scholar
|
[27] |
Y. Xu, P. R. Berger, J. N. Wilson, and U. H. F. Bunz, Photoresponsivity of polymer thin-film transistors based on polyphenyleneethynylene derivative with improved hole injection, Appl. Phys. Lett. 85(18), 4219 (2004)
CrossRef
ADS
Google scholar
|
[28] |
Y. Lei, N. Li, W. K. E. Chan, B. S. Ong, and F. Zhu, Highly sensitive near infrared organic phototransistors based on conjugated polymer nanowire networks, Org. Electron. 48, 12 (2017)
CrossRef
ADS
Google scholar
|
[29] |
J. Park, J. H. Seo, S.W. Yeom, C. Yao, V. W. Yang, Z. Cai, Y. M. Jhon, and B. K. Ju, Flexible and transparent organic phototransistors on biodegradable cellulose nanofibrillated fiber substrates, Adv. Opt. Mater. 6(9), 1701140 (2018)
CrossRef
ADS
Google scholar
|
[30] |
L. Shi, Q. Liang, W. Wang, Y. Zhang, G. Li, T. Ji, Y. Hao, and Y. Cui, Research progress in organic photomultiplication photodetectors, Nanomaterials (Basel) 8(9), 713 (2018)
CrossRef
ADS
Google scholar
|
[31] |
X. Zhang, J. Jie, W. Deng, Q. Shang, J. Wang, H. Wang, X. Chen, and X. Zhang, Alignment and patterning of ordered small-molecule organic semiconductor micro-/nanocrystals for device applications, Adv. Mater. 28(13), 2475 (2016)
CrossRef
ADS
Google scholar
|
[32] |
X. Zhang, H. Dong, and W. Hu, Organic semiconductor single crystals for electronics and photonics, Adv. Mater. 30(44), 1801048 (2018)
CrossRef
ADS
Google scholar
|
[33] |
H. Dong, H. Zhu, Q. Meng, X. Gong, and W. Hu, Organic photoresponse materials and devices, Chem. Soc. Rev. 41(5), 1754 (2012)
CrossRef
ADS
Google scholar
|
[34] |
G. Wu, C. Chen, S. Liu, C. Fan, H. Li, and H. Chen, Solution-grown organic single-crystal field-effect transistors with ultrahigh response to visible-blind and deep UV signals, Adv. Electron. Mater. 1(8), 1500136 (2015)
CrossRef
ADS
Google scholar
|
[35] |
G. Zhao, J. Liu, Q. Meng, D. Ji, X. Zhang, Y. Zou, Y. Zhen, H. Dong, and W. Hu, High-performance UV-sensitive organic phototransistors based on benzo 1,2-b:4,5-b’ dithiophene dimers linked with unsaturated bonds, Adv. Electron. Mater. 1(8), 1500071 (2015)
CrossRef
ADS
Google scholar
|
[36] |
J. Tao, D. Liu, Z. Qin, B. Shao, J. Jing, H. Li, H. Dong, B. Xu, and W. Tian, Organic UV-sensitive phototransistors based on distriphenylamineethynylpyrene derivatives with ultra-high detectivity approaching 1018, Adv. Mater. 32(12), 1907791 (2020)
CrossRef
ADS
Google scholar
|
[37] |
A. Li, L. Yan, M. Liu, I. Murtaza, C. He, D. Zhang, Y. He, and H. Meng, Highly responsive phototransistors based on 2,6-bis(4-methoxyphenyl)anthracene single crystal, J. Mater. Chem. C 5(22), 5304 (2017)
CrossRef
ADS
Google scholar
|
[38] |
J. Liu, K. Zhou, J. Liu, J. Zhu, Y. Zhen, H. Dong, and W. Hu, Organic-single-crystal vertical field-effect transistors and phototransistors, Adv. Mater. 30(44), 1803655 (2018)
CrossRef
ADS
Google scholar
|
[39] |
A. Li, X. Wei, Y. He, C. He, M. U. Ali, H. Yang, O. Goto, and H. Meng, Traps induced memory effect in rubrene single crystal phototransistor, Appl. Phys. Lett. 113(10), 103301 (2018)
CrossRef
ADS
Google scholar
|
[40] |
R. M. Pinto, W. Gouveia, A. I. S. Neves, and H. Alves, Ultrasensitive organic phototransistors with multispectral response based on thin-film/single-crystal bilayer structures, Appl. Phys. Lett. 107(22), 223301 (2015)
CrossRef
ADS
Google scholar
|
[41] |
G. F. Jones, R. M. Pinto, A. De Sanctis, V. K. Nagareddy, C. D. Wright, H. Alves, M. F. Craciun, and S. Russo, Highly efficient rubrene-graphene charge-transfer interfaces as phototransistors in the visible regime, Adv. Mater. 29(41), 1702993 (2017)
CrossRef
ADS
Google scholar
|
[42] |
X. Chen, X. Liu, B. Wu, H. Nan, H. Guo, Z. Ni, F. Wang, X. Wang, Y. Shi, and X. Wang, Improving the performance of graphene phototransistors using a heterostructure as the light-absorbing layer, Nano Lett. 17(10), 6391 (2017)
CrossRef
ADS
Google scholar
|
[43] |
X. Liu, X. Chen, J. Yi, Z. Luo, H. Nan, H. Guo, Z. Ni, Y. Ding, S. Dai, and X. Wang, Organic charge-transfer interface enhanced graphene hybrid phototransistors, Org. Electron. 64, 22 (2019)
CrossRef
ADS
Google scholar
|
[44] |
X. Xu, W. Deng, X. Zhang, L. Huang, W. Wang, R. Jia, D. Wu, X. Zhang, J. Jie, and S. T. Lee, Dual-band, highperformance phototransistors from hybrid perovskite and organic crystal array for secure communication applications, ACS Nano 13(5), 5910 (2019)
CrossRef
ADS
Google scholar
|
[45] |
Q. Tang, L. Li, Y. Song, Y. Liu, H. Li, W. Xu, Y. Liu, W. Hu, and D. Zhu, Photoswitches and phototransistors from organic single-crystalline sub-micro/nanometer ribbons, Adv. Mater. 19(18), 2624 (2007)
CrossRef
ADS
Google scholar
|
[46] |
Y. Guo, C. Du, G. Yu, C. Di, S. Jiang, H. Xi, J. Zheng, S. Yan, C. Yu, W. Hu, and Y. Liu, High-performance phototransistors based on organic microribbons prepared by a solution self-assembly process, Adv. Funct. Mater. 20(6), 1019 (2010)
CrossRef
ADS
Google scholar
|
[47] |
K. H. Kim, S. Y. Bae, Y. S. Kim, J. A. Hur, M. H. Hoang, T. W. Lee, M. J. Cho, Y. Kim, M. Kim, J. I. Jin, S. J. Kim, K. Lee, S. J. Lee, and D. H. Choi, Highly photosensitive J-aggregated single-crystalline organic transistors, Adv. Mater. 23(27), 3095 (2011)
CrossRef
ADS
Google scholar
|
[48] |
Y. S. Kim, S. Y. Bae, K. H. Kim, T. W. Lee, J. A. Hur, M. H. Hoang, M. J. Cho, S. J. Kim, Y. Kim, M. Kim, K. Lee, S. J. Lee, and D. H. Choi, Highly sensitive phototransistor with crystalline microribbons from new pi-extended pyrene derivative via solution-phase self-assembly, Chem. Commun. (Camb.) 47(31), 8907 (2011)
CrossRef
ADS
Google scholar
|
[49] |
H. Yu, Z. Bao, and J. H. Oh, High-performance phototransistors based on single-crystalline n-channel organic nanowires and photogenerated charge-carrier behaviors, Adv. Funct. Mater. 23(5), 629 (2013)
CrossRef
ADS
Google scholar
|
[50] |
I. Song, S. C. Lee, X. Shang, J. Ahn, H. J. Jung, C. U. Jeong, S. W. Kim, W. Yoon, H. Yun, O. P. Kwon, and J. H. Oh, High-performance visible-blind UV phototransistors based on n-type naphthalene diimide nanomaterials, ACS Appl. Mater. Inter. 10(14), 11826 (2018)
CrossRef
ADS
Google scholar
|
[51] |
B. Mukherjee, K. Sim, T. J. Shin, J. Lee, M. Mukherjee, M. Ree, and S. Pyo, Organic phototransistors based on solution grown, ordered single crystalline arrays of a piconjugated molecule, J. Mater. Chem. 22(7), 3192 (2012)
CrossRef
ADS
Google scholar
|
[52] |
C. Wang, X. Ren, C. Xu, B. Fu, R. Wang, X. Zhang, R. Li, H. Li, H. Dong, Y. Zhen, S. Lei, L. Jiang, and W. Hu, N-type 2D organic single crystals for high-performance organic field-effect transistors and near-infrared phototransistors, Adv. Mater. 30(16), 1706260 (2018)
CrossRef
ADS
Google scholar
|
[53] |
H. Jiang, X. Yang, Z. Cui, Y. Liu, H. Li, and W. Hu, Micro-organic single crystalline phototransistors of 7,7,8,8-tetracyanoquinodimethane and tetrathiafulvalene, Appl. Phys. Lett. 94(12), 123308 (2009)
CrossRef
ADS
Google scholar
|
[54] |
B. Mukherjee, M. Mukherjee, K. Sim, and S. Pyo, Solution processed, aligned arrays of TCNQ micro crystals for low-voltage organic phototransistor, J. Mater. Chem. 21(6), 1931 (2011)
CrossRef
ADS
Google scholar
|
[55] |
C. Wang, Y. Liu, Z. Wei, H. Li, W. Xu, and W. Hu, Biphase micro/nanometer sized single crystals of organic semiconductors: Control synthesis and their strong phase dependent optoelectronic properties, Appl. Phys. Lett. 96(14), 143302 (2010)
CrossRef
ADS
Google scholar
|
[56] |
L. N. Nguyen, S. Kumar Pradhan, C. N. Yen, M. C. Lin, C. H. Chen, C. S. Wu, K. S. Chang-Liao, M. T. Lin, and C. D. Chen, High performance phototransistors based on single crystalline perylene-tetracarboxylic-dianhydride nanoparticle, Appl. Phys. Lett. 103(18), 183301 (2013)
CrossRef
ADS
Google scholar
|
[57] |
X. Liu, L. Tavares, A. Osadnik, J. L. Lausen, J. Kongsted, A. Lützen, H. G. Rubahn, and J. Kjelstrup-Hansen, Lowvoltage organic phototransistors based on naphthyl endcapped oligothiophene nanofibers, Org. Electron. 15(6), 1273 (2014)
CrossRef
ADS
Google scholar
|
[58] |
Y. Yao, L. Zhang, T. Leydecker, and P. Samori, Direct photolithography on molecular crystals for high performance organic optoelectronic devices, J. Am. Chem. Soc. 140(22), 6984 (2018)
CrossRef
ADS
Google scholar
|
[59] |
C. A. Gunawardana and C. B. Aakeröy, Co-crystal synthesis: Fact, fancy, and great expectations, Chem. Commun. (Camb.) 54(100), 14047 (2018)
CrossRef
ADS
Google scholar
|
[60] |
J. Zhang, J. Tan, Z. Ma, W. Xu, G. Zhao, H. Geng, C. Di, W. Hu, Z. Shuai, K. Singh, and D. Zhu, Fullerene/sulfurbridged annulene cocrystals: Two-dimensional segregated heterojunctions with ambipolar transport properties and photoresponsivity, J. Am. Chem. Soc. 135(2), 558 (2013)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |