The origin of ultrasensitive SERS sensing beyond plasmonics
Leilei Lan, Yimeng Gao, Xingce Fan, Mingze Li, Qi Hao, Teng Qiu
The origin of ultrasensitive SERS sensing beyond plasmonics
Plasmon-free surface-enhanced Raman scattering (SERS) substrates have attracted tremendous attention for their abundant sources, excellent chemical stability, superior biocompatibility, good signal uniformity, and unique selectivity to target molecules. Recently, researchers have made great progress in fabricating novel plasmon-free SERS substrates and exploring new enhancement strategies to improve their sensitivity. This review summarizes the recent developments of plasmon-free SERS substrates and specially focuses on the enhancement mechanisms and strategies. Furthermore, the promising applications of plasmon-free SERS substrates in biomedical diagnosis, metal ions and organic pollutants sensing, chemical and biochemical reactions monitoring, and photoelectric characterization are introduced. Finally, current challenges and future research opportunities in plasmon-free SERS substrates are briefly discussed.
surface-enhanced Raman scattering / plasmon-free / enhancement mechanism / enhancement strategy / charge transfer
[1] |
M. Fleischmann, P. J. Hendra, and A. J. Mcquillan, Raman spectra of pyridine adsorbed at silver electrode, Chem. Phys. Lett. 26(2), 163 (1974)
CrossRef
ADS
Google scholar
|
[2] |
D. L. Jeanmaire and R. P. Van Duyne, Surface Raman spectroelectrochemistry (Part I): Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode, J. Electroanal. Chem. 84(1), 1 (1977)
CrossRef
ADS
Google scholar
|
[3] |
M. G. Albrecht, and J. A. Creighton, Anomalously intense Raman spectra of phridine at a silver electrode, J. Am. Chem. Soc. 99(15), 5215 (1977)
CrossRef
ADS
Google scholar
|
[4] |
C. Zong, M. X. Xu, L. J. Xu, T. Wei, X. Ma, X. S. Zheng, R. Hu, and B. Ren, Surface-enhanced Raman spectroscopy for bioanalysis: Reliability and challenges, Chem. Rev. 118(10), 4946 (2018)
CrossRef
ADS
Google scholar
|
[5] |
X. Wang, S. C. Huang, S. Hu, S. Yan, and B. Ren, Fundamental understanding and applications of plasmonenhanced Raman spectroscopy, Nat. Rev. Phys. 2(5), 253 (2020)
CrossRef
ADS
Google scholar
|
[6] |
J. Langer, D. Jimenez De Aberasturi, J. Aizpurua, R. A. Alvarez-Puebla, B. Auguié, et al., Present and future of surface-enhanced Raman scattering, ACS Nano 14(1), 28 (2020)
|
[7] |
Y. S. Yamamoto, M. Ishikawa, Y. Ozaki, and T. Itoh, Fundamental studies on enhancement and blinking mechanism of surface-enhanced Raman scattering (SERS) and basic applications of SERS biological sensing, Front. Phys. 9(1), 31 (2014)
CrossRef
ADS
Google scholar
|
[8] |
X. C. Fan, Q. Hao, M. Z. Li, X. Y. Zhang, X. Z. Yang, Y. F. Mei, and T. Qiu, Hotspots on the move: Active molecular enrichment by hierarchically structured micromotors for ultrasensitive SERS sensing, ACS Appl. Mater. Interfaces 12(25), 28783 (2020)
CrossRef
ADS
Google scholar
|
[9] |
L. L. Lan, X. C. Fan, Y. M. Gao, G. Q. Li, Q. Hao, and T. Qiu, Plasmonic metal carbide SERS chips, J. Mater. Chem. C 8(41), 14523 (2020)
CrossRef
ADS
Google scholar
|
[10] |
Q. Hao, M. Z. Li, J. W. Wang, X. C. Fan, J. Jiang, X. X. Wang, M. S. Zhu, T. Qiu, L. B. Ma, P. K. Chu, and O. G. Schmidt, Flexible surface-enhanced Raman scattering chip: A universal platform for real-time interfacial molecular analysis with femtomolar sensitivity, ACS Appl. Mater. Interfaces 12(48), 54174 (2020)
CrossRef
ADS
Google scholar
|
[11] |
X. Wang, S. C. Huang, T. X. Huang, H. S. Su, J. H. Zhong, Z. C. Zeng, M. H. Li, and B. Ren, Tip-enhanced Raman spectroscopy for surfaces and interfaces, Chem. Soc. Rev. 46(13), 4020 (2017)
CrossRef
ADS
Google scholar
|
[12] |
Z. L. Zhang, L. Chen, S. X. Sheng, M. T. Sun, H. R. Zheng, K. Q. Chen, and H. X. Xu, High-vacuum tip enhanced Raman spectroscopy, Front. Phys. 9(1), 17 (2014)
CrossRef
ADS
Google scholar
|
[13] |
J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, Shellisolated nanoparticle-enhanced Raman spectroscopy, Nature 464(7287), 392 (2010)
CrossRef
ADS
Google scholar
|
[14] |
Y. Q. Gu, C. He, Y. Q. Zhang, L. Lin, B. D. Thackray, and J. Ye, Gap-enhanced Raman tags for physically unclonable anticounterfeiting labels, Nat. Commun. 11(1), 516 (2020)
CrossRef
ADS
Google scholar
|
[15] |
F. Z. Cong, H. Wei, X. R. Tian, and H. X. Xu, A facile synthesis of branched silver nanowire structures and its applications in surface-enhanced Raman scattering, Front. Phys. 7(5), 521 (2012)
CrossRef
ADS
Google scholar
|
[16] |
L. L. Lan, X. Y. Hou, Y. M. Gao, X. C. Fan, and T. Qiu, Inkjet-printed paper-based semiconducting substrates for surface-enhanced Raman spectroscopy, Nanotechnology 31(5), 055502 (2020)
CrossRef
ADS
Google scholar
|
[17] |
S. Cong, Y. Y. Yuan, Z. G. Chen, J. Y. Hou, M. Yang, Y. L. Su, Y. Y. Zhang, L. Li, Q. W. Li, F. X. Geng, and Z. G. Zhao, Noble metal-comparable SERS enhancement from semiconducting metal oxides by making oxygen vacancies, Nat. Commun. 6(1), 7800 (2015)
CrossRef
ADS
Google scholar
|
[18] |
J. Lin, Y. Shang, X. X. Li, J. Yu, X. T. Wang, and L. Guo, Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle, Adv. Mater. 29(5), 1604797 (2017)
CrossRef
ADS
Google scholar
|
[19] |
L. L. Yang, Y. S. Peng, Y. Yang, J. J. Liu, H. L. Huang, B. H. Yu, J. M. Zhao, Y. L. Lu, Z. R. Huang, Z. Y. Li, and J. R. Lombardi, A novel ultra-sensitive semiconductor SERS substrate boosted by the coupled resonance effect, Adv. Sci. 6(12), 1900310 (2019)
CrossRef
ADS
Google scholar
|
[20] |
Y. F. Shan, Z. H. Zheng, J. J. Liu, Y. Yong, Z. Y. Li, Z. R. Huang, and D. L. Jiang, Niobium pentoxide: A promising surface-enhanced Raman scattering active semiconductor substrate, npj Comput. Mater. 3(1), 11 (2017)
CrossRef
ADS
Google scholar
|
[21] |
D. Y. Qi, L. J. Lu, L. Z. Wang, and J. L. Zhang, Improved SERS sensitivity on plasmon-free TiO2 photonic microarray by enhancing light-matter coupling, J. Am. Chem. Soc. 136(28), 9886 (2014)
CrossRef
ADS
Google scholar
|
[22] |
J. T. Xu, X. T. Li, Y. X. Wang, R. H. Guo, S. M. Shang, and S. X. Jiang, Flexible and reusable cap-like thin Fe2O3 film for SERS applications, Nano Res. 12(2), 381 (2019)
CrossRef
ADS
Google scholar
|
[23] |
C. Muehlethaler, C. R. Considine, V. Menon, W. C. Lin, Y. H. Lee, and J. R. Lombardi, Ultrahigh Raman enhancement on monolayer MoS2, ACS Photonics 3(7), 1164 (2016)
CrossRef
ADS
Google scholar
|
[24] |
Z. H. Zheng, S. Cong, W. B. Gong, J. N. Xuan, G. H. Li, W. B. Lu, F. X. Geng, and Z. G. Zhao, Semiconductor SERS enhancement enabled by oxygen incorporation, Nat. Commun. 8(1), 1993 (2017)
CrossRef
ADS
Google scholar
|
[25] |
L. Tao, K. Chen, Z. F. Chen, C. X. Cong, C. Y. Qiu, J. J. Chen, X. M. Wang, H. Chen, T. Yu, W. G. Xie, S. Z. Deng, and J. B. Xu, 1Ttransition metal telluride atomic layers for plasmon-free SERS at femtomolar levels, J. Am. Chem. Soc. 140(28), 8696 (2018)
CrossRef
ADS
Google scholar
|
[26] |
X. J. Song, Y. Wang, F. Zhao, Q. C. Li, H. Q. Ta, M. H. Rümmeli, C. G. Tully, Z. Z. Li, W. J. Yin, L. T. Yang, K. B. Lee, J. Yang, I. Bozkurt, S. W. Liu, W. J. Zhang, and M. Chhowalla, Plasmon-free surface-enhanced Raman spectroscopy using metallic 2D materials, ACS Nano 13(7), 8312 (2019)
CrossRef
ADS
Google scholar
|
[27] |
Y. Yin, P. Miao, Y. M. Zhang, J. C. Han, X. H. Zhang, Y. Gong, L. Gu, C. Y. Xu, T. Yao, P. Xu, Y. Wang, B. Song, and S. Jin, Significantly increased Raman enhancement on MoX2 (X= S, Se) monolayers upon phase transition, Adv. Funct. Mater. 27(16), 1606694 (2017)
CrossRef
ADS
Google scholar
|
[28] |
P. Miao, J. K. Qin, Y. F. Shen, H. M. Su, J. F. Dai, B. Song, Y. C. Du, M. T. Sun, W. Zhang, H. L. Wang, C. Y. Xu, and P. Xu, Unraveling the Raman enhancement mechanism on 1T′-phase ReS2 nanosheets, Small 14(14), 1704079 (2018)
CrossRef
ADS
Google scholar
|
[29] |
C. C. Weng, Y. Y. Luo, B. F. Wang, J. P. Shi, L. Gao, Z. Y. Cao, and G. T. Duan, Layer-dependent SERS enhancement of TiS2 prepared by simple electrochemical intercalation, J. Mater. Chem. C 8(40), 14138 (2020)
CrossRef
ADS
Google scholar
|
[30] |
L. Quan, Y. Q. Song, Y. Lin, G. H. Zhang, Y. M. Dai, Y. K. Wu, K. Jin, H. Y. Ding, N. Pan, Y. Luo, and X. P. Wang, The Raman enhancement effect on a thin GaSe flake and its thickness dependence, J. Mater. Chem. C 3(42), 11129 (2015)
CrossRef
ADS
Google scholar
|
[31] |
Z. Yu, W. L. Yu, J. Xing, R. A. Ganeev, W. Xin, J. L. Cheng, and C. L. Guo, Charge transfer effects on resonance-enhanced Raman scattering for molecules adsorbed on single-crystalline perovskite, ACS Photonics 5(4), 1619 (2018)
CrossRef
ADS
Google scholar
|
[32] |
X. Y. Su, H. Ma, H. Wang, X. L. Li, X. X. Han, and B. Zhao, Surface-enhanced Raman scattering on organicinorganic hybrid perovskites, Chem. Commun. 54(17), 2134 (2018)
CrossRef
ADS
Google scholar
|
[33] |
X. Ling, L. M. Xie, Y. Fang, H. Xu, H. L. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. F. Liu, Can graphene be used as a substrate for Raman enhancement? Nano Lett. 10(2), 553 (2010)
CrossRef
ADS
Google scholar
|
[34] |
S. M. Feng, M. C. dos Santos, B. R. Carvalho, R. T. Lv, Q. Li, K. Fujisawa, A. L. Elias, Y. Lei, N. Perea-Lopez, M. Endo, M. H. Pan, M. A. Pimenta, and M. Terrones, Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering, Sci. Adv. 2(7), e1600322 (2016)
CrossRef
ADS
Google scholar
|
[35] |
H. Xu, L. M. Xie, H. L. Zhang, and J. Zhang, Effect of graphene Fermi level on the Raman scattering intensity of molecules on graphene, ACS Nano 5(7), 5338 (2011)
CrossRef
ADS
Google scholar
|
[36] |
H. H. Tian, N. Zhang, J. Zhang, and L. M. Tong, Exploring quantification in a mixture using graphene-based surface-enhanced Raman spectroscopy, Appl. Mater. Today 15, 288 (2019)
CrossRef
ADS
Google scholar
|
[37] |
R. Das, S. Parveen, A. Bora, and P. K. Giri, Origin of high photoluminescence yield and high SERS sensitivity of nitrogen-doped graphene quantum dots, Carbon 160, 273 (2020)
CrossRef
ADS
Google scholar
|
[38] |
N. Zhang, L. M. Tong, and J. Zhang, Graphene-based enhanced Raman scattering toward analytical applications, Chem. Mater. 28(18), 6426 (2016)
CrossRef
ADS
Google scholar
|
[39] |
J. Liu, T. T. Zhang, and Y. Tian, Functionalized h- BN nanosheets as a theranostic platform for SERS realtime monitoring of microRNA and photodynamic therapy, Angew. Chem. Int. Ed. 58(23), 7757 (2019)
CrossRef
ADS
Google scholar
|
[40] |
X. Ling, W. J. Fang, Y. H. Lee, P. T. Araujo, X. Zhang, J. F. Rodriguez-Nieva, Y. X. Lin, J. Zhang, J. Kong, and M. S. Dresselhaus, Raman enhancement effect on two-dimensional layered materials: Graphene, h-BN and MoS2, Nano Lett. 14(6), 3033 (2014)
CrossRef
ADS
Google scholar
|
[41] |
Q. R. Cai, S. Mateti, W. R. Wang, R. Jones, K. Watanabe, T. Taniguchi, S. M. Huang, Y. Chen, and L. H. Li, Boron nitride nanosheets improve sensitivity and reusability of surface-enhanced Raman spectroscopy, Angew. Chem. Int. Ed. 55(29), 8405 (2016)
CrossRef
ADS
Google scholar
|
[42] |
H. Z. Sun, S. Cong, Z. H. Zheng, Z. Wang, Z. G. Chen, and Z. G. Zhao, Metal-organic frameworks as surface enhanced Raman scattering substrates with high tailorability, J. Am. Chem. Soc. 141(2), 870 (2019)
CrossRef
ADS
Google scholar
|
[43] |
T. H. Yu, C. H. Ho, C. Y. Wu, C. H. Chien, C. H. Lin, and S. Lee, Metal-organic frameworks: A novel SERS substrate, J. Raman Spectrosc. 44(11), 1506 (2013)
CrossRef
ADS
Google scholar
|
[44] |
J. H. Fu, Z. Zhong, D. Xie, Y. J. Guo, D. X. Kong, Z. X. Zhao, Z. X. Zhao, and M. Li, SERS-active MIL-100(Fe) sensory array for ultrasensitive and multiplex detection of VOCs, Angew. Chem. Int. Ed. 59(46), 20489 (2020)
CrossRef
ADS
Google scholar
|
[45] |
J. T. Xu, C. Cheng, S. M. Shang, W. Gao, P. Zeng, and S. X. Jiang, Flexible, reusable SERS substrate derived from ZIF-67 by adjusting LUMO and HOMO and its application in identification of bacteria, ACS Appl. Mater. Interfaces 12(44), 49452 (2020)
CrossRef
ADS
Google scholar
|
[46] |
M. Yilmaz, E. Babur, M. Ozdemir, R. L. Gieseking, Y. Dede, U. Tamer, G. C. Schatz, A. Facchetti, H. Usta, and G. Demirel, Nanostructured organic semiconductor films for molecular detection with surface-enhanced Raman spectroscopy, Nat. Mater. 16(9), 918 (2017)
CrossRef
ADS
Google scholar
|
[47] |
G. Demirel, R. L. M. Gieseking, R. Ozdemir, S. Kahmann, M. A. Loi, G. C. Schatz, A. Facchetti, and H. Usta, Molecular engineering of organic semiconductors enables noble metal-comparable SERS enhancement and sensitivity, Nat. Commun. 10(1), 5502 (2019)
CrossRef
ADS
Google scholar
|
[48] |
J. J. Lin, L. B. Liang, X. Ling, S. Q. Zhang, N. N. Mao, N. Zhang, B. G. Sumpter, V. Meunier, L. M. Tong, and J. Zhang, Enhanced Raman scattering on in-plane anisotropic layered materials, J. Am. Chem. Soc. 137(49), 15511 (2015)
CrossRef
ADS
Google scholar
|
[49] |
A. Kundu, R. Rani, and K. S. Hazra, Controlled nanofabrication of metal-free SERS substrate on few layered black phosphorus by low power focused laser irradiation, Nanoscale 11(35), 16245 (2019)
CrossRef
ADS
Google scholar
|
[50] |
R. Wang, X. Y. Yan, B. C. Ge, J. X. Zhou, M. L. Wang, L. X. Zhang, and T. F. Jiao, Facile preparation of self-assembled black phosphorus-dye composite films for chemical gas sensors and surface-enhanced Raman scattering performances, ACS Sustain. Chem. & Eng. 8(11), 4521 (2020)
CrossRef
ADS
Google scholar
|
[51] |
L. Hu, M. N. Amini, Y. Y. Wu, Z. Y. Jin, J. Yuan, R. B. Lin, J. H. Wu, Y. M. Dai, H. P. He, Y. F. Lu, J. G. Lu, Z. Z. Ye, S. T. Han, J. Ye, B. Partoens, Y. J. Zeng, and S. C. Ruan, Charge transfer doping modulated Raman scattering and enhanced stability of black phosphorus quantum dots on a ZnO nanorod, Adv. Opt. Mater. 6(15), 1800440 (2018)
CrossRef
ADS
Google scholar
|
[52] |
T. B. Limbu, B. Chitara, J. D. Orlando, M. Y. G. Cervantes, S. Kumari, Q. Li, Y. A. Tang, and F. Yan, Green synthesis of reduced Ti3C2Tx MXene nanosheets with enhanced conductivity, oxidation stability, and SERS activity, J. Mater. Chem. C 8(14), 4722 (2020)
CrossRef
ADS
Google scholar
|
[53] |
G. H. Li, W. B. Gong, T. L. Qiu, S. Cong, Z. G. Zhao, R. Z. Ma, Y. Michiue, T. Sasaki, and F. X. Geng, Surfacemodified two-dimensional titanium carbide sheets for intrinsic vibrational signal-retained surface-enhanced Raman scattering with ultrahigh uniformity, ACS Appl. Mater. Interfaces 12(20), 23523 (2020)
CrossRef
ADS
Google scholar
|
[54] |
B. Soundiraraju and B. K. George, Two-dimensional titanium nitride (Ti2N) MXene: Synthesis, characterization, and potential application as surface-enhanced Raman scattering substrate, ACS Nano 11(9), 8892 (2017)
CrossRef
ADS
Google scholar
|
[55] |
A. Sarycheva, T. Makaryan, K. Maleski, E. Satheeshkumar, A. Melikyan, H. Minassian, M. Yoshimura, and Y. Gogotsi, Two-dimensional titanium carbide (MXene) as surface-enhanced Raman scattering substrate, J. Phys. Chem. C 121(36), 19983 (2017)
CrossRef
ADS
Google scholar
|
[56] |
K. Y. Chen, X. Y. Yan, J. K. Li, T. F. Jiao, C. Cai, G. D. Zou, R. Wang, M. L. Wang, L. X. Zhang, and Q. M. Peng, Preparation of self-assembled composite films constructed by chemically-modified MXene and dyes with surfaceenhanced Raman scattering characterization, Nanomaterials (Basel) 9(2), 284 (2019)
CrossRef
ADS
Google scholar
|
[57] |
S. Elumalai, J. R. Lombardi, and M. Yoshimura, The surface-enhanced resonance Raman scattering of dye molecules adsorbed on two-dimensional titanium carbide Ti3C2Tx (MXene) film, Mater. Adv. 1(2), 146 (2020)
CrossRef
ADS
Google scholar
|
[58] |
Y. S. Peng, P. Cai, L. L. Yang, Y. Y. Liu, L. F. Zhu, Q. Q. Zhang, J. J. Liu, Z. R. Huang, and Y. Yang, Theoretical and experimental studies of Ti3C2 MXene for surface-enhanced Raman spectroscopy-based sensing, ACS Omega 5(41), 26486 (2020)
CrossRef
ADS
Google scholar
|
[59] |
I. Alessandri and J. R. Lombardi, Enhanced Raman scattering with dielectrics, Chem. Rev. 116(24), 14921 (2016)
CrossRef
ADS
Google scholar
|
[60] |
X. L. Wu, S. J. Xiong, Z. Liu, J. Chen, J. C. Shen, T. H. Li, P. H. Wu, and P. K. Chu, Green light stimulates terahertz emission from mesocrystal microspheres, Nat. Nanotechnol. 6(2), 103 (2011)
CrossRef
ADS
Google scholar
|
[61] |
J. Seo, J. Lee, Y. Kim, D. Koo, G. Lee, and H. Park, Ultrasensitive plasmon-free surface-enhanced Raman spectroscopy with femtomolar detection limit from 2D van der Waals heterostructure, Nano Lett. 20(3), 1620 (2020)
CrossRef
ADS
Google scholar
|
[62] |
X. X. Han, W. Ji, B. Zhao, and Y. Ozaki, Semiconductorenhanced Raman scattering: Active nanomaterials and applications, Nanoscale 9(15), 4847 (2017)
CrossRef
ADS
Google scholar
|
[63] |
N. Chen, T. H. Xiao, Z. Y. Luo, Y. Kitahama, K. Hiramatsu, N. Kishimoto, T. Itoh, Z. Z. Cheng, and K. Goda, Porous carbon nanowire array for surface-enhanced Raman spectroscopy, Nat. Commun. 11(1), 4772 (2020)
CrossRef
ADS
Google scholar
|
[64] |
X. C. Fan, M. Z. Li, Q. Hao, M. S. Zhu, X. Y. Hou, H. Huang, L. B. Ma, O. G. Schmidt, and T. Qiu, High SERS sensitivity enabled by synergistically enhanced photoinduced charge transfer in amorphous nonstoichiometric semiconducting films, Adv. Mater. Interfaces 6(19), 1901133 (2019)
CrossRef
ADS
Google scholar
|
[65] |
X. T. Wang, W. X. Shi, Z. Jin, W. F. Huang, J. Lin, G. S. Ma, S. Z. Li, and L. Guo, Remarkable SERS activity observed from amorphous ZnO nanocages, Angew. Chem. Int. Ed. 56(33), 9851 (2017)
CrossRef
ADS
Google scholar
|
[66] |
X. T. Wang, W. X. Shi, S. X. Wang, H. W. Zhao, J. Lin, Z. Yang, M. Chen, and L. Guo, Two-dimensional amorphous TiO2 nanosheets enabling high-efficiency photoinduced charge transfer for excellent SERS activity, J. Am. Chem. Soc. 141(14), 5856 (2019)
CrossRef
ADS
Google scholar
|
[67] |
M. Z. Li, X. C. Fan, Y. M. Gao, and T. Qiu, W18O49/Monolayer MoS2 heterojunction-enhanced Raman scattering, J. Phys. Chem. Lett. 10(14), 4038 (2019)
CrossRef
ADS
Google scholar
|
[68] |
Y. Tan, L. N. Ma, Z. B. Gao, M. Chen, and F. Chen, Twodimensional heterostructure as a platform for surfaceenhanced Raman scattering, Nano Lett. 17(4), 2621 (2017)
CrossRef
ADS
Google scholar
|
[69] |
J. Lin, W. Hao, Y. Shang, X. T. Wang, D. L. Qiu, G. S. Ma, C. Chen, S. Z. Li, and L. Guo, Direct experimental observation of facet-dependent SERS of Cu2O polyhedra, Small 14(8), 1703274 (2018)
CrossRef
ADS
Google scholar
|
[70] |
Y. Q. Yu, J. J. Du, and C. Y. Jing, Remarkable surface-enhanced Raman scattering on self-assembled [201] anatase, J. Mater. Chem. C 7(45), 14239 (2019)
CrossRef
ADS
Google scholar
|
[71] |
X. X. Li, Y. Shang, J. Lin, A. R. Li, X. T. Wang, B. Li, and L. Guo, Temperature-induced stacking to create Cu2O Concave sphere for light trapping capable of ultrasensitive single-particle surface-enhanced Raman scattering, Adv. Funct. Mater. 28(33), 1801868 (2018)
CrossRef
ADS
Google scholar
|
[72] |
W. W. Li, L. Xiong, N. C. Li, S. Pang, G. L. Xu, C. H. Yi, Z. X. Wang, G. Q. Gu, K. W. Li, W. M. Li, L. Wei, G. Y. Li, C. L. Yang, and M. Chen, Tunable 3D light trapping architectures based on self-assembled SnSe2 nanoplate arrays for ultrasensitive SERS detection, J. Mater. Chem. C 7(33), 10179 (2019)
CrossRef
ADS
Google scholar
|
[73] |
L. Shi, T. U. Tuzer, R. Fenollosa, and F. Meseguer, A new Dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: Silicon colloid nanocavities, Adv. Mater. 24(44), 5934 (2012)
CrossRef
ADS
Google scholar
|
[74] |
P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response, Nanoscale 8(18), 9721 (2016)
CrossRef
ADS
Google scholar
|
[75] |
B. J. Messinger, K. U. Raben, R. K. Chang, and P. W. Barber, Local fields at the surface of noble-metal microspheres, Phys. Rev. B 24(2), 649 (1981)
CrossRef
ADS
Google scholar
|
[76] |
S. M. Scholz, R. Vacassy, J. Dutta, H. Hofmann, and M. Akinc, Mie scattering effects from monodispersed ZnS nanospheres, J. Appl. Phys. 83(12), 7860 (1998)
CrossRef
ADS
Google scholar
|
[77] |
W. Ji, L. F. Li, W. Song, X. N. Wang, B. Zhao, and Y. Ozaki, Enhanced Raman scattering by ZnO superstructures: Synergistic effect of charge-transfer and Mie resonances, Angew. Chem. Int. Ed. 58(41), 14452 (2019)
CrossRef
ADS
Google scholar
|
[78] |
S. Hayashi, R. Koh, Y. Ichiyama, and K. Yamamoto, Evidence for surface-enhanced Raman scattering on nonmetallic surfaces: Copper phthalocyanine molecules on GaP small particles, Phys. Rev. Lett. 60(11), 1085 (1988)
CrossRef
ADS
Google scholar
|
[79] |
I. Alessandri, Enhancing Raman scattering without plasmons: Unprecedented sensitivity achieved by TiO2 shellbased resonators, J. Am. Chem. Soc. 135(15), 5541 (2013)
CrossRef
ADS
Google scholar
|
[80] |
N. Bontempi, I. Vassalini, S. Danesi, and I. Alessandri, ZORRO: Zirconium oxide resonators for all-in-one Raman and whispering-gallery-mode optical sensing, Chem. Commun. 53(75), 10382 (2017)
CrossRef
ADS
Google scholar
|
[81] |
I. Rodriguez, L. Shi, X. Lu, B. A. Korgel, R. A. Alvarez-Puebla, and F. Meseguer, Silicon nanoparticles as Raman scattering enhancers, Nanoscale 6(11), 5666 (2014)
CrossRef
ADS
Google scholar
|
[82] |
P. K. A. Campion and P. Kambhampati, Surfaceenhanced Raman scattering, Chem. Soc. Rev. 27(4), 241 (1998)
CrossRef
ADS
Google scholar
|
[83] |
L. Jensen, C. M. Aikens, and G. C. Schatz, Electronic structure methods for studying surface-enhanced Raman scattering, Chem. Soc. Rev. 37(5), 1061 (2008)
CrossRef
ADS
Google scholar
|
[84] |
H. A. Kramers and W. Heisenberg, Über die streuung von strahlung durch atome, Z. Phys. 31(1), 681 (1925)
CrossRef
ADS
Google scholar
|
[85] |
P. A. M. Dirac, The quantum theory of the emission and absorption of radiation, Proc. R. Soc. Lond. A 114(767), 243 (1927)
CrossRef
ADS
Google scholar
|
[86] |
Y. S. Yamamoto and T. Itoh, Why and how do the shapes of surface enhanced Raman scattering spectra change? Recent progress from mechanistic studies, J. Raman Spectrosc. 47(1), 78 (2016)
CrossRef
ADS
Google scholar
|
[87] |
J. I. Gersten, R. L. Birke, and J. R. Lombardi, Theory of enhance i light scattering from molecules adsorbed at the metal-solution interface, Phys. Rev. Lett. 43(2), 147 (1979)
CrossRef
ADS
Google scholar
|
[88] |
E. Burstein, Y. J. Chen, C. Y. Chen, S. Lundquist, and E. Tosatti, “Giant” Raman scattering by adsorbed molecules on metal surfaces, Solid State Commun. 29(8), 567 (1979)
CrossRef
ADS
Google scholar
|
[89] |
J. E. Demuth and P. N. Sanda, Observation of chargetransfer states for pyridine chemisorbed on Ag(111), Phys. Rev. Lett. 47(1), 57 (1981)
CrossRef
ADS
Google scholar
|
[90] |
H. Yamada and Y. Yamamoto, Surface enhanced Raman scattering (SERS) of chemisorbed species on various kinds of metals and semiconductors, Surf. Sci. 134(1), 71 (1983)
CrossRef
ADS
Google scholar
|
[91] |
H. Yamada, Y. Yamamoto, and N. Tani, Surfaceenhanced Raman scattering (SERS) of adsorbed molecules on smooth surfaces of metals and a metal oxide, Chem. Phys. Lett. 86(4), 397 (1982)
CrossRef
ADS
Google scholar
|
[92] |
A. C. Albrecht, On the theory of Raman intensities, J. Chem. Phys. 34(5), 1476 (1961)
CrossRef
ADS
Google scholar
|
[93] |
J. R. Lombardi and R. L. Birke, Theory of surfaceenhanced Raman scattering in semiconductors, J. Phys. Chem. C 118(20), 11120 (2014)
CrossRef
ADS
Google scholar
|
[94] |
J. R. Lombardi, The theory of surface-enhanced Raman scattering on semiconductor nanoparticles: Toward the optimization of SERS sensors, Faraday Discuss. 205, 105 (2017)
CrossRef
ADS
Google scholar
|
[95] |
S. K. Islam, M. A. Sohel, and J. R. Lombardi, Coupled exciton and charge-transfer resonances in the Raman enhancement of phonon modes of CdSe quantum dots (QDs), J. Phys. Chem. C 118(33), 19415 (2014)
CrossRef
ADS
Google scholar
|
[96] |
X. Y. Hou, X. Y. Zhang, Q. W. Ma, X. Tang, Q. Hao, Y. C. Cheng, and T. Qiu, Alloy engineering in fewlayer manganese phosphorus trichalcogenides for surfaceenhanced Raman scattering, Adv. Funct. Mater. 30(12), 1910171 (2020)
CrossRef
ADS
Google scholar
|
[97] |
X. L. Wu, Y. F. Mei, G. G. Siu, K. L. Wong, K. Moulding, M. J. Stokes, C. L. Fu, and X. M. Bao, Spherical growth and surface-quasifree vibrations of Si nanocrystallites in Er-doped Si nanostructures, Phys. Rev. Lett. 86(14), 3000 (2001)
CrossRef
ADS
Google scholar
|
[98] |
X. L. Wu, S. J. Xiong, G. G. Siu, G. S. Huang, Y. F. Mei, Z. Y. Zhang, S. S. Deng, and C. Tan, Optical emission from excess Si defect centers in Si nanostructures, Phys. Rev. Lett. 91(15), 157402 (2003)
CrossRef
ADS
Google scholar
|
[99] |
J. Y. Fan, X. L. Wu, and T. Qiu, Experimental evidence for quantum confinement in 3C-SiC nanoparticles, Physics 34(8), 570 (2005)
|
[100] |
J. Wang, S. J. Xiong, X. L. Wu, T. H. Li, and P. K. Chu, Glycerol-bonded 3C-SiC nanocrystal solid films exhibiting broad and stable violet to blue-green emission, Nano Lett. 10(4), 1466 (2010)
CrossRef
ADS
Google scholar
|
[101] |
Q. T. Liu, D. Y. Liu, J. M. Li, and Y. B. Kuang, The impact of crystal defects towards oxide semiconductor photoanode for photoelectrochemical water splitting, Front. Phys. 14(5), 53403 (2019)
CrossRef
ADS
Google scholar
|
[102] |
H. Wu, H. Wang, and G. H. Li, Metal oxide semiconductor SERS-active substrates by defect engineering, Analyst (Lond.) 142(2), 326 (2017)
CrossRef
ADS
Google scholar
|
[103] |
L. L. Yang, Y. S. Peng, Y. Yang, J. J. Liu, Z. Y. Li, Y. F. Ma, Z. Zhang, Y. Q. Wei, S. Li, Z. R. Huang, and N. V. Long, Green and sensitive flexible semiconductor SERS substrates: Hydrogenated black TiO2 nanowires, ACS Appl. Nano Mater. 1(9), 4516 (2018)
CrossRef
ADS
Google scholar
|
[104] |
P. Dharmalingam, K. Venkatakrishnan, and B. Tan, An atomic-defect enhanced Raman scattering (DERS) quantum probe for molecular level detection-breaking the SERS barrier, Appl. Mater. Today 16, 28 (2019)
CrossRef
ADS
Google scholar
|
[105] |
X. Y. Hou, X. C. Fan, P. H. Wei, and T. Qiu, Planar transition metal oxides SERS chips: A general strategy, J. Mater. Chem. C 7(36), 11134 (2019)
CrossRef
ADS
Google scholar
|
[106] |
X. X. Xue, W. Ji, Z. Mao, Z. S. Li, W. D. Ruan, B. Zhao, and J. R. Lombardi, Effects of Mn doping on surface enhanced Raman scattering properties of TiO2 nanoparticles, Spectrochim. Acta A 95, 213 (2012)
CrossRef
ADS
Google scholar
|
[107] |
P. Zuo, L. Jiang, X. Li, P. Ran, B. Li, A. S. Song, M. Y. Tian, T. B. Ma, B. S. Guo, L. T. Qu, and Y. F. Lu, Enhancing charge transfer with foreign molecules through femtosecond laser induced MoS2 defect sites for photoluminescence control and SERS enhancement, Nanoscale 11(2), 485 (2019)
CrossRef
ADS
Google scholar
|
[108] |
X. X. Xue, S. F. Mi, C. M. Zhao, and L. M. Chang, Investigation of surface-enhanced Raman scattering property of Ni doping ZnS nanocrystals, J. Nanosci. Nanotechnol. 19(12), 7748 (2019)
CrossRef
ADS
Google scholar
|
[109] |
L. B. Yang, Y. Zhang, W. D. Ruan, B. Zhao, W. Q. Xu, and J. R. Lombardi, Improved surface-enhanced Raman scattering properties of TiO2 nanoparticles by Zn dopant, J. Raman Spectrosc. 41(7), 721 (2009)
CrossRef
ADS
Google scholar
|
[110] |
X. D. Zheng, F. Ren, S. P. Zhang, X. L. Zhang, H. Y. Wu, X. G. Zhang, Z. Xing, W. J. Qin, Y. Liu, and C. Z. Jiang, A general method for large-scale fabrication of semiconducting oxides with high SERS sensitivity, ACS Appl. Mater. Interfaces 9(16), 14534 (2017)
CrossRef
ADS
Google scholar
|
[111] |
S. Cong, Z. Wang, W. B. Gong, Z. G. Chen, W. B. Lu, J. R. Lombardi, and Z. G. Zhao, Electrochromic semiconductors as colorimetric SERS substrates with high reproducibility and renewability, Nat. Commun. 10(1), 678 (2019)
CrossRef
ADS
Google scholar
|
[112] |
Y. R. Liu, Z. B. Gao, M. Chen, Y. Tian, and F. Chen, Enhanced Raman scattering of CuPc films on imperfect WSe2 monolayer correlated to exciton and chargetransfer resonances, Adv. Funct. Mater. 28(52), 1805710 (2018)
CrossRef
ADS
Google scholar
|
[113] |
X. Y. Wang, J. Li, Y. H. Shen, and A. J. Xie, An assembled ordered W18O49 nanowire film with high SERS sensitivity and stability for the detection of RB, Appl. Surf. Sci. 504, 144073 (2020)
CrossRef
ADS
Google scholar
|
[114] |
N. Singh, J. Prakash, M. Misra, A. Sharma, and R. K. Gupta, Dual functional Ta-doped electrospun TiO2 nanofibers with enhanced photocatalysis and SERS detection for organic compounds, ACS Appl. Mater. Interfaces 9(34), 28495 (2017)
CrossRef
ADS
Google scholar
|
[115] |
X. H. Li, Y. Wu, Y. H. Shen, Y. Sun, Y. Yang, and A. J. Xie, A novel bifunctional Ni-doped TiO2 inverse opal with enhanced SERS performance and excellent photocatalytic activity, Appl. Surf. Sci. 427, 739 (2018)
CrossRef
ADS
Google scholar
|
[116] |
X. X. Xue, W. Ji, Z. Mao, Z. S. Li, Z. N. Guo, B. Zhao, and C. Zhao, SERS study of Co-doped TiO2 nanoparticles, Chem. Res. Chin. Univ. 29(4), 751 (2013)
CrossRef
ADS
Google scholar
|
[117] |
L. B. Yang, X. Y. Qin, M. D. Gong, X. Jiang, M. Yang, X. L. Li, and G. Z. Li, Improving surface-enhanced Raman scattering properties of TiO2 nanoparticles by metal Co doping, Spectrochim. Acta A 123, 224 (2014)
CrossRef
ADS
Google scholar
|
[118] |
V. Kiran and S. Sampath, Enhanced Raman spectroscopy of molecules adsorbed on carbon-doped TiO2 obtained from titanium carbide: A visible-light-assisted renewable substrate, ACS Appl. Mater. Interfaces 4(8), 3818 (2012)
CrossRef
ADS
Google scholar
|
[119] |
H. J. Zhang, R. An, X. H. Ji, Y. H. Dong, F. Pan, C. Liu, and X. H. Lu, Effects of nitrogen doping on surface-enhanced Raman scattering (SERS) performance of bicrystalline TiO2 nanofibres, Chin. J. Chem. Eng. 26(3), 642 (2018)
CrossRef
ADS
Google scholar
|
[120] |
L. B. Yang, D. Yin, Y. Shen, M. Yang, X. L. Li, X. X. Han, X. Jiang, and B. Zhao, Mesoporous semiconducting TiO2 with rich active sites as a remarkable substrate for surface-enhanced Raman scattering, Phys. Chem. Chem. Phys. 19(28), 18731 (2017)
CrossRef
ADS
Google scholar
|
[121] |
R. PrabhuB, K. Bramhaiah, K. K. Singh, and N. S. John, Single sea urchin-MoO3 nanostructure for surface enhanced Raman spectroscopy of dyes, Nanoscale Adv. 1(6), 2426 (2019)
CrossRef
ADS
Google scholar
|
[122] |
J. Pan, M. Li, Y. Y. Luo, H. Wu, L. Zhong, Q. Wang, and G. H. Li, Synthesis and SERS activity of V2O5 nanoparticles, Appl. Surf. Sci. 333, 34 (2015)
CrossRef
ADS
Google scholar
|
[123] |
M. Gao, J. C. Yao, Y. N. Quan, J. H. Yang, P. W. Huo, J. D. Dai, Y. S. Yan, and C. C. Ma, Neodymium doped zinc oxide for ultersensitive SERS substrate, J. Mater. Sci. Mater. Electron. 30(23), 20537 (2019)
CrossRef
ADS
Google scholar
|
[124] |
S. Yang, J. C. Yao, Y. N. Quan, M. Y. Hu, R. Su, M. Gao, D. L. Han, and J. H. Yang, Monitoring the chargetransfer process in a Nd-doped semiconductor based on photoluminescence and SERS technology, Light Sci. Appl. 9(1), 117 (2020)
CrossRef
ADS
Google scholar
|
[125] |
P. Li, X. L. Wang, X. L. Zhang, L. X. Zhang, X. W. Yang, and B. Zhao, Investigation of the charge-transfer between Ga-doped ZnO nanoparticles and molecules using surface-enhanced Raman scattering: Doping induced band-gap shrinkage, Front. Chem. 7, 144 (2019)
CrossRef
ADS
Google scholar
|
[126] |
X. X. Xue, J. Zhang, L. Chen, C. M. Zhao, L. Wang, and L. M. Chang, Preparation and characterization of Zn1−xNixO nanoparticles: Application as a SERS substrate, J. Nanosci. Nanotechnol. 18(6), 4403 (2018)
CrossRef
ADS
Google scholar
|
[127] |
X. X. Xue, W. D. Ruan, L. B. Yang, W. Ji, Y. F. Xie, L. Chen, W. Song, B. Zhao, and J. R. Lombardi, Surfaceenhanced Raman scattering of molecules adsorbed on Codoped ZnO nanoparticles, J. Raman Spectrosc. 43(1), 61 (2012)
CrossRef
ADS
Google scholar
|
[128] |
L. M. Chang, D. D. Xu, and X. X. Xue, Photoluminescence and Raman scattering study in ZnO:Mg nanocrystals, J. Mater. Sci. Mater. Electron. 27(1), 1014 (2016)
CrossRef
ADS
Google scholar
|
[129] |
R. Haldavnekar, K. Venkatakrishnan, and B. Tan, Non plasmonic semiconductor quantum SERS probe as a pathway for in vitro cancer detection, Nat. Commun. 9(1), 3065 (2018)
CrossRef
ADS
Google scholar
|
[130] |
J. Lin, J. Yu, O. U. Akakuru, X. T. Wang, B. Yuan, T. X. Chen, L. Guo, and A. G. Wu, Low temperatureboosted high efficiency photo-induced charge transfer for remarkable SERS activity of ZnO nanosheets, Chem. Sci. (Camb.) 11(35), 9414 (2020)
CrossRef
ADS
Google scholar
|
[131] |
C. S. Liu, B. H. Li, C. H. Chen, J. W. Peng, and S. Lee, Enhancement in SERS intensities of azo dyes adsorbed on ZnO by plasma treatment, J. Raman Spectrosc. 45(5), 332 (2014)
CrossRef
ADS
Google scholar
|
[132] |
J. L. Hou, X. F. Jia, X. X. Xue, L. Chen, W. Song, W. Q. Xu, and B. Zhao, Surface-enhanced Raman scattering of molecules adsorbed on SnO2 nanoparticles, Chem. J. Chin. Univ. 33(1), 139 (2012)
|
[133] |
X. Y. Zhou, D. Wu, Z. Jin, X. J. Song, X. F. Wang, and S. L. Suib, Significantly increased Raman enhancement on defect-rich O-incorporated 1T-MoS2 nanosheets, J. Mater. Sci. 55(34), 16374 (2020)
CrossRef
ADS
Google scholar
|
[134] |
X. Y. Hou, Q. Lin, Y. J. Wei, Q. Hao, Z. H. Ni, and T. Qiu, Surface-enhanced Raman scattering monitoring of oxidation states in defect-engineered two-dimensional transition metal dichalcogenides, J. Phys. Chem. Lett. 11(19), 7981 (2020)
CrossRef
ADS
Google scholar
|
[135] |
M. L. Chen, K. Li, Y. Y. Luo, J. P. Shi, C. C. Weng, L. Gao, and G. T. Duan, Improved SERS activity of non-stoichiometric copper sulfide nanostructures related to charge-transfer resonance, Phys. Chem. Chem. Phys. 22(9), 5145 (2020)
CrossRef
ADS
Google scholar
|
[136] |
P. Ji, Z. Mao, Z. Wang, X. X. Xue, Y. Zhang, J. Lv, and X. M. Shi, Improved surface-enhanced Raman scattering properties of ZrO2 nanoparticles by Zn doping, Nanomaterials (Basel) 9(7), 983 (2019)
CrossRef
ADS
Google scholar
|
[137] |
Y. M. Yang, T. Qiu, F. Kong, J. Y. Fan, H. L. Ou, Q. Y. Xu, and P. K. Chu, Interference effects on indium tin oxide enhanced Raman scattering, J. Appl. Phys. 111(3), 033110 (2012)
CrossRef
ADS
Google scholar
|
[138] |
Y. M. Yang, K. L. Long, F. Kong, J. Y. Fan, and T. Qiu, Surface-enhanced Raman spectroscopy on transparent fume-etched ITO-glass surface, Appl. Surf. Sci. 309, 250 (2014)
CrossRef
ADS
Google scholar
|
[139] |
L. Hu, Z. Xu, F. Long, J. Yuan, H. Li, A. Zhao, S. Han, N. Zhang, X. Liu, C. Ma, S. Ruan, and Y. Zeng, Direct bandgap opening in sodium-doped antimonene quantum dots: An emerging 2D semiconductor, Mater. Horiz. 7(6), 1588 (2020)
CrossRef
ADS
Google scholar
|
[140] |
G. T. Wang, H. N. Wei, Y. Tian, M. M. Wu, Q. Q. Sun, Z. S. Peng, L. F. Sun, and M. Liu, Twin-ZnSe nanowires as surface enhanced Raman scattering substrate with significant enhancement factor upon defect, Opt. Express 28(13), 18843 (2020)
CrossRef
ADS
Google scholar
|
[141] |
I. C. Y. Chang, Y. S. Sun, Y. W. Yang, C. H. Wang, S. L. Cheng, and W. W. Hu, Effects of graphitization and bonding configuration in iron-nitrogen-doped carbon nanostructures on surface-enhanced Raman scattering, ACS Appl. Nano Mater. 3(1), 858 (2020)
CrossRef
ADS
Google scholar
|
[142] |
Y. Gao, N. Gao, H. D. Li, X. X. Yuan, Q. L. Wang, S. H. Cheng, and J. S. Liu, Semiconductor SERS of diamond, Nanoscale 10(33), 15788 (2018)
CrossRef
ADS
Google scholar
|
[143] |
S. S. Wen, X. W. Ma, H. Liu, G. Chen, H. Wang, G. Q. Deng, Y. T. Zhang, W. Song, B. Zhao, and Y. Ozaki, Accurate monitoring platform for the surface catalysis of nanozyme validated by surface-enhanced Raman-kinetics model, Anal. Chem. 92(17), 11763 (2020)
CrossRef
ADS
Google scholar
|
[144] |
Y. Tian, H. N. Wei, Y. J. Xu, Q. Q. Sun, B. Y. Man, and M. Liu, Influence of SERS activity of SnSe2 nanosheets doped with sulfur, Nanomaterials (Basel) 10(10), 1910 (2020)
CrossRef
ADS
Google scholar
|
[145] |
J. E. Medvedeva, D. B. Buchholz, and R. P. H. Chang, Recent Advances in understanding the structure and properties of amorphous oxide semiconductors, Adv. Electron. Mater. 3(9), 1700082 (2017)
CrossRef
ADS
Google scholar
|
[146] |
A. R. Li, J. Lin, Z. N. Huang, X. T. Wang, and L. Guo, Surface-enhanced Raman spectroscopy on amorphous semiconducting rhodium sulfide microbowl substrates, iScience 10, 1 (2018)
CrossRef
ADS
Google scholar
|
[147] |
A. R. Li, J. Yu, J. Lin, M. Chen, X. T. Wang, L. Guo, and O. Increased, Increased O 2p state density enabling significant photoinduced charge transfer for surface-enhanced Raman scattering of amorphous Zn(OH)2, J. Phys. Chem. Lett. 11(5), 1859 (2020)
CrossRef
ADS
Google scholar
|
[148] |
M. S. Gao, P. Miao, X. J. Han, C. Sun, Y. Ma, Y. L. Gao, and P. Xu, Hollow transition metal hydroxide octahedral microcages for single particle surface-enhanced Raman spectroscopy, Inorg. Chem. Front. 6(9), 2318 (2019)
CrossRef
ADS
Google scholar
|
[149] |
L. L. Yang, Y. Q. Wei, Y. S. Song, Y. S. Peng, Y. Yang, and Z. R. Huang, Surface-enhanced Raman scattering from amorphous nanoflower-structural Nb2O5 fabricated by two-step hydrothermal technology, Mater. Des. 193, 108808 (2020)
CrossRef
ADS
Google scholar
|
[150] |
E. Er, H. L. Hou, A. Criado, J. Langer, M. Moller, N. Erk, L. M. Liz-Marzan, and M. Prato, High-yield preparation of exfoliated 1T-MoS2 with SERS activity, Chem. Mater. 31(15), 5725 (2019)
CrossRef
ADS
Google scholar
|
[151] |
C. L. Tan, Z. M. Luo, A. Chaturvedi, Y. Q. Cai, Y. H. Du, Y. Gong, Y. Huang, Z. C. Lai, X. Zhang, L. R. Zheng, X. Y. Qi, M. H. Goh, J. Wang, S. K. Han, X. J. Wu, L. Gu, C. Kloc, and H. Zhang, Preparation of high-percentage 1T-phase transition metal dichalcogenide nanodots for electrochemical hydrogen evolution, Adv. Mater. 30(9), 1705509 (2018)
CrossRef
ADS
Google scholar
|
[152] |
T. A. Empante, Y. Zhou, V. Klee, A. E. Nguyen, I. Lu, M. D. Valentin, S. A. Naghibi Alvillar, E. Preciado, A. J. Berges, C. S. Merida, M. Gomez, S. Bobek, M. Isarraraz, E. J. Reed, and L. Bartels, Chemical vapor deposition growth of few-layer MoTe2 in the 2H, 1T, and 1T phases: Tunable properties of MoTe2 films, ACS Nano 11(1), 900 (2017)
CrossRef
ADS
Google scholar
|
[153] |
P. Miao, J. Wu, Y. C. Du, Y. C. Sun, and P. Xu, Phase transition induced Raman enhancement on vanadium dioxide (VO2) nanosheets, J. Mater. Chem. C 6(40), 10855 (2018)
CrossRef
ADS
Google scholar
|
[154] |
D. R. Miller, S. A. Akbar, and P. A. Morris, Nanoscale metal oxide-based heterojunctions for gas sensing: A review, Sens. Actuators B Chem. 204, 250 (2014)
CrossRef
ADS
Google scholar
|
[155] |
T. Q. Niu, J. Lu, X. G. Jia, Z. Xu, M. C. Tang, D. Barrit, N. Y. Yuan, J. N. Ding, X. Zhang, Y. Y. Fan, T. Luo, Y. L. Zhang, D. Smilgies, Z. K. Liu, A. Amassian, S. Y. Jin, K. Zhao, and S. Z. Liu, Interfacial engineering at the 2D/3D heterojunction for high-performance perovskite solar cells, Nano Lett. 19(10), 7181 (2019)
CrossRef
ADS
Google scholar
|
[156] |
S. A. Ghopry, M. A. Alamri, R. Goul, R. Sakidja, and J. Z. Wu, Extraordinary sensitivity of surface-enhanced Raman spectroscopy of molecules on MoS2 (WS2) nanodomes/graphene van der Waals heterostructure substrates, Adv. Opt. Mater. 7(8), 1801249 (2019)
CrossRef
ADS
Google scholar
|
[157] |
Q. Cai, W. Gan, A. Falin, K. Watanabe, T. Taniguchi, J. C. Zhuang, W. C. Hao, S. M. Huang, T. Tao, Y. Chen, and L. H. Li, Two-dimensional van der Waals heterostructures for synergistically improved surface-enhanced Raman spectroscopy, ACS Appl. Mater. Interfaces 12(19), 21985 (2020)
CrossRef
ADS
Google scholar
|
[158] |
H. Kitadai, X. Z. Wang, N. N. Mao, S. X. Huang, and X. Ling, Enhanced Raman scattering on nine 2D van der Waals materials, J. Phys. Chem. Lett. 10(11), 3043 (2019)
CrossRef
ADS
Google scholar
|
[159] |
J. Lin, W. Z. Ren, A. R. Li, C. Y. Yao, T. X. Chen, X. H. Ma, X. T. Wang, and A. G. Wu, Crystal-amorphous coreshell structure synergistically enabling TiO2 nanoparticles’ remarkable SERS sensitivity for cancer cell imaging, ACS Appl. Mater. Interfaces 12(4), 4204 (2020)
CrossRef
ADS
Google scholar
|
[160] |
K. N. Zhang, Y. Zhang, T. N. Zhang, W. J. Dong, T. X. Wei, Y. Sun, X. Chen, G. Z. Zhen, and N. Dai, Vertically coupling ZnO nanorods on MoS2 monolayers with enhanced Raman and photoluminescence emission, Nano Res. 8(3), 743 (2015)
CrossRef
ADS
Google scholar
|
[161] |
L. G. Quagliano, Observation of molecules adsorbed on III-V semiconductor quantum dots by surface-enhanced Raman scattering, J. Am. Chem. Soc. 126(23), 7393 (2004)
CrossRef
ADS
Google scholar
|
[162] |
M. Dandu, K. Watanabe, T. Taniguchi, A. K. Sood, and K. Majumdar, Spectrally tunable, large Raman enhancement from nonradiative energy transfer in the van der Waals heterostructure, ACS Photon. 7(2), 519 (2020)
CrossRef
ADS
Google scholar
|
[163] |
M. P. Chen, B. Ji, Z. Y. Dai, X. Y. Du, B. C. He, G. Chen, D. Liu, S. Chen, K. H. Lo, S. P. Wang, B. P. Zhou, and H. Pan, Vertically-aligned 1T/2H-MS2 (M= Mo, W) nanosheets for surface-enhanced Raman scattering with long-term stability and large-scale uniformity, Appl. Surf. Sci. 527, 146769 (2020)
CrossRef
ADS
Google scholar
|
[164] |
S. G. Pan, X. H. Liu, and X. Wang, Preparation of Ag2Sgraphene nanocomposite from a single source precursor and its surface-enhanced Raman scattering and photoluminescent activity, Mater. Charact. 62(11), 1094 (2011)
CrossRef
ADS
Google scholar
|
[165] |
J. L. Lopes, S. Fateixa, A. C. Estrada, J. D. Gouveia, J. R. B. Gomes, and T. Trindade, Surface-enhanced Raman scattering due to a synergistic effect on ZnS and graphene oxide, J. Phys. Chem. C 124(23), 12742 (2020)
CrossRef
ADS
Google scholar
|
[166] |
I. Alessandri, and L. E. Depero, All-oxide Raman-active traps for light and matter: Probing redox homeostasis model reactions in aqueous environment, Small 10(7), 1294 (2014)
CrossRef
ADS
Google scholar
|
[167] |
D. Papadakis, A. Diamantopoulou, P. A. Pantazopoulos, D. Palles, E. Sakellis, N. Boukos, N. Stefanou, and V. Likodimos, Nanographene oxide-TiO2 photonic films as plasmon-free substrates for surface-enhanced Raman scattering, Nanoscale 11(44), 21542 (2019)
CrossRef
ADS
Google scholar
|
[168] |
T. T. Zheng, E. D. Feng, Z. Q. Wang, X. Q. Gong, and Y. Tian, Mechanism of surface-enhanced Raman scattering based on 3D graphene-TiO2 nanocomposites and application to real-time monitoring of telomerase activity in differentiation of stem cells, ACS Appl. Mater. Interfaces 9(42), 36596 (2017)
CrossRef
ADS
Google scholar
|
[169] |
R. C. Wang, Y. H. Chen, H. H. Huang, K. T. Lin, Y. S. Jheng, and C. Y. Liu, Justification of dipole mechanism over chemical charge transfer mechanism for dipole-based SERS platform with excellent chemical sensing performance, Appl. Surf. Sci. 521, 146426 (2020)
CrossRef
ADS
Google scholar
|
[170] |
B. C. Qiu, M. Y. Xing, Q. Y. Yi, and J. L. Zhang, Chiral carbonaceous nanotubes modified with titania nanocrystals: plasmon-free and recyclable SERS sensitivity, Angew. Chem. Int. Ed. 54(36), 10643 (2015)
CrossRef
ADS
Google scholar
|
[171] |
X. Jiang, D. Yin, M. Yang, J. Du, W. E. Wang, L. Zhang, L. B. Yang, X. X. Han, and B. Zhao, Revealing interfacial charge transfer in TiO2/reduced graphene oxide nanocomposite by surface-enhanced Raman scattering (SERS): Simultaneous a superior SERS-active substrate, Appl. Surf. Sci. 487, 938 (2019)
CrossRef
ADS
Google scholar
|
[172] |
X. Jiang, Q. Q. Sang, M. Yang, J. Du, W. E. Wang, L. B. Yang, X. X. Han, and B. Zhao, Metal-free SERS substrate based on rGO-TiO2-Fe3O4nnanohybrid: Contribution from interfacial charge transfer and magnetic controllability, Phys. Chem. Chem. Phys. 21(24), 12850 (2019)
CrossRef
ADS
Google scholar
|
[173] |
E. D. Feng, T. T. Zheng, X. X. He, J. Q. Chen, and Y. Tian, A novel ternary heterostructure with dramatic SERS activity for evaluation of PD-L1 expression at the single-cell level, Sci. Adv. 4(11), eaau3494 (2018)
CrossRef
ADS
Google scholar
|
[174] |
D. Yin, M. L. Wang, Y. Z. Wang, X. Hu, B. Liu, H. Liu, L. L. Ma, and G. G. Gao, A ternary ZnO/ZnS/MoS2 composite as a reusable SERS substrate derived from the polyoxomolybdate/ZIF-8 host–guest framework, J. Mater. Chem. C 7(32), 9856 (2019)
CrossRef
ADS
Google scholar
|
[175] |
Y. N. Quan, J. C. Yao, Y. S. Sun, X. Qu, R. Su, M. Y. Hu, L. Chen, Y. Liu, M. Gao, and J. H. Yang, Enhanced semiconductor charge-transfer resonance: Unprecedented oxygen bidirectional strategy, Sens. Actuators B Chem. 327, 128903 (2021)
CrossRef
ADS
Google scholar
|
[176] |
Y. N. Quan, J. C. Yao, S. Yang, L. Chen, J. Li, Y. Liu, J. Lang, H. Shen, Y. Wang, Y. Wang, J. Yang, and M. Gao, ZnO nanoparticles on MoS2 microflowers for ultrasensitive SERS detection of bisphenol A, Mikrochim. Acta 186(8), 593 (2019)
CrossRef
ADS
Google scholar
|
[177] |
H. W. Qiu, M. Q. Wang, L. Zhang, M. H. Cao, Y. Q. Ji, S. Kou, J. J. Dou, X. Q. Sun, and Z. Yang, Wrinkled 2H-phase MoS2 sheet decorated with graphene-microflowers for ultrasensitive molecular sensing by plasmon-free SERS enhancement, Sens. Actuators B Chem. 320, 128445 (2020)
CrossRef
ADS
Google scholar
|
[178] |
M. Y. Xin, Y. Z. Fu, Y. Zhou, J. H. Han, Y. L. Mao, M. J. Li, J. H. Liu, and M. J. Huang, The surface-enhanced Raman scattering of all-inorganic perovskite quantum dots of CsPbBr3 encapsulated in a ZIF-8 metal-organic framework, New J. Chem. 44(40), 17570 (2020)
CrossRef
ADS
Google scholar
|
[179] |
G. Liu, J. C. Yu, G. Q. Lu, and H. M. Cheng, Crystal facet engineering of semiconductor photocatalysts: Motivations, advances and unique properties, Chem. Commun. (Camb.) 47(24), 6763 (2011)
CrossRef
ADS
Google scholar
|
[180] |
X. Gao and T. Zhang, An overview: Facet-dependent metal oxide semiconductor gas sensors, Sens. Actuators B Chem. 277, 604 (2018)
CrossRef
ADS
Google scholar
|
[181] |
F. Wang, X. Wang, Z. Chang, Y. Zhu, L. Fu, X. Liu, and Y. Wu, Electrode materials with tailored facets for electrochemical energy storage, Nanoscale Horiz. 1(4), 272 (2016)
CrossRef
ADS
Google scholar
|
[182] |
I. Urdaneta, A. Keller, O. Atabek, J. L. Palma, D. Finkelstein-Shapiro, P. Tarakeshwar, V. Mujica, and M. Calatayud, Dopamine adsorption on TiO2 anatase surfaces, J. Phys. Chem. C 118(35), 20688 (2014)
CrossRef
ADS
Google scholar
|
[183] |
X. L. Zheng, H. L. Guo, Y. Xu, J. L. Zhang, and L. Z. Wang, Improving SERS sensitivity of TiO2 by utilizing the heterogeneity of facet-potentials, J. Mater. Chem. C 8(39), 13836 (2020)
CrossRef
ADS
Google scholar
|
[184] |
J. L. Wang, F. Xiao, J. Yan, Z. Wu, K. K. Liu, Z. F. Chang, R. B. Zhang, H. Chen, H. B. Wu, and Y. Cao, Difluorobenzothiadiazole-based small-molecule organic solar cells with 8.7% efficiency by tuning of- conjugated spacers and solvent vapor annealing, Adv. Funct. Mater. 26(11), 1803 (2016)
CrossRef
ADS
Google scholar
|
[185] |
C. L. Zhou, L. F. Sun, F. Q. Zhang, C. J. Gu, S. W. Zeng, T. Jiang, X. Shen, D. S. Ang, and J. Zhou, Electrical tuning of the SERS enhancement by precise defect density control, ACS Appl. Mater. Interfaces 11(37), 34091 (2019)
CrossRef
ADS
Google scholar
|
[186] |
P. Li, X. L. Wang, H. Y. Li, X. W. Yang, X. L. Zhang, L. X. Zhang, Y. Ozaki, B. B. Liu, and B. Zhao, Investigation of charge-transfer between a 4-mercaptobenzoic acid monolayer and TiO2 nanoparticles under high pressure using surface-enhanced Raman scattering, Chem. Commun. (Camb.) 54(49), 6280 (2018)
CrossRef
ADS
Google scholar
|
[187] |
H. H. Sun, M. G. Yao, Y. P. Song, L. Y. Zhu, J. J. Dong, R. Liu, P. Li, B. Zhao, and B. B. Liu, Pressureinduced SERS enhancement in a MoS2/Au/R6G system by a two-step charge transfer process, Nanoscale 11(44), 21493 (2019)
CrossRef
ADS
Google scholar
|
[188] |
X. H. Li, S. H. Guo, J. Su, X. G. Ren, and Z. Y. Fang, Efficient Raman enhancement in molybdenum disulfide by tuning the interlayer spacing, ACS Appl. Mater. Interfaces 12(25), 28474 (2020)
CrossRef
ADS
Google scholar
|
[189] |
Y. Y. Qiu, M. Lin, G. X. Chen, C. C. Fan, M. W. Li, X. J. Gu, S. Cong, Z. G. Zhao, L. Fu, X. H. Fang, and Z. Y. Xiao, Photodegradable CuS SERS probes for intraoperative residual tumor detection, ablation, and selfclearance,ACS Appl. Mater. Interfaces 11(26), 23436 (2019)
CrossRef
ADS
Google scholar
|
[190] |
J. Surmacki, Nitrogen-doped titanium dioxide nanoparticles modified by an electron beam for improving human breast cancer detection by Raman spectroscopy: A preliminary study, Diagnostics (Basel) 10(10), 757 (2020)
CrossRef
ADS
Google scholar
|
[191] |
S. Ganesh, K. Venkatakrishnan, and B. Tan, Quantum scale organic semiconductors for SERS detection of DNA methylation and gene expression, Nat. Commun. 11(1), 1135 (2020)
CrossRef
ADS
Google scholar
|
[192] |
R. A. Alvarez-Puebla and L. M. Liz-Marzan, SERS detection of small inorganic molecules and ions, Angew. Chem. Int. Ed. 51(45), 11214 (2012)
CrossRef
ADS
Google scholar
|
[193] |
W. Ji, Y. Wang, I. Tanabe, X. X. Han, B. Zhao, and Y. Ozaki, Semiconductor-driven “turn-off” surface-enhanced Raman scattering spectroscopy: Application in selective determination of chromium(vi) in water, Chem. Sci. (Camb.) 6(1), 342 (2015)
CrossRef
ADS
Google scholar
|
[194] |
B. P. Majee, S. Mishra, R. K. Pandey, R. Prakash, and A. K. Mishra, Multifunctional few-layer MoS2 for photodetection and surface-enhanced Raman spectroscopy application with ultrasensitive and repeatable detectability, J. Phys. Chem. C 123(29), 18071 (2019)
CrossRef
ADS
Google scholar
|
[195] |
N. Bontempi, I. Vassalini, and I. Alessandri, All-dielectric core/shell resonators: From plasmon-free SERS to multimodal analysis, J. Raman Spectrosc. 49(6), 943 (2018)
CrossRef
ADS
Google scholar
|
[196] |
X. X. Han, C. Kohler, J. Kozuch, U. Kuhlmann, L. Paasche, A. Sivanesan, I. M. Weidinger, and P. Hildebrandt, Potential-dependent surface-enhanced resonance Raman spectroscopy at nanostructured TiO2: A case study on cytochrome b5, Small 9(24), 4175 (2013)
CrossRef
ADS
Google scholar
|
[197] |
I. Alessandri and L. E. Depero, All-oxide Raman-active traps for light and matter: Probing redox homeostasis model reactions in aqueous environment, Small 10(7), 1294 (2014)
CrossRef
ADS
Google scholar
|
[198] |
D. Glass, E. Cortes, S. Ben-Jaber, T. Brick, W. J. Peveler, C. S. Blackman, C. R. Howle, R. Quesada-Cabrera, I. P. Parkin, and S. A. Maier, Dynamics of photo-induced surface oxygen vacancies in metal-oxide semiconductors studied under ambient conditions, Adv. Mater. 6(22), 1901841 (2019)
CrossRef
ADS
Google scholar
|
[199] |
X. Y. Zhang, S. Yang, L. L. Yang, D. X. Zhang, Y. Sun, Z. Y. Pang, J. H. Yang, and L. Chen, Carrier dynamic monitoring of a p-conjugated polymer: A surface-enhanced Raman scattering method, Chem. Commun. 56(18), 2779 (2020)
CrossRef
ADS
Google scholar
|
[200] |
P. Tarakeshwar, J. L. Palma, D. Finkelstein-Shapiro, A. Keller, I. Urdaneta, M. Calatayud, O. Atabek, and V. Mujjica, SERS as a probe of charge-transfer pathways in hybrid dye/molecule-metal oxide complexes, J. Phys. Chem. C 118(7), 3774 (2014)
CrossRef
ADS
Google scholar
|
[201] |
Z. H. Kim, Single-molecule surface-enhanced Raman scattering: Current status and future perspective, Front. Phys. 9(1), 25 (2014)
CrossRef
ADS
Google scholar
|
[202] |
X. Y. Hou, X. G. Luo, X. C. Fan, Z. H. Peng, and T. Qiu, Plasmon-coupled charge transfer in WO3−x semiconductor nanoarrays: toward highly uniform silver-comparable SERS platforms, Phys. Chem. Chem. Phys. 21(5), 2611 (2019)
CrossRef
ADS
Google scholar
|
[203] |
W. Liu, H. Bai, X. S. Li, W. T. Li, J. F. Zhai, J. F. Li, and G. C. Xi, Improved surface-enhanced Raman spectroscopy sensitivity on metallic tungsten oxide by the synergistic effect of surface plasmon resonance coupling and charge transfer, J. Phys. Chem. Lett. 9(14), 4096 (2018)
CrossRef
ADS
Google scholar
|
[204] |
J. H. Wang, Y. H. Yang, H. Li, J. Gao, P. He, L. Bian, F. Q. Dong, and Y. He, Stable and tunable plasmon resonance of molybdenum oxide nanosheets from the ultraviolet to the near-infrared region for ultrasensitive surfaceenhanced Raman analysis, Chem. Sci. (Camb.) 10(25), 6330 (2019)
CrossRef
ADS
Google scholar
|
[205] |
Z. Tian, H. Bai, C. Chen, Y. T. Ye, Q. H. Kong, Y. H. Li, W. H. Fan, W. C. Yi, and G. C. Xi, Quasi-metal for highly sensitive and stable surface-enhanced Raman scattering, iScience 19(27), 836 (2019)
CrossRef
ADS
Google scholar
|
[206] |
X. J. Tan, L. Z. Wang, C. Cheng, X. F. Yan, B. Shen, and J. L. Zhang, Plasmonic MoO3−x@MoO3 nanosheets for highly sensitive SERS detection through nanoshellisolated electromagnetic enhancement, Chem. Commun. (Camb.) 52(14), 2893 (2016)
CrossRef
ADS
Google scholar
|
[207] |
Q. Q. Zhang, X. S. Li, Q. Ma, Q. Zhang, H. Bai, W. C. Yi, J. Y. Liu, J. Han, and G. C. Xi, A metallic molybdenum dioxide with high stability for surface enhanced Raman spectroscopy, Nat. Commun. 8(1), 14903 (2017)
CrossRef
ADS
Google scholar
|
[208] |
Q. Zhu, S. L. Jiang, K. Ye, W. Hu, J. C. Zhang, X. Y. Niu, Y. X. Lin, S. M. Chen, L.Song, Q. Zhang, J. Jiang, and Y. Luo, Hydrogen-doping-induced metal-like ultrahigh free-carrier concentration in metal-oxide material for giant and tunable plasmon resonance, Adv. Mater. 32(50), 2004059 (2020)
CrossRef
ADS
Google scholar
|
[209] |
P. Li, L. Zhu, C. Ma, L. X. Zhang, L. Guo, Y. W. Liu, H. Ma, and B. Zhao, Plasmonic molybdenum tungsten oxide hybrid with surface-enhanced Raman scattering comparable to that of noble metals, ACS Appl. Mater. Interfaces 12(16), 19153 (2020)
CrossRef
ADS
Google scholar
|
[210] |
Y. T. Ye, W. C. Yi, W. Liu, Y. Zhou, H. Bai, J. F. Li, and G. C. Xi, Remarkable surface-enhanced Raman scattering of highly crystalline monolayer Ti3C2 nanosheets, Sci. China Mater. 63(5), 794 (2020)
CrossRef
ADS
Google scholar
|
[211] |
H. M. Guan, W. C. Yi, T. Li, Y. H. Li, J. F. Li, H. Bai, and G. C. Xi, Low temperature synthesis of plasmonic molybdenum nitride nanosheets for surface enhanced Raman scattering, Nat. Commun. 11(1), 3889 (2020)
CrossRef
ADS
Google scholar
|
[212] |
F. T. Zhao, X. T. Xue, W. Y. Fu, Y. H. Liu, Y. H. Ling, and Z. J. Zhang, TiN nanorods as effective substrate for surface-enhanced Raman scattering, J. Phys. Chem. C 123(48), 29353 (2019)
CrossRef
ADS
Google scholar
|
[213] |
R. F. Du, W. C. Yi, W. T. Li, H. F. Yang, H. Bai, J. F. Li, and G. C. Xi, Quasi-metal microwave route to MoN and Mo2C ultrafine nanocrystalline hollow spheres as surface-enhanced Raman scattering substrates, ACS Nano 14(10), 13718 (2020)
CrossRef
ADS
Google scholar
|
[214] |
A. Agrawal, S. H. Cho, O. Zandi, S. Ghosh, R. W. Johns, and D. J. Milliron, Localized surface plasmon resonance in semiconductor nanocrystals, Chem. Rev. 118(6), 3121 (2018)
CrossRef
ADS
Google scholar
|
[215] |
C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Marago, E. Di Fabrizio, M. L. de la Chapelle, P. G. Gucciardi, and A. Pucci, Optical nanoantennas for multiband surface- Enhanced infrared and Raman spectroscopy, ACS Nano 7(4), 3522 (2013)
CrossRef
ADS
Google scholar
|
[216] |
A. Pallaoro, G. B. Braun, N. O. Reich, and M. Moskovits, Mapping local pH in live cells using encapsulated fluorescent SERS nanotags, Small 6(5), 618 (2010)
CrossRef
ADS
Google scholar
|
[217] |
T. X. Huang, C. W. Li, L. K. Yang, J. F. Zhu, X. Yao, C. Liu, K. Q. Lin, Z. C. Zeng, S. S. Wu, X. Wang, F. Z. Yang, and B. Ren, Rational fabrication of silver-coated AFM TERS tips with a high enhancement and long lifetime, Nanoscale 10(9), 4398 (2018)
CrossRef
ADS
Google scholar
|
[218] |
H. S. Lai, G. K. Li, F. G. Xu, and Z. M. Zhang, Metal-organic frameworks: Opportunities and challenges for surface-enhanced Raman scattering — a review, J. Mater. Chem. C 8(9), 2952 (2020)
CrossRef
ADS
Google scholar
|
[219] |
Q. Q. Ding, J. Wang, X. Y. Chen, H. Liu, Q. J. Li, Y. L. Wang, and S. K. Yang, Quantitative and sensitive SERS platform with analyte enrichment and filtration function, Nano Lett. 20(10), 7304 (2020)
CrossRef
ADS
Google scholar
|
[220] |
J. Z. Chen, G. G. Liu, Y. Z. Zhu, M. Su, P. F. Yin, X. J. Wu, Q. P. Lu, C. L. Tan, M. T. Zhao, Z. Q. Liu, W. M. Yang, H. Li, G. H. Nam, L. P. Zhang, Z. H. Chen, X. Huang, P. M. Radjenovic, W. Huang, Z. Q. Tian, J. F. Li, and H. Zhang, Ag@MoS2 core-shell heterostructure as SERS platform to reveal the hydrogen evolution active sites of single-layer MoS2, J. Am. Chem. Soc. 142(15), 7161 (2020)
CrossRef
ADS
Google scholar
|
[221] |
X. Zhao, J. Dong, E. Cao, Q. Y. Han, W. Gao, Y. K. Wang, J. X. Qi, and M. T. Sun, Plasmon-exciton coupling by hybrids between graphene and gold nanorods vertical array for sensor, Appl. Mater. Today 14, 166 (2019)
CrossRef
ADS
Google scholar
|
[222] |
H. K. Lee, Y. H. Lee, C. S. L. Koh, G. C. Phan-Quang, X. Han, C. L. Lay, H. Y. F. Sim, Y. C. Kao, Q. An, and X. Y. Ling, Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: Emerging opportunities in analyte manipulations and hybrid materials, Chem. Soc. Rev. 48(3), 731 (2019)
CrossRef
ADS
Google scholar
|
[223] |
X. Z. Qiao, B. S. Su, C. Liu, Q. Song, D. Luo, G. Mo, and T. Wang, Selective surface enhanced Raman scattering for quantitative detection of lung cancer biomarkers in superparticle@MOF structure, Adv. Mater. 30(5), 1702275 (2018)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |