Supplement to the paper “A collection of 505 papers on false or unconfirmed ferroelectric properties in single crystals, ceramics and polymers [Front. Phys. 14(6), 63301 (2019)]”

Zbigniew Tylczyński

PDF(706 KB)
PDF(706 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (5) : 53001. DOI: 10.1007/s11467-021-1050-4
VIEWPOINT
VIEWPOINT

Supplement to the paper “A collection of 505 papers on false or unconfirmed ferroelectric properties in single crystals, ceramics and polymers [Front. Phys. 14(6), 63301 (2019)]”

Author information +
History +

Abstract

This supplement contains 222 (angel number) further papers on false or unconfirmed ferroelectric properties in single crystals, ceramics and polymers and only concerns bulk materials. Thus, the number of such papers has reached huge value 727. The papers marked in red have drastically broken the principles of symmetry because they reported the existence of ferroelectricity in crystals without the polar axis.

Keywords

ferroelectricity / hysteresis loop / single crystals / multiferroic / polymers

Cite this article

Download citation ▾
Zbigniew Tylczyński. Supplement to the paper “A collection of 505 papers on false or unconfirmed ferroelectric properties in single crystals, ceramics and polymers [Front. Phys. 14(6), 63301 (2019)]”. Front. Phys., 2021, 16(5): 53001 https://doi.org/10.1007/s11467-021-1050-4

References

[1]
N. Ahmad, G. M. Bhat, and P. N. Kotru, Optical, dielectric and ferroelectric characteristics of gel grown erbium tartrate hexahydrate crystals, J. Electron. Mater. 48(5), 3006 (2019)
CrossRef ADS Google scholar
[2]
N. Sharma, A. Gaur, and R. K. Kotnala, Signature of weak ferroelectricity and ferromagnetism in Mn doped CuO nanostructures, J. Magn. Magn. Mater. 377, 183 (2015)
CrossRef ADS Google scholar
[3]
E. Kabir, M. Khatun, R. J. Mustafa, K. Singh, and M. Rahman, AC electrical conductivity and dielectric properties of doping induced molecular ferroelectric diisopropylammonium bromide, Mater. Res. Express 6(9), 096306 (2019)
CrossRef ADS Google scholar
[4]
S. Sonia, N. Vijayan, M. Vij, P. Kumar, B. Singh, S. Das, R. Rajnikant, and S. H, Assessment of the imperative features of an l-arginine 4-nitrophenolate 4-nitrophenol dihydrate single crystal for nonlinear optical applications, Mater. Chem. Front. 1(6), 1107 (2017)
CrossRef ADS Google scholar
[5]
B. Want, Dielectric, ferroelectric and non-linear optical behavior of crystalline erbium tartrate dihydrate, Curr. Appl. Phys. 13(9), 1928 (2013)
CrossRef ADS Google scholar
[6]
E. Jerusha and S. S. Kirupavathy, Effect of L-asparagine as dopant on the growth and characteristics of ammonium tetroxalate dihydrate single crystal, Mater. Sci. Pol. 38(1), 48 (2020)
CrossRef ADS Google scholar
[7]
S. Suresh, Growth, optical, dielectric and ferroelectric properties of nonlinear optical single crystal: Glycinephthalic acid, J. Electron. Mater. 45(11), 5904 (2016)
CrossRef ADS Google scholar
[8]
Z. Hu, H. Zhao, Z. Cheng, J. Ding, H. Gao, Y. Han, S. Wang, Z. Xu, Y. Zhou, T. Jia, H. Kimura, and M. Osada, van der Waals force layered multiferroic hybrid perovskite (CH3NH3)2CuCl4 single crystals, Phys. Chem. Chem. Phys. 22(7), 4235 (2020)
CrossRef ADS Google scholar
[9]
R. N. Perumal and A. Marimuthu, Temperature dependence on dielectric and ferroelectric properties of rubidium titanyl phosphate single crystal, J. Mater. Sci. Mater. Electron. 31(8), 6385 (2020)
CrossRef ADS Google scholar
[10]
G. Gowri, R. Saravanan, S. Sasikumar, and I. B. Shameem Banu, Exchange bias effect, ferroelectric property, primary bonding and charge density analysis of La1−xCexFeO3 multiferroics, Mater. Res. Bull. 118, 110512 (2019)
CrossRef ADS Google scholar
[11]
R. RameshKumar, T. Ramachandran, K. Natarajan, M. Muralidharan, F. Hamed, and V. Kurapati, Fraction of rare-earth (Sm/Nd)-lanthanum ferrite-based perovskite ferroelectric and magnetic nanopowders, J. Electron. Mater. 48(3), 1694 (2019)
CrossRef ADS Google scholar
[12]
Y. Wu, Q. Xie, M. Li, X. Sun, H. L. Cai, and X. S. Wu, Structural and ferroelectric properties of orthogonal crystalline in Fe-doped HoMnO3 synthesized at normal pressure, J. Mater. Sci. Mater. Electron. 30(8), 7629 (2019)
CrossRef ADS Google scholar
[13]
S. Leelashree, and S. Srinath, Investigation of structural, ferroelectric, and magnetic properties of Ladoped LuFeO3 nanoparticles, J. Supercond. Nov. Magn. 33(6), 1587 (2020)
CrossRef ADS Google scholar
[14]
Q. Yao, X. Xu, Y. He, W. Mao, and X. Li, Improved ferroelectric and ferromagnetic properties of (1−x)BiFeO3–xBaTiO3 ceramics, J. Supercond. Nov. Magn. 32(4), 1001 (2019)
CrossRef ADS Google scholar
[15]
W. Zhang, X. Zhu, L. Wang, X. Xu, Q. Yao, W. Mao, and X. Li, Study on the magnetic and ferroelectric properties of Bi0.95Dy0.05Fe0.95M0.05O3 (M= Mn, Co) ceramics, J. Supercond. Nov. Magn. 30(11), 3001 (2017)
CrossRef ADS Google scholar
[16]
R. Wang, H. Shu, W. Mao, X. Wang, H. Xue, L. Chu, J. Yang, and X. Li, Study on the magnetic and ferroelectric properties of Ca-doped and (Eu, Ca) co-doped BiFeO3, J. Supercond. Nov. Magn. 30(4), 999 (2017)
CrossRef ADS Google scholar
[17]
J. Márquez Álvarez, D. A. Landínez Téllez, J. A. Cardona Vásquez, J. Roa-Rojas, and E. Ortiz Muñoz, Electric and structural properties of the new Ba2TiZrO6 ferroelectric complex perovskite, J. Supercond. Nov. Magn. 26(7), 2459 (2013)
CrossRef ADS Google scholar
[18]
W. Yang, Z. Wang, T. Wang, M. Jin, J. Xu, and Y. Sui, Ferroelectric and magnetic properties of CoFe2O4/BaTiO3 prepared by microwave-assisted solgel method, J. Supercond. Nov. Magn. 30(2), 539 (2017)
CrossRef ADS Google scholar
[19]
M. V. Shisode, D. N. Bhoyar, P. P. Khirade, and K. M. Jadhav, Structural, microstructural, magnetic, and ferroelectric properties of Ba2+-doped BiFeO3 nanocrystalline multifferroic material, J. Supercond. Nov. Magn. 31(8), 2501 (2018)
CrossRef ADS Google scholar
[20]
S. Matteppanavar, S. Rayaprol, A. V. Anupama, B. Sahoo, and B. Angadi, On the room temperature ferromagnetic and ferroelectric properties of Pb(Fe1/2Nb1/2)O3, J. Supercond. Nov. Magn. 28(8), 2465 (2015)
CrossRef ADS Google scholar
[21]
S. Matteppanavar, S. i, S. Rayaprol, B. Angadi, and B. Sahoo, Evidence for room-temperature weak ferromagnetic and ferroelectric ordering in magnetoelectric Pb(Fe0.634W0.266Nb0.1)O3 ceramic, J. Supercond. Nov. Magn.30(5), 1317 (2017)
CrossRef ADS Google scholar
[22]
Z. Chen, C. Wang, T. Li, J. Hao, and J. Zhang, Investigation on electrical and magnetic properties of Gddoped BiFeO3, J. Supercond. Nov. Magn. 23(4), 527(2010)
CrossRef ADS Google scholar
[23]
J. S. Bangruwa, S. Kumar, A. Chauhan, P. Kumar, and V. Verma, Modified magnetic and electrical properties of perovskite-spinel multiferroic composites, J. Supercond. Nov. Magn. 32(8), 2559 (2019)
CrossRef ADS Google scholar
[24]
T. Murtaza, I. A. Salmani, J. Ali, and M. S. Khan, Effect of Mo doping at the B site on structural and electrical properties of multiferroic BiFeO3, J. Supercond. Nov. Magn. 31(6), 1955 (2018)
CrossRef ADS Google scholar
[25]
W. Yang, Z. Wang, Z. Zhou, T. Wang, M. Jin, J. Xu, and Y. Sui, Synthesis and characterization of CoFe2O4/BaTiO3 multiferroic composites, J. Supercond. Nov. Magn. 30(3), 665 (2017)
CrossRef ADS Google scholar
[26]
J. A. Cardona Vásquez, D. A. Landínez Téllez, J. A. Cuervo Farfán, J. Roa-Rojas, and M. E. Gómez, Synthesis and physical properties of La0.53Ca0.26Ba0.21Mn0.77Ti0.21Zr0.02O3 multiferroic material, J. Supercond. Nov. Magn. 26(7), 2455 (2013)
CrossRef ADS Google scholar
[27]
J. Chen, H. Dai, T. Li, D. Liu, R. Xue, H. Xiang, and Z. Chen, Role of Mn substitution in the multiferroic properties of BiFeO3 ceramics, J. Supercond. Nov. Magn. 28(9), 2751 (2015)
CrossRef ADS Google scholar
[28]
Y. Li, H. Zhang, X. Dong, Q. Li, W. Chen, H. Liu, X. Ge, X. Li, C. Dong, and S. Ren, Room-temperature multiferroic properties and local structures of the Mndoped and (Pb, Mn)-codoped BiFeO3, J. Supercond. Nov. Magn. 27(2), 575 (2014)
CrossRef ADS Google scholar
[29]
J. Singh, A. Vasishth, and N. K. Verma, Multiferroic properties of Zn1−xMgxO nanoparticles, J. Supercond. Nov. Magn. 28(10), 3069 (2015)
CrossRef ADS Google scholar
[30]
H. Shu, Y. Ma, Z. Wang, W. Mao, L. Chu, J. Yang, Q. Wu, Y. Min, R. Song, and X. Li, Structural, optical and multiferroic properties of (Nd, Zn)-co-doped BiFeO3 nanoparticles, J. Supercond. Nov. Magn. 30(11), 3027 (2017)
CrossRef ADS Google scholar
[31]
H. Y. Dai, Z. P. Chen, T. Li, R. Z. Xue, and J. Chen, Structural and electrical properties of bismuth ferrite ceramics sintered in different atmospheres, J. Supercond. Nov. Magn. 26(10), 3125 (2013)
CrossRef ADS Google scholar
[32]
S. Jindal, S. Devi, A. Vasishth, and G. Kumar, Study of structural and dielectrical properties of lead free polycrystalline electro ceramics Ba5CaTi2Nb8O30 (BCTN) for microwave tunable device applications, Mater. Sci. Appl. 9(1), 55 (2018)
CrossRef ADS Google scholar
[33]
J. Panda, B. B. Mohanty, P. S. Sahoo, and R. N. P. Choudhary, Preparation and study of dielectric and electrical conductivity of Ba5NdTi3V7O30 ceramics, Open Acc. Libr. J. 5, e4864 (2018)
CrossRef ADS Google scholar
[34]
N. Kumar, B. Narayan, M. Kumar, A. Kumar Singh, S. Dhiman, and S. Kumar, Effect of Nd3+ substitution on structural, ferroelectric, magnetic and electrical properties of BiFeO3–PbTiO3 binary system, SN Appl. Sci. (Basel) 1, 874 (2019)
CrossRef ADS Google scholar
[35]
P. Bai, Y. Zeng, J. Han, Y. Wei, M. Li, and Y. Li, Structure, electrical, dielectric and ferroelectric properties of (1 − x)BiFeO3–xAl2O3 ceramics, J. Mater. Sci. Mater. Electron. 30(16), 15413 (2019)
CrossRef ADS Google scholar
[36]
S. Dabas, M. Kumar, P. Chaudhary, S. Shankar, S. Roy, and O. P. Thakur, Structural, energy storage analysis and enhanced magnetoelectric coupling in Mn modified multiferroic BiFeO3, J. Electron. Mater. 48(9), 5785 (2019)
CrossRef ADS Google scholar
[37]
Y. Xue, R. Xu, Z. Wang, R. Gao, C. Li, G. Chen, X. Deng, W. Cai, and C. Fu, Effect of magnetic phase on structural and multiferroic properties of Ni1−xZnxFe2O4/BaTiO3 composite ceramics, J. Electron. Mater. 48(8), 4806 (2019)
CrossRef ADS Google scholar
[38]
R. Xu, S. Zhang, F. Wang, Q. Zhang, Z. Li, Z. Wang, R. Gao, W. Cai, and C. Fu, The study of microstructure, dielectric and multiferroic properties of (1 − x)Co0.8Cu0.2Fe2O4–xBa0.6Sr0.4TiO3 composites, J. Electron. Mater. 48(1), 386 (2019)
CrossRef ADS Google scholar
[39]
P. R. Das, B. Pati, B. C. Sutar, and R. N. P. Choudhury, Study of structural and electrical properties of a new type of complex tungsten bronze electroceramics: Li2Pb2Y2W2Ti4V4O30, J. Mod. Phys. 3, 870 (2012)
[40]
M. Shariq, D. Kaur, V. S. Chandel, P. K. Jain, S. Florence, M. Sharma, and S. Hussain, Study of structural, magnetic and optical properties of BiFeO3–PbTiO3 multiferroic composites, Arab. J. Sci. Eng. 44(1), 613 (2019)
CrossRef ADS Google scholar
[41]
Y. Shia, Y. Pu, Q. Zhang, J. Li, and L. Guo, Dielectric and multiferroic properties of two-layered SrBi2Nb2−xFexO9 aurivillius compounds, Ceram. Int. 44(S1), S61 (2018)
CrossRef ADS Google scholar
[42]
Kumar, K. L. Yadav, J. Shah, and R. K. Kotnala, Investigation of magnetoelectric effect in lead free K0.5Na0.5NbO3–BaFe12O19 novel composite system, J. Adv. Ceram 8(3), 333 (2019)
CrossRef ADS Google scholar
[43]
P. S. Sahoo, A. Panigrahi, S. K. Patri, and R. N. P. Choudhary, Structural, dielectric, electrical and piezoelectric properties of Ba4SrRTi3V7O30 (R=Sm, Dy) ceramics, Cent. Eur. J. Phys. 6(4), 843 (2008)
CrossRef ADS Google scholar
[44]
S. K. Barik, R. N. P. Choudhary, and P. K. Mahapatra, Structural and dielectric studies of lead-free ceramics: Na1/2Y1/2TiO3, Cent. Eur. J. Phys. 6(4), 849 (2008)
CrossRef ADS Google scholar
[45]
P. S. Sahoo, A. Panigrahi, S. K. Patri, and R. N. P. Choudhary, Dielectric properties of Ba3Sr2DyTi3V7O30 ceramics, Cent. Eur. J. Phys. 8(4), 639 (2010)
CrossRef ADS Google scholar
[46]
S. K. Patri and R. N. P. Choudhary, Phase transition in Bi8Fe6Ti3O27 multiferroic ceramics, Cent. Eur. J. Phys. 6(3), 450 (2008)
CrossRef ADS Google scholar
[47]
B. Behera, P. Nayak, and R. N. P. Choudhary, Structural and electrical properties of KCa2Nb5O15 ceramics, Cent. Eur. J. Phys. 6(2), 289 (2008)
CrossRef ADS Google scholar
[48]
X.-Z. Deng, J. Zhang, and S.-T. Zhang, Simultaneously enhanced ferroelectric and magnetic properties in 0.675BiFe1−xCrxO3–0.325PbTiO3 (x= 0–0.05) ceramics, J. Mater. Sci. Mater. Electron. 28(3), 2435 (2017)
CrossRef ADS Google scholar
[49]
A. Kumar and D. Varshney, Crystal structure refinement of Bi1−xNdxFeO3 multiferroic by the Rietveld method, Ceram. Int. 38(5), 3935 (2012)
CrossRef ADS Google scholar
[50]
W. Liu, S. Tsukada, and Y. Akishige, Preparation and ferroelectric properties of MnO2 doped BaTi2O5 ceramics by spark plasma sintering from the solid-statecalcined powder, J. Mater. Sci. Mater. Electron. 25(3), 1280 (2014)
CrossRef ADS Google scholar
[51]
M. Muneeswaran and N. V. Giridharan, Effect of Dysubstitution on the structural, vibrational, and multiferroic properties of BiFeO3 nanoparticles, J. Appl. Phys. 115(21), 214109 (2014)
CrossRef ADS Google scholar
[52]
W. Mao, X. Wang, Y. Han, X. Li, Y. Li, Y. Wang, Y. Ma, X. Feng, T. Yang, J. Yang, and W. Huang, Effect of Ln (Ln= La, Pr) and Co co-doped on the magnetic and ferroelectric properties of BiFeO3 nanoparticles, J. Alloys Compd. 554, 520 (2014)
CrossRef ADS Google scholar
[53]
M. P. Rao, S. Musthafa, J. J. Wu, and S. Anandan, Facile synthesis of perovskite LaFeO3 ferroelectric nanostructures for heavy metal ion removal applications, Mater. Res. Phys 232, 200 (2019)
CrossRef ADS Google scholar
[54]
O. M. Hemeda, B. I. Salem, H. Abdelfatah, G. Abdelsatar, and M. Shihab, Dielectric and ferroelectric properties of barium zirconate titanate ceramics prepared by ceramic method, Physica B 574, 411680 (2019)
CrossRef ADS Google scholar
[55]
R. Gao, X. Qin, Q. Zhang, Z. Xu, Z. Wang, C. Fu, G. Chen, X. Deng, and W. Cai, A comparative study of the dielectric, ferroelectric and anomalous magnetic properties of Mn0.5Mg0.5Fe2O4/Ba0.8Sr0.2Ti0.9Zr0.1O3 composite ceramics, Mater. Res. Phys. 232, 428 (2019)
CrossRef ADS Google scholar
[56]
H. Zhao, R. Yang, Y. Li, G. Liu, Y. Lu, J. Tang, S. Zhang, and G. Li, Enhanced dielectric and multiferroic properties in BaTiO3 doped Bi0.85Nd0.15Fe0.98Mn0.02O3 ceramics, J. Magn. Magn. Mater. 494, 165779 (2020)
CrossRef ADS Google scholar
[57]
T.-H. Wang, C.-S. Tu, Y. Ding, T.-C. Lin, C.-S. Ku, W.-C. Yang, H.-H. Yu, K.-T. Wu, Y.-D. Yao, and H.- Y. Lee, Phase transition and ferroelectric properties of xBiFeO3–(1 − x)BaTiO3 ceramics, Curr. Appl. Phys. 11(3), s240 (2011)
CrossRef ADS Google scholar
[58]
T. Wang, L. Jin, Y. Tian, L. Shu, Q. Hu, and X. Wei, Microstructure and ferroelectric properties of Nb2O5- modified BiFeO3–BaTiO3 lead-free ceramics for energy storage, Mater. Lett. 137, 79 (2014)
CrossRef ADS Google scholar
[59]
Z. X. Cheng, A. H. Li, X. L. Wang, S. X. Dou, K. Ozawa, H. Kimura, S. J. Zhang, and T. R. Shrout, Structure, ferroelectric properties, and magnetic properties of the La-doped bismuth ferrite, J. Appl. Phys. 103(7), 07E507 (2008)
CrossRef ADS Google scholar
[60]
R. Rai, S. K. Mishra, N. K. Singh, S. Sharma, and A. L. Kholkin, Preparation, structures, and multiferroic properties of single-phase BiRFeO3, R= La and Er ceramics, Curr. Appl. Phys. 11(3), 508 (2011)
CrossRef ADS Google scholar
[61]
E. Mostafavi, A. Ataie, M. Ahmadzadeh, M. Palizdar, T. P. Comyn, and A. J. Bell, Synthesis of nanostructured Bi1−xBaxFeO3 ceramics with enhanced magnetic and electrical properties, Mater. Chem. Phys. 162, 106 (2015)
CrossRef ADS Google scholar
[62]
N. B. Delfard, H. Maleki, A. M. Badizi, and M. Taraz, Enhanced structural, optical, and multiferroic properties of rod-like bismuth iron oxide nanoceramics by dopant lanthanum, J. Supercond. Nov. Magn. 33(4), 1207 (2020)
CrossRef ADS Google scholar
[63]
P. Choudhary, P. Saxena, A. Yadav, A. K. Sinha, V. N. Rai, M. D. Varshney, and A. Mishra, Weak ferroelectricity and leakage current behavior of multiferroic CoCr2O4 nanomaterials, J. Supercond. Nov. Magn. 32(8), 2639 (2019)
CrossRef ADS Google scholar
[64]
S. Matteppanavar, J. Angadi, T. Nagaraja, S. Rayaprol, and B. Angadi, Room temperature neutron diffraction, electron paramagnetic resonance and ferroelectric properties of relax or ferroelectric Pb(Fe0.6Nb0.2W0.2)O3, AIP Conf. Proc. 2142, 090009 (2019)
CrossRef ADS Google scholar
[65]
M. Khan, A. Mishra, J. Shukla, and P. Sharma, Structural, optical and electrical properties of BaTiO3– NiFe2O4 based multifunctional composites, AIP Conf. Proc. 2142, 160012 (2019)
CrossRef ADS Google scholar
[66]
F. Ma and Hongjian Zhao, Optical, magnetic, ferroelectric properties and photocatalytic activity of Bi2Fe4O9 nanoparticles through a hydrothermal assisted sol–gel method, Russ. J. Phys. Chem. 93(10), 2079 (2019)
CrossRef ADS Google scholar
[67]
Q.-H. Jiang, C.-W. Nan, and Z.-J. Shen, Synthesis and properties of multiferroic La-modified BiFeO3 ceramics, J. Am. Ceram. Soc. 89(7), 2123 (2006)
CrossRef ADS Google scholar
[68]
A. Gautam and V. S. Rangra, Effect of Ba ions substitution on multiferroic properties of BiFeO3 perovskite, Cryst. Res. Technol. 45(9), 953 (2010)
CrossRef ADS Google scholar
[69]
P. Sharma and D. Varshney, Effect of La and Pb substitution on structural and electrical properties of parent and La/Pb co-doped BiFeO3 multiferroic, Adv. Mater. Lett. 5(2), 71 (2014)
CrossRef ADS Google scholar
[70]
M. Hasan, M. A. Hakim, M. A. Basith, M. S. Hossain, B. Ahmmad, M. A. Zubair, A. Hussain, and M. F. Islam, Size dependent magnetic and electrical properties of Ba-doped nanocrystalline BiFeO3, AIP Adv. 6(3), 035314 (2016)
CrossRef ADS Google scholar
[71]
K. Naveen, N. Kumar, T. K. Mandal, P. D. Babu, V. Siruguri, P. K. Maji, and A. K. Paul, Multiferroic behaviour in B-site Cr-doped hexagonal YInO3 perovskites: Synthesis, structure and properties, J. Mol. Struct. 1185, 432 (2019)
CrossRef ADS Google scholar
[72]
V. M. Gaikwad, and S. A. Acharya, Perovskitespinel composite approach to modify room temperature structural, magnetic and dielectric behavior of BiFeO3, J. Alloys Compd. 695, 3689 (2017)
CrossRef ADS Google scholar
[73]
B. Dhanalakshmi, P. Kollu, B. C. Sekhar, B. P. Rao, and P. S. V. S. Rao, Enhanced magnetic and magnetoelectric properties of Mn doped multiferroic ceramics, Ceram. Int. 43(12), 9272 (2017)
CrossRef ADS Google scholar
[74]
A. Mitra, A. Shaw, and P. K. Chakrabarti, Microstructure, dielectric, ferroelectric and magnetoelectric coupling of a novel multiferroic of [(GdMnO3)0.7(CoFe2O4)0.3]0.5[TiO2] 0.5 nanocomposite, Mater. Chem. Phys. 240, 122242 (2020)
CrossRef ADS Google scholar
[75]
H. Zhao, R. Yang, Y. Li, G. Liu, Y. Lu, J. Tang, S. Zhang, and G. Li, Enhanced dielectric and multiferroic properties in BaTiO3 doped Bi0.85Nd0.15Fe0.98Mn0.02O3 ceramics, J. Magn. Magn. Mater. 494, 165779 (2020)
CrossRef ADS Google scholar
[76]
C. Chakrabarti, Q. Fu, X. Chen, Y. Qiu, S. Yuan, and C. Li, Modulation of magnetic, ferroelectric and leakage properties by HoFeO3 substitution in multiferroic 0.7BiFeO3–0.3Ba0.8Ca0.2TiO3 solid solutions, Ceram. Int. 46(1), 212 (2020)
CrossRef ADS Google scholar
[77]
M. Shariq, S. Hussain, M. Rafique, M. Naveed-Ul-Haq, and A. Rehman, Enhanced multiferroic response in new binary solid solution 0.5Bi0.70A0.30FeO3– 0.5PbTi0.5Fe0.5O3 (A= Sr, Pb, and Ba) systems, J. Magn. Magn. Mater. 492, 165685 (2019)
CrossRef ADS Google scholar
[78]
R. Pandey, U. Shankar, S. S. Meena, and A. K. Singh, Stability of ferroelectric phases and magnetoelectric response in multiferroic (1 − x)Bi(Ni1/2Ti1/2)O3– PbTiO3/xNi0.6Zn0.4Fe2O4 particulate composites, Ceram. Int. 45(17), 23013 (2019)
CrossRef ADS Google scholar
[79]
R. Sheikh, V. M. Gaikwad, and S. A. Acharya, Investigation of multiferroic behavior on flakes-like BiFeO3, J. Appl. Phys. Conf. Proc. 1731, 140030 (2016)
CrossRef ADS Google scholar
[80]
F. L. Wang, Y. Li, N. Wang, L. Zhu, A. Jain, Y. G. Wang, and F. G. Chen, Enhanced magnetic, ferroelectric and optical properties of Sr and Co co-doped BiFeO3 powders, J. Alloys Compd. 810, 151941 (2019)
CrossRef ADS Google scholar
[81]
R. Gao, X. Qin, H. Wu, R. Xu, L. Liu, Z. Wang, C. Fu, W. Cai, G. Chen, and X. Deng, Effect of Ti doping on the dielectric, ferroelectric and magnetic properties of Bi0.86La0.08Sm0.14FeO3 ceramics, Mater. Res. Express 6, 106317 (2019)
CrossRef ADS Google scholar
[82]
Arti, S. Kumar, P. Kumar, R. Walia, and V. Verma, Improved ferroelectric, magnetic and photovoltaic properties of Pr doped multiferroic bismuth ferrites for photovoltaic application, Res. Phys. 14, 102403 (2019)
CrossRef ADS Google scholar
[83]
G. R. Gajula and L. R. Buddiga, Structural, ferroelectric, dielectric, impedance and magnetic properties of Gd and Nb doped barium titanate-lithium ferrite solid solutions, J. Magn. Magn. Mater. 494, 165822 (2020)
CrossRef ADS Google scholar
[84]
L. Hou, L. Shi, J. Zhao, S. Zhou, S. Pan, X. Yuan, and Y. Xin, Room-temperature multiferroicity in CeFeO3 ceramics, J. Alloys Compd. 797, 363 (2019)
CrossRef ADS Google scholar
[85]
Y. Wei, C. Bai, W. Zhu, C. Jin, D. Gao, G. Xu, Z. Jian, and Y. Zeng, Multiferroic orders in 0.5BiFeO3– 0.5Bi0.5K0.5TiO3, Ceram. Int. 45, 15725 (2019)
CrossRef ADS Google scholar
[86]
A. Puhan, A. K. Nayak, B. Bhushan, S. Praharaj, S. S. Meena, and D. Rout, Enhanced electrical, magnetic and optical behaviour of Cr doped Bi0.98Ho0.02FeO3 nanoparticles, J. Alloys Compd. 796, 229 (2019)
CrossRef ADS Google scholar
[87]
S. K. Kundu, D. K. Rana, and S. Basu, Observation of room temperature multiferroic and electrical properties in gadolinium ferrite nanoparticles, Mod. Phys. Lett. B 33(21), 1950243 (2019)
CrossRef ADS Google scholar
[88]
S. T. Dadami, S. Rayaprol, V. Sathe, and B. Angadi, Effect of electric poling on structural, magnetic and ferroelectric properties of 0.8PbFe0.5Nb0.5O3–0.2BiFeO3 multiferroic solid solution, Ceram. Int. 45(10), 13171 (2019)
CrossRef ADS Google scholar
[89]
D. D. Mishra, D. M. Tewelde, M. Wang, and G. Tan, Multiferroic properties of PbFe12O19–PbTiO3 composite ceramics, J. Mater. Sci. Mater. Electron. 30(11), 10830 (2019)
CrossRef ADS Google scholar
[90]
B. Dhanalakshmi, K. Pratap, B. P. Rao, and P. S. V. S. Rao, Effects of Mn doping on structural, dielectric and multiferroic properties of BiFeO3 nanoceramics, J. Alloys Compd. 676, 193 (2016)
CrossRef ADS Google scholar
[91]
S. Divya Lakshmi, and I. B. Shameem Banu, Tailoring the multiferroic properties of BiFeO3 by co-doping Er at Bi site with aliovalent Nb, Mn and Mo at Fe site, Appl. Ceram. Technol. 16(4), 1622 (2019)
CrossRef ADS Google scholar
[92]
M. Kumar, D. M. Phase, and R. J. Choudhary, Structural, ferroelectric and dielectric properties of multiferroic YMnO3 synthesized via microwave assisted radiant hybrid sintering, Heliyon 5(5), e01691 (2019)
CrossRef ADS Google scholar
[93]
S. Godara, N. Sinha, G. Ray, and B. Kumar, Combined structural, electrical, magnetic and optical characterization of bismuth ferrite nanoparticles synthesized by auto-combustion router, J. Asian Ceram. Soc. 2(4), 416 (2014)
CrossRef ADS Google scholar
[94]
S. Thakur, K. Sharma, and N. S. Negi, Investigating various properties of lead free 65Na0.5Bi0.5TiO3– 35CoFe2O4 multiferroic composite, AIP Conf. Proc. 2115, 030404 (2019)
CrossRef ADS Google scholar
[95]
N. S. Negi, R. Kumar, H. Sharma, J. Shah, and R. K. Kotnala, Structural, multiferroic, dielectric and magnetoelectric properties of lead-free composites, J. Magn. Magn. Mater. 456, 292 (2017)
[96]
A. Sharma, R. K. Kotnala, and N. S. Negi, Structural, dielectric, magnetic and ferroelectric properties of (Pb- TiO3)0.5–(Co0.5Zn0.5Fe2O4)0.5 composite, Physica B 415, 97 (2013)
CrossRef ADS Google scholar
[97]
N. K. Verma, G. Kamde, D. Kumar, C. B. Singh, and A. K. Singh, Synthesis and dielectric characterization of BaZrNb2O8 high temperature piezoelectric ceramics, AIP Conf. Proc. 2115, 030378 (2019)
CrossRef ADS Google scholar
[98]
G. Dhir, P. Uniyal, and N. K. Verma, Effect of particle size on the multiferroic properties of Tb-doped BiFeO3 nanoparticles, J. Supercond. Nov. Magn. 29(10), 2621 (2016)
CrossRef ADS Google scholar
[99]
C. Panda, P. Kumar, and M. Kar, Structural stability of BiFeO3 by chemical modification in Bi as well as Fe sites, AIP Conf. Proc. 1512, 1286 (2013)
CrossRef ADS Google scholar
[100]
V. S. Puli, I. Coondoo, N. Panwar, A. Srinivas, and R. S. Katiyar, Room temperature structural, morphological, and enhanced ferroelectromagnetic properties of xBa0.7Ca0.3–(1 − x)BaFe0.2Ti0.3 multiferroic composites, J. Appl. Phys.111, 102802 (2012)
CrossRef ADS Google scholar
[101]
Y. Zhu, C. Quan, Y. Ma, Q. Wang, W. Mao, X. Wang, J. Zhang, Y. Min, J. Yang, X. Li, and W. Huang, Effect of Eu, Mn co-doping on structural, optical and magnetic properties of BiFeO3 nanoparticles, Mater. Sci. Semicond. Process. 57, 178 (2017)
CrossRef ADS Google scholar
[102]
Md. R. Islam, Md. S. Islam, M. A. Zubair, H. M. Usama, Md. S. Azam, and A. Sharif, Evidence of superparamagnetism and improved electrical propertiesin Ba and Ta co-doped BiFeO3 ceramics, J. Alloys Compd. 735, 2584 (2018)
CrossRef ADS Google scholar
[103]
N. Kumar, A. Gaur, and G. D. Varma, Enhanced magnetization and magnetoelectric coupling in hydrogen treated hexagonal, J. Alloys Compd. 509, 1060 (2011)
CrossRef ADS Google scholar
[104]
A. K. Sinha, B. Bhushan, Jagannath, R. K. Sharma, S. Sen, B. P. Mandal, S. S. Meena, P. Bhatt, C. L. Prajapat, A. Priyam, S. K. Mishra, and S. C. Gadkari, Enhanced dielectric, magnetic and optical properties of Cr-doped BiFeO3 multiferroic nanoparticles synthesized by sol–gel route, Res. Phys. 13, 102299 (2019)
CrossRef ADS Google scholar
[105]
Q. Q. Wang, Z. Wang, X. Q. Liu, and X. M. Chen, Improved structure stability and multiferroic characteristics in CaTiO3-modified BiFeO3 ceramics, J. Am. Ceram. Soc. 95(2), 670 (2012)
CrossRef ADS Google scholar
[106]
C. X. Li, B. Yang, S. T. Zhang, R. Zhang, Y. Sun, H. J. Zhang, and W. W. Cao, Enhanced multiferroic and magnetocapacitive properties of (1 − x)Ba0.7Ca0.3TiO3–xBiFeO3 ceramics, J. Am. Ceram. Soc. 97(3), 816 (2014)
CrossRef ADS Google scholar
[107]
Q.-H. Jiang, A. Mei, Y.-H. Lin, C.-W. Nan, and Z. Shen, Ferroic properties of highly dense multiferroic Bi1−xLa0.05TbxFeO3 ceramics via sheltered spark plasma sintering, J. Am. Ceram. Soc. 91(7), 2189 (2008)
CrossRef ADS Google scholar
[108]
Y. Qin, X. M. Chen, and X. Q. Liu, Dielectric, ferroelectric, and magnetic characteristics of LuFeCuO4 ceramics, J. Am. Ceram. Soc. 95(3), 977 (2012)
CrossRef ADS Google scholar
[109]
Y. Bai, X. L. Zhu, X. M. Chen, and X. Q. Liu, Dielectric and ferroelectric characteristics of Ba5NdFe1.5Nb8.5O30 tungsten bronze ceramics, J. Am. Ceram. Soc. 93(11), 3573 (2010)
[110]
S. Dash, R. N. P. Choudhary, P. R. Das, and A. Kumar, Structural, dielectric and multiferroic properties of (Bi0.5K0.5)(Fe.5Nb0.5)O3, Can. J. Phys. 93(7), 738 (2015)
CrossRef ADS Google scholar
[111]
V. Turchenko, V. G. Kostishyn, S. Trukhanov, F. Damay, F. Porcher, M. Balasoiu, N. Lupu, B. Bozzo, I. Fina, A. Trukhanov, J. Waliszewski, K. Recko, and S. Polosan, Crystal and magnetic structures, magnetic and ferroelectric properties of strontium ferrite partially substituted with in ions, J. Alloys Compd. 821, 123412 (2020)
CrossRef ADS Google scholar
[112]
G. Tan and X. Chen, Synthesis, structures, and multiferroic properties of strontium hexaferrite ceramics, J. Electron. Mater. 42(5), 906 (2013)
CrossRef ADS Google scholar
[113]
V. G. Kostishyn, L. V. Panina, V. Timofeev, L. V. Kozhitov, A. N. Kovalev, and A. K. Zyuzin, Dual ferroic properties of hexagonal ferrite ceramics BaFe12O19 and SrFe12O19, J. Magn. Magn. Mater. 400, 327 (2016)
CrossRef ADS Google scholar
[114]
Z. Manzoor, A. Khalid, G. M. Mustafa, S. M. Ramay, S. Naseem, and S. Atiq, Magnetoelectric coupling caused by strain mediation in hetero-structured spinelperovskite multiferroic composites, J. Magn. Magn. Mater. 500, 166409 (2020)
CrossRef ADS Google scholar
[115]
S. K. Upadhyay, V. R. Reddy, S. M. Gupta, N. Chauhan, and A. Gupta, Reduced leakage current and improved ferroelectricity in magneto-electric composite ceramics prepared with microwave assisted radiant hybrid sintering, AIP Adv. 5(4), 047135 (2015)
CrossRef ADS Google scholar
[116]
T. P. Wendari, S. Arief, N. Mufti, A. Insani, J. Baas, G. R. Blake, and Zulhadjri, Structural and multiferroic properties in double-layer Aurivillius phase Pb0.4Bi2.1La0.5Nb1.7Mn0.3O9 prepared by molten salt method, J. Alloys Compd. 820, 153145 (2020)
CrossRef ADS Google scholar
[117]
M. K. Das, M. A. Zubair, H. Tanaka, and A. K. M. A. Hossain, An experimental insight of the multiferroic properties of magne to electrically coupled xLNCZFO+(1−x)BSTDO composites, J. Magn. Magn. Mater. 502, 166449 (2020)
CrossRef ADS Google scholar
[118]
T. Acharya and R. N. P. Choudhary, Structural, electrical and magneto-electric properties of chemically synthesized Bi/PbTiO3-modified cobalt titanate, Physica B 582, 411970 (2020)
CrossRef ADS Google scholar
[119]
P. Gupta, P. K. Mahapatra, and R. N. P. Choudhary, Structural and electrical characteristics of Bi2YZrVO9 ceramic, Mater. Res. Bull. 124, 110745 (2020)
CrossRef ADS Google scholar
[120]
D. N. Bhoyar, S. B. Somvanshi, P. B. Kharat, A. A. Pandit, and K. M. Jadhav, Structural, infrared, magnetic and ferroelectric properties of Sr0.5Ba0.5Ti1−xFexO3 nanoceramics: Modifications via trivalent Fe ion doping, Physica B 581, 411944 (2020)
CrossRef ADS Google scholar
[121]
S. Das, R. C. Sahoo, and T. K. Nath, Investigation of room temperature multiferroic properties in sol–gel derived gadolinium, cobalt doped BiFeO3 nanoceramics, J. Appl. Phys. 127(5), 054101 (2020)
CrossRef ADS Google scholar
[122]
N. Pradhani, P. K. Mahapatra, R. N. P. Choudhary, and R. Giri, Structural, dielectric and electrical characteristics of manganese modified Bi0.5K0.5TiO3 ceramic, Physica B 580, 411719 (2020)
CrossRef ADS Google scholar
[123]
A. D. Mani and I. Soibam, Influence of diamagnetic Zn on structural, ferroelectric and ferromagnetic properties of BiFe1−xZnxO3 (0%≤x≤8%), Physica B 560, 97 (2019)
CrossRef ADS Google scholar
[124]
A. Panda, R. Govindaraj, and G. Amarendra, Magneto dielectric coupling in Bi2Fe4O9, Physica B 570, 206 (2019)
CrossRef ADS Google scholar
[125]
B. Shri Prakash and K. B. R. Varma, Effect of sintering conditions on the microstructural, dielectric, ferroelectric and varistor properties of CaCu3Ti4O12 and La2/3Cu3Ti4O12 ceramics belonging to the high and low dielectric constant members of ACu3M4O12 (A=alkali, alkaline-earth metal, rare-earth metal or vacancy, M=transition metal) family of oxides, Physica B 403(13–16), 2246 (2008)
CrossRef ADS Google scholar
[126]
F. Mumtaz, G. H. Jaffari, Q. Hassan, and S. I. Shah, Correlation between ionic size and valence state of tetra, penta and hexavalent B-site substitution with solubility limit, phase transformation and multiferroic properties of Bi0.875Eu0.125FeO3, Physica B 538, 213 (2018)
CrossRef ADS Google scholar
[127]
J. Fisher, S. H. Jang, M. S. Park, H. Sun, S. H. Moon, J. S. Lee, and A. Hussain, The effect of niobium doping on the electrical properties of 0.4(Bi0.5K0.5)TiO3– 0.6BiFeO3 lead-free piezoelectric ceramics, Materials (Basel) 8(12), 8183 (2015)
CrossRef ADS Google scholar
[128]
S. Hait, S. Ghose, and K. Mandal, Effect of Ba and Y co-doping on the structural and magneto-electric properties of BiFeO3 ceramic, J. Alloys Compd. 822, 153614 (2020)
CrossRef ADS Google scholar
[129]
W.-M. Zhu, H.-Y. Guo, and Z.-G. Ye, Structure and properties of multiferroic (1−x)BiFeO3–xPbTiO3 single crystals, J. Mater. Res. 22(8), 2136 (2007)
CrossRef ADS Google scholar
[130]
T. T. Carvalho, J. R. A. Fernandes, J. Perez de la Cruz, J. V. Vidal, N. A. Sobolev, F. Figueiras, S. Das, V. S. Amaral, A. Almeida, J. A. Moreira, and P. B. Tavares, Room temperature structure and multiferroic properties in Bi0.7La0.3FeO3 ceramics, J. Alloys Compd. 554, 97 (2013)
CrossRef ADS Google scholar
[131]
Y. J. Wu, N. Wang, S. P. Gu, Y. Q. Lin, and X. M. Chen, Dielectric and magnetic properties of Ba5BiNiNb9O30 ceramics, Curr. Appl. Phys. 11(3), s247 (2011)
CrossRef ADS Google scholar
[132]
A. R. Khan, G. M. Mustafa, S. K. Abbas, S. Atiq, M. Saleem, S. M. Ramay, and S. Naseem, Flexible ferroelectric and magnetic orders in BiFeO3/MnFe2O4 nanocomposites to steer wide range energy and data storage capability, Res. Phys. 16, 102956 (2020)
CrossRef ADS Google scholar
[133]
M. M. Rhaman, M. A. Matin, M. A. Hakim, and M. F. Islam, Dielectric, ferroelectric and ferromagnetic properties of samarium doped multiferroic bismuth ferrite, Mater. Res. Express 6(12), 125080 (2019)
CrossRef ADS Google scholar
[134]
A. Mukherjee, S. Basu, P. K. Manna, S. M. Yusuf, and M. Pal, Giant magnetodielectric and enhanced multiferroic properties of Sm-doped bismuth ferrite nanoparticles, J. Mater. Chem. C 2(29), 5885 (2014)
CrossRef ADS Google scholar
[135]
M. Shariq, D. Kaur, V. S. Chandel, and M. A. Siddiqui, Electrical, surface morphology and magneto-capacitance properties of Pb free multiferroic (BiFeO3)1−x(BaTiO3)x solid solutions, Acta Phys. Pol. A 127(6), 1675 (2015)
CrossRef ADS Google scholar
[136]
M. S. Wu, Z. B. Huang, C. X. Han, S. L. Yuan, C. L. Lu, and S. C. Xia, Enhanced multiferroic properties of BiFeO3 ceramics by Ba and high-valence Nb co-doping, Solid State Commun. 152(24), 2142 (2012)
CrossRef ADS Google scholar
[137]
Y. A. Chaudhari, C. M. Mahajan, E. M. Abuassaj, P. P. Jagtap, P. B. Patil, and S. T. Bendre, Ferroelectric and dielectric properties of nanocrystalline BiFeO3 multiferroic ceramics synthesized by solution combustion method (SCM), Mater. Sci. Pol. 31(2), 221 (2013)
CrossRef ADS Google scholar
[138]
S. D. Lakshmi and I. B. S. Banu, Multiferroism and magnetoelectric coupling in single-phase Yb and X (X=Nb, Mn, Mo) co-doped BiFeO3 ceramics, J. Sol- Gel Sci. Technol. 89(3), 713 (2019)
CrossRef ADS Google scholar
[139]
C. Chakrabarti, Q. Fu, X. Chen, C. Li, B. Meng, Y. Qiu, and S. Yuan, Substitution driven enhancement of ferromagnetic, ferroelectric and leakage properties in multiferroic 0.7Bi1−xErxFeO3–0.3Bi0.5Na0.5TiO3 solid solutions, J. Sol–Gel Sci. Technol. 93(3), 587 (2020)
CrossRef ADS Google scholar
[140]
A. S. Priya, I. B. Shameem Banu, M. Shahid Anwar, and S. Hussain, Studies on the multiferroic properties of (Zr, Cu) co-doped BiFeO3 prepared by sol–gel method, J. Sol–Gel Sci. Technol. 80(3), 579 (2016)
CrossRef ADS Google scholar
[141]
L. G. Wang, C. M. Zhu, L. Chen, C. L. Li, and S. L. Yuan, Room-temperature magnetoelectric coupling study of multiferroic (1−x)(0.7BiFeO3– 0.3Bi0.5Na0.5TiO3)–xCoFe2O4 ceramics, J. Sol-Gel Sci. Technol. 82(1), 184 (2017)
CrossRef ADS Google scholar
[142]
P. Ganguly, Influence of ionic radius of rareearths on the structural and electrical properties of Ba5RTi3Nb7O30 (R=rare-earth) ferroelectric ceramics, J. Rare Earths 33(12), 1310 (2015)
CrossRef ADS Google scholar
[143]
H. Dai, Z. Chen, T. Li, and Y. Li, Microstructure and properties of Sm-substituted BiFeO3 ceramics, J. Rare Earths 30(11), 1123 (2012)
CrossRef ADS Google scholar
[144]
S. F. Mansour, N. I. Abu-Elsaad, and T. A. Elmosalami, Magnetoelectric and magnetic studies of the Bi1−xCaxFeO3 multiferrioc system, Can. J. Phys. 92(5), 389 (2014)
CrossRef ADS Google scholar
[145]
D. H. Wang, W. C. Goh, M. Ning, and C. K. Ong, Effect of Ba doping on magnetic, ferroelectric, and magnetoelectric properties in mutiferroic BiFeO3 at room temperature, Appl. Phys. Lett. 88(21), 212907 (2006)
CrossRef ADS Google scholar
[146]
D. Kothari, V. R. Reddy, A. Gupta, V. Sathe, and A. Banerjee , Multiferroic properties of polycrystalline Bi1−xCaxFeO3, Appl. Phys. Lett. 91(20), 202505 (2007)
CrossRef ADS Google scholar
[147]
W. Luo, D. Wang, F. Wang, T. Liu, J. Cai, L. Zhang, and Y. Liu, Room-temperature simultaneously enhanced magnetization and electric polarization in BiFeO3 ceramic synthesized by magnetic annealing, Appl. Phys. Lett. 94(20), 202507 (2009)
CrossRef ADS Google scholar
[148]
A. Mukherjee, S. Basu, P. K. Manna, S. M. Yusuf, and M. Pal, Giant magnetodielectric and enhanced multiferroic properties of Sm doped bismuth ferrite nanoparticles, J. Mater. Chem. C 2(29), 5885 (2014)
CrossRef ADS Google scholar
[149]
D. Nanda, P. Kumar, B. Samanta, R. Sahu, and A. Singh, Structural, dielectric, ferroelectric and magnetic properties of (BNT-BT)-NCZF composites synthesized by a microwave assisted solid-state reaction route, J. Electron. Mater. 48(8), 5039 (2019)
CrossRef ADS Google scholar
[150]
P. Bai, Y. Zeng, J. Han, Y. Wei, Y. Li, and M. Li, Effects of Bi2O3–B2O3–ZnO glass additive on structure, ferroelectric and dielectric properties of BiFeO3 ceramics, Ferroelectrics 555(1), 173 (2020)
CrossRef ADS Google scholar
[151]
G. Gong, J. Zhou, Y. Duan, R. Chen, N. Sun, Y. Wang, and Y. Su, Co-existence of room temperature ferromagnetic and ferroelectric propertiesin Ba4SmFe0.5Nb9.5O30 ceramics, Ferroelectrics 555(1), 231 (2020)
CrossRef ADS Google scholar
[152]
N. Sheoran, A. Kumar, V. Kumar, and A. Banerjee, Structural, optical, and multiferroic properties of yttrium Y3+-substituted BiFeO3 nanostructures, J. Supercond. Nov. Mater. 33(7), 2017 (2020)
CrossRef ADS Google scholar
[153]
V. S. Puli, A. Kumar, N. Panwar, I. C. Panwar, and R. S. Katiyar, Transition metal modified bulk BiFeO3 with improved magnetization and linear magnetoelectric coupling, J. Alloys Compd. 509(32), 8223 (2011)
CrossRef ADS Google scholar
[154]
P. Gupta, L. K. Meher, and R. N. P. Choudhary, Structural, dielectric, impedance and modulus spectroscopy of BiLa2TiVO9 ceramic, Appl. Phys. A Mater. Sci. Process. 126(3), 187 (2020)
CrossRef ADS Google scholar
[155]
R. F. Zhang, C. Y. Deng, L. Ren, Z. Li, and J. P. Zhou, Ferroelectric, ferromagnetic, and magnetoelectric properties of multiferroic Ni0.5Zn0.5Fe2O4–BaTiO3 composite ceramics, J. Electron. Mater. 43(4), 1043 (2014)
CrossRef ADS Google scholar
[156]
P. Gupta, P. K. Mahapatra, and R. N. P. Choudhary, Structural, dielectric and electrical characteristics of lead-free ferroelectric ceramic: Bi2SmTiVO9, J. Electron. Mater. 47(9), 5458 (2018)
CrossRef ADS Google scholar
[157]
P. Gupta, R. Padhee, P. K. Mahapatra, R. N. P. Choudhary, Structural, dielectric, impedance and modulus spectroscopy of ferroelectric ceramics, J. Mater. Sci. Mater. Electron. 28(22), 17344 (2017)
CrossRef ADS Google scholar
[158]
M. Dhilip, K. Saravana Kumar, R. Ramesh Kumar, and V. Anbarasu, Intrinsic magnetic and ferroelectric behaviour of non-magnetic Al3+ ion substituted dysprosium iron garnet compounds, J. Electron. Mater. 48(12), 8243 (2019)
CrossRef ADS Google scholar
[159]
R. Rameshkumar, T. Ramachanadran, K. Natarajan, M. Muralidharan, F. Hamed, and V. Kurapati, Fraction of rare-earth (Sm/Nd)-lanthanum ferrite-based perovskite ferroelectric and magnetic nanopowders, J. Electron. Mater. 48(3), 8243 (2019)
CrossRef ADS Google scholar
[160]
G. Qian, C. Zhu, L. Wang, Z. Tian, C. Yin, C. Li, and S. Yuan, Enhanced ferromagnetic, ferroelectric, and dielectric properties in BiFeO3–SrTiO3–Bi0.5Na0.5TiO3 ceramics, J. Electron. Mater. 46(11), 6717 (2017)
CrossRef ADS Google scholar
[161]
L. Singh, S. S. Yadava, B. C. Sin, U. S. Rai, K. D. Mandal, and Y. Lee, Comparative dielectric and ferroelectric characteristics of Bi0.5Na0.5TiO3, CaCu3Ti4O12, and 0.5Bi0.5Na0.5TiO3–0.5CaCu3Ti4O12 electroceramics, J. Electron. Mater. 45(6), 2662 (2016)
[162]
S. R. Das, R. N. P. Choudhary, P. Bhattacharya, R. S. Katiyar, P. Dutta, A. Manivannan, and M. S. Seehra, Structural and multiferroic properties of La-modified BiFeO3 ceramics, J. Appl. Phys. 101(3), 034104 (2007)
CrossRef ADS Google scholar
[163]
S. Thakur, K. Parmar, S. Sharma, and N. S. Negi, Structural, electric and ferroelectric properties of lead free 50Na0.5Bi0.5TiO3–50CoFe2O4 multiferroic particulate composite, Integr. Ferroelectr. 203, 37 (2019)
CrossRef ADS Google scholar
[164]
M. Dewan and S. B. Majumder, Investigations on the multifunctionality of bismuth iron oxide, Trans. Indian Inst. Met. 72(8), 2072 (2019)
CrossRef ADS Google scholar
[165]
X. Li, X. Wang, Y. Li, W. Mao, P. Li, T. Yang, and J. Yang, Structural, morphological and multiferroic properties of Pr and Co co-substituted BiFeO3 nanoparticles, Mater. Lett. 90, 152 (2013)
CrossRef ADS Google scholar
[166]
Y. J. Yoo, J. S. Hwang, Y. P. Lee, J. S. Park, J. Y. Rhee, J. H. Kang, K. W. Lee, B. W. Lee, and M. S. Seo, Origin of enhanced multiferroic properties in Dy and Co co-doped BiFeO3 ceramics, J. Magn. Magn. Mater. 374, 669 (2015)
CrossRef ADS Google scholar
[167]
A. Mukherjee, S. Basu, P. K. Manna, S. M. Yusuf, and M. Pal, Enhancement of multiferroic properties of nanocrystalline BiFeO3 powder by Gd-doping, J. Alloys Compd. 598, 142 (2014)
CrossRef ADS Google scholar
[168]
M. S. Bernardo, T. Jardiel, M. Peiteado, F. J. Mompean, M. Garcia-Hernandez, M. A. Garcia, M. Villegas, and A. C. Caballero, Intrinsic compositional inhomogeneities in Bulk Ti-doped BiFeO3: Microstructure development and multiferroic properties, Chem. Mater. 25(9), 1533 (2013)
CrossRef ADS Google scholar
[169]
Y. K. Jun, S. B. Lee, M. Kim, S. H. Hong, J. W. Kim, and K. H. Kim, Dielectric and magnetic properties in Ta-substituted BiFeO3 ceramics, J. Mater. Res. 22(12), 3397 (2007)
CrossRef ADS Google scholar
[170]
K. M. Batoo, J. P. Labis, R. Sharma, and M. Singh, Ferroelectric and magnetic properties of Nd-doped Bi4−xFeTi3O12 nanoparticles prepared through the egg-white method, Nanoscale Res. Lett. 7(1), 511 (2012)
CrossRef ADS Google scholar
[171]
K. Singh, R. K. Kotnala, and M. Singh, Study of electric and magnetic properties of (Bi0.9Pb0.1) (Fe0.9Ti0.1)O3 nanomultiferroic system, Appl. Phys. Lett. 93(21), 212902 (2008)
CrossRef ADS Google scholar
[172]
A. Mukherjee, S. Basu, P. K. Manna, S. M. Yusuf, and M. Pal, Giant magnetodielectric and enhanced multiferroic properties of Sm doped bismuth ferrite nanoparticles, J. Mater. Chem. C 2(29), 5885 (2014)
CrossRef ADS Google scholar
[173]
D. Suastiyanti. S. Yatmani, and Y. N. Maulida, A chemical route to the synthesis of Bi1−xMgxFeO3 (x=0.1 and x=0.07) nanoparticle with enhanced electrical properties as multiferroic material, Int. J. Engn. Technol. Manag. Res. 5(6), 103 (2018)
CrossRef ADS Google scholar
[174]
S. Matteppanavar, S. Rayaprol, K. Singh, V. R. Reddy, and B. Angadi, Evidence for magneto-electric and spin–lattice coupling in PbFe0.5Nb0.5O3 through structural and magneto-electric studies, J. Mater. Sci. 50(14), 4980 (2015)
CrossRef ADS Google scholar
[175]
O. M. Hemeda, A. Tawfik, D. E. El Refaey, A. H. El-Sayed, and Sh. Mohamed, Electric and magnetic properties of [(NCZF)1−x(Na(ac.ac))x] nanocomposite, Open J. Appl. Sci. (Faisalabad) 7(10), 559 (2017)
CrossRef ADS Google scholar
[176]
H. Y. Dai, Z. P. Chen, T. Li, R. Z. Xue, and J. Chen, Structural and electrical properties of bismuth ferrite ceramics sintered in different atmospheres, J. Supercond. Nov. Magn. 26(10), 3125 (2013)
CrossRef ADS Google scholar
[177]
M. Atif, U. Younas, W. Khalid, Z. Ahmed, Z. Ali, and M. Nadeem, Impedance spectroscopy, ferroelectric and optical properties of cobalt doped Zn1−xCoxO nanoparticles, J. Mater. Sci. Mater. Electron. 31, 5253 (2020)
CrossRef ADS Google scholar
[178]
S. K. Mohanty, D. P. Datta, B. Behera, H. S. Mohanty, B. Pati, and P. R. Das, Synthesis and dielectric spectroscopic study of lead-free ferroelectric ceramic K0.5Bi0.5TiO3NaNbO3, J. Mater. Sci. Mater. Electron. 31(4), 3245 (2020)
CrossRef ADS Google scholar
[179]
S. Manzoor, S. Husain, A. Somvanshi, and M. Fatema, Structural, thermal, dielectric and multiferroic investigations on LaFeO3 composite systems, J. Mater. Sci. Mater. Electron. 31(10), 7811 (2020)
CrossRef ADS Google scholar
[180]
M. Y. Shami, M. S. Awan, and M. Anis-ur-Rehman, Phase pure synthesis of BiFeO3 nanopowders using diverse prekursor via co-precipitation method, J. Alloys Compd. 509, 10139 (2011)
CrossRef ADS Google scholar
[181]
Y. A. Chaudhari, A. Singh, E. M. Abuassaj, R. Chatterjee, and S. T. Bendre, Multiferroic properties in BiFe1−xZnxO3 (x=0.1–0.2) ceramics by solution combustion method (SCM), J. Alloys Compd. 518, 51 (2012)
CrossRef ADS Google scholar
[182]
Md. R. Islam, R. H, Galib, A. Sharif, M. Hasan, Md. A. Zubair, and Md. F. Islam, Correlation of charge defects and morphology with magnetic andelectrical properties of Sr and Ta codoped BiFeO3, J. Alloys Compd. 688, 1186 (2016)
CrossRef ADS Google scholar
[183]
S. Godara, N. Sinha, G. Ray, and B. Kumar, Combined structural, electrical, magnetic and optical characterization of bismuth ferrite nanoparticles synthesized by auto-combustion route, J. Asian Ceram. Soc. 2(4), 416 (2014)
CrossRef ADS Google scholar
[184]
P. Saxena, M. A. Dar, P. Sharma, A. Kumar, and D. Varshney, Structural, dielectric and ferroelectric properties of La and Ni codoped BiFeO3, AIP Conf. Proc. 1728, 020307 (2016)
CrossRef ADS Google scholar
[185]
L. S, P. D. Babu, and S. Srinath, Effect of La doping on dielectric and magnetic properties of room temperature multiferroic LuFeO3, AIP Conf. Proc. 1953, 120076 (2018)
[186]
A. S. Mahapatra, K. Mukhopadhyay, K. Mukhuti, and P. K. Chakrabartipabitra, Modulated magnetoelectric property of BiFeO3 incorporated in Co0.50Fe0.50Fe2O4, AIP Conf. Proc. 1591, 445 (2014)
CrossRef ADS Google scholar
[187]
N. Kumar, N. Panwar, B. Gahtori, N. Singh, H. Kishan, and V. P. S. Awan, Structural, dielectric and magnetic properties of Pr substituted Bi1−xPrxFeO3 (0≤x≤0.15) multiferroic compounds, J. Alloys Compd. 510(2), L29 (2010)
CrossRef ADS Google scholar
[188]
M. Ahmadzadeh, A. Ataie, and E. Mostafavi, The effects of mechanical activation energy on the solid-state synthesis process of BiFeO3, J. Alloys Compd. 622, 548 (2015)
CrossRef ADS Google scholar
[189]
Sarkar, S. Mukherjee, and S. Mukherjee, Structural, electrical and magnetic behaviour of undoped and nickel doped nanocrystalline bismuth ferrite by solution combustion route, Process. Appl. Ceram 9(1), 53 (2015)
CrossRef ADS Google scholar
[190]
Z. Branković, D. Luković Golić, A. Radojković, J. Ćirković, D. Pajić, Z. MarinkovićStanojević , J. Xing, M. Radović, G. Li, and G. Branković, Spark plasma sintering of hydrothermally synthesized bismuth ferrite, Process. Appl. Ceram 10(4), 257 (2016)
CrossRef ADS Google scholar
[191]
Z. Li, Z. Wang, R. Gao, W. Cai, G. Chen, X. Deng, and C. Fu, Dielectric, ferroelectric and magnetic properties of Bi0.78La0.08Sm0.14Fe0.85Ti0.15O3 ceramics prepared at different sintering conditions, Process. Appl. Ceram. 12(4), 394 (2018)
CrossRef ADS Google scholar
[192]
M. Počcučca-Nešić, Z. Marinković Stanojević, P. Cotič Smole, A. Dapčević, N. Tasić, G. Branković, and Z. Branković, Processing and properties of pure antiferromagnetic h-YMnO3, Process. Appl. Ceram. 13(4), 427 (2019)
CrossRef ADS Google scholar
[193]
X. Qin, R. Xu, H. Wu, R. Gao, Z. Wang, G. Chen, C. Fu, X. Deng, and W. Ca, A comparative study on the dielectric and multiferroic properties of Co0.5Zn0.5Fe2O4/0.8Sr0.2TiO3 composite ceramics, Process. Appl. Ceram. 13(4), 349 (2019)
CrossRef ADS Google scholar
[194]
M. A. Matin, M. M. Haman, M. N. Hossain, F. A. Mozahid, M. A. Hakim, M. H. Rizvi, and M. F. Islam, Effect of preparation routes on the crystal purity and properties of BiFeO3 nanoparticles, Trans. Electr. Electron. Mater. 20(6), 485 (2019)
CrossRef ADS Google scholar
[195]
X. Luo, H. Wang, R. Gao, X. Li, J. Zhang, and H. Ban, Effects of molar ratio on dielectric, ferroelectric and magnetic properties of Ni0.5Zn0.5Fe2O4–BaTiO3 composite ceramics, Process. Appl. Ceram 14(2), 91 (2020)
CrossRef ADS Google scholar
[196]
M. M. Rhaman, M. A. Matin, M. N. Hossain, M. N. I. Khan, M. A. Hakim, and M. F. Islam, Ferromagnetic, electric, and ferroelectric properties of samarium and cobalt co-doped bismuth ferrite nanoparticles, J. Phys. Chem. Solids 147, 109607 (2020)
CrossRef ADS Google scholar
[197]
A. Sagdeo, P. Mondal, A. Upadhyay, A. K. Sinha, A. K. Srivastava, S. M. Gupta, P. Chowdhury, T. Ganguli, and S. K. Deb, Correlation of microstructural and physical properties in bulk BiFeO3 prepared by rapid liquid-phase sintering, Solid State Sci. 18, 1 (2013)
CrossRef ADS Google scholar
[198]
K. Verma, M. K. Shamim, S. Kumar, and S. Sharma, Role of ferrite phase on the structural, ferroelectric and magnetic properties of (1 − x) BCT–xCZFO composites, Mater. Chem. Phys. 255, 123284 (2020)
CrossRef ADS Google scholar
[199]
F. Sehar, S. Anjum, Z. Mustafa, and S. Atiq, Coexistence of ferroelectric and ferromagnetic properties of Bi+3 substituted M-type barium hexaferrites, J. Supercond. Nov. Mater 33(7), 2073 (2020)
CrossRef ADS Google scholar
[200]
S. Taran, B. Biswas, and H. D. Yang, Structural, magnetic, and ferroelectric properties of Zr-doped Y1−xZrxCrO3 bulk polycrystalline system, J. Supercond. Nov. Mater 33(8), 2483 (2020)
CrossRef ADS Google scholar
[201]
K. Parida and N. P. Choudhary, Structural, electrical, and magnetic characteristics of chemically synthesized lead-free double perovskite: BiMgFeCeO6, J. Supercond. Nov. Mater 33, 3493 (2020)
CrossRef ADS Google scholar
[202]
K. S. Samantaray, R. Amin, E. G. Rini, and S. Sen, Fedoped Na0.47Bi0.47Ba0.06Ti0.98−xV0.02FexO3: Structure correlated vibrational, optical and electrical properties, J. Alloys Compd. 849, 156503 (2020)
CrossRef ADS Google scholar
[203]
M. Sufyan, Z. Lu, Z. Chen, X. Wang, and S. K. Abbas, Multiferroic characterization of 3-phase (1 − x) (0.7BiFeO3–0.3CoFe2O4)–xPb(Zr, Ti)O3 composites withmagnetically driven polarization, J. Alloys Compd. 849, 156681 (2020)
CrossRef ADS Google scholar
[204]
S. Satapathy, G. Prudhvi, A. A. Khan, P. Deshmukh, A. Ahlawat, K. R. S. P. Meher, and A. K. Karnal, MgFe2O4/(Ba0.85Ca0.15) (Zr0.1Ti0.9)O3 lead free ceramic composite: A study onmultiferroic and magnetoelectric coupling properties at room temperature, J. Alloys Compd. 853, 156960 (2021)
CrossRef ADS Google scholar
[205]
S. Sharma, J. M. Siqueiros, and O. R. Herrera, Structural, dielectric, ferroelectric and optical properties of Er doped BiFeO3 nanoparticles, J. Alloys Compd. 853, 156979 (2021)
CrossRef ADS Google scholar
[206]
M. Liu, H. Yu, and Z. Liu, A pair of homochiral trinuclear Zn(II) clusters exhibiting unusual ferroelectric behaviour at high temperature, CrystEngComm 21(14), 2355 ( 2019)
CrossRef ADS Google scholar
[207]
L. Yu, X.-H. Hua, X.-J. Jiang, L. Qin, X.-Z. Yan, L.-H. Luo, and L. Han, Histidine-controlled homochiral and ferroelectric metal-organic frameworks, CrystEngComm 15, 687 ( 2015)
CrossRef ADS Google scholar
[208]
Y. Wang, Y. Qi, V. A. Blatov, J. Zheng, Q. Li, and C. Zhang, Two new zinc(II) coordination complexes with helix characteristics showing both interpretation and self-catenation features: A platform for the synthesis of chiral and catenated structures assembled by lenghmodulated dicarboxylates, Dalton Trans. 43, 15151 ( 2014)
CrossRef ADS Google scholar
[209]
J. Hu, L. Huang, X. Yao, L. Qin, Y. Li, Z. Guo, H. Zheng, and Z. Xue, Six new metal-organic frameworks based on polycarboxylate acids and V-shaped imidazole-based synthon: Synthesis, crystal structures, and properties, Inorg. Chem. 50(6), 2404 ( 2011)
CrossRef ADS Google scholar
[210]
H. Zhou, G.-X. Liu, X.-F. Wang, and Y. Wang, Three cobalt(II) coordination polymers based on V-shaped aromatic polycarboxylates and rigid bis(imidazole) ligand: Synthesis, crystal structures, physical properties and theoretical studies, CrystEngComm 15, 1377 ( 2013)
CrossRef ADS Google scholar
[211]
H. Zhao, Q. Ye, Z.-R. Qu, D.-W. Fu, R.-G. Xiong, S. D. Huang, and P. W. H. Chan, Huge deuterated effect on permittivity on a metal-organic frameworks, Chemistry 14(4), 1164 (2014)
CrossRef ADS Google scholar
[212]
M. D. Zhang, Y. L. Li, Z. Z. Shi, H. G. Zheng, and J. Ma, A pair of 3D enantiotopic zinc(II) complexes based on two asymmetric achiral ligands, Dalton Trans. 46(43), 14779 ( 2017)
CrossRef ADS Google scholar
[213]
J. K. H. Hui, H. Kishida, K. Ishiba, K. Takemasu, M. Morikawa, and N. Kimizuka, Ferroelectric coordination polymers self-assembled from mesogenic Zinc(II) porphyrin and dipolar bridging ligands, Chemistry 22(40), 14213 ( 2016)
CrossRef ADS Google scholar
[214]
X.-Q. Yao, J.-S. Hu, M.-D. Zhang, L. Qin, Y.-Z. Li, Z.-J. Guo, and H.-G. Zheng, Chiral and noncentrosymmetric metal−organic frameworks featuring a 2D→3D parallel/parallel inclined subpolycatenation, Cryst. Eng. Comm. 13, 3381 ( 2013)
CrossRef ADS Google scholar
[215]
Q. Huang, J. Yu, J. Gao, X. Rao, X. Yang, Y. Cui, C. Wu, Z. Zhang, S. Xiang, B. Chen, and G. Qian, Two chiral nonlinear optical coordination networks based on interwoven two-dimensional square grids of double helices, Cryst. Growth Des. 10(10), 5291 ( 2010)
CrossRef ADS Google scholar
[216]
R. Kumari, R. Seera, A. De, R. Ranjan, and T. N. G. Row, Organic multi-functional materials: Second harmonic, ferroelectric and dielectric properties in Nbenzylideneaniline analogues, Cryst. Growth Des. 19(10), 5934 ( 2019)
CrossRef ADS Google scholar
[217]
G. X. Wang, Z. Xing, L. Z. Chen, and G. F. Han, A ferroelectric olefin–copper(I) organometallic polymer with flexible organic ligand(R)-MbVBP, J. Mol. Struct. 1091, 16 ( 2015)
CrossRef ADS Google scholar
[218]
M. Yu, F. Xuan, J. Lia, and G.-X. Liu, Four Zinc(II) coordination polymers with dicarboxylate and Tri(4- pyridylphenyl)amine ligand: Syntheses, crystal structures and physical properties, J. Mol. Struct. 1199(5), 127005 ( 2020)
CrossRef ADS Google scholar
[219]
D. Feng, Y. Che, and J. Zheng, An acentric lanthanide-formate complex: Synthesis, structure, ferroelectric and magnetic properties, J. Rare Earths 30(8), 798 ( 2012)
CrossRef ADS Google scholar
[220]
D.-W. Fu, H.-Y. Ye, Q. Ye, K.-J. Pan, and R.-G. Xiong, Ferroelectric metal–organic coordination polymer with a high dielectric constant, Dalton Trans. 7, 874 ( 2008)
CrossRef ADS Google scholar
[221]
Kumari, R. Seera, A. De, R. Ranjan, and T. N. Guru Row, Organic multifunctional materials: Second harmonic, ferroelectric, and dielectric properties in N benzylideneaniline analogues, Cryst. Growth Des. 19(10), 5934 ( 2019)
CrossRef ADS Google scholar
[222]
X. Xu, M. Liu, and Z. Liu, Crystal structures and ferroelectric properties of homochiral metal organic frameworks constructed from a single chiral ligand, Dalton Trans. 49(30), 10402 ( 2020)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(706 KB)

Accesses

Citations

Detail

Sections
Recommended

/