Recent advances on π-conjugated polymers as active elements in high performance organic field-effect transistors
Lixing Luo, Wanning Huang, Canglei Yang, Jing Zhang, Qichun Zhang
Recent advances on π-conjugated polymers as active elements in high performance organic field-effect transistors
As high-performance organic semiconductors, π-conjugated polymers have attracted much attention due to their charming advantages including low-cost, solution processability, mechanical flexibility, and tunable optoelectronic properties. During the past several decades, the great advances have been made in polymers-based OFETs with p-type, n-type or even ambipolar characterics. Through chemical modification and alignment optimization, lots of conjugated polymers exhibited superior mobilities, and some mobilities are even larger than 10 cm2·V−1·s−1 in OFETs, which makes them very promising for the applications in organic electronic devices. This review describes the recent progress of the high performance polymers used in OFETs from the aspects of molecular design and assembly strategy. Furthermore, the current challenges and outlook in the design and development of conjugated polymers are also mentioned.
conjugated polymers / p-type polymer / n-type polymer / ambipolar transport / high-ordered alignment
[1] |
J. Yang, Z. Zhao, S. Wang, Y. Guo, and Y. Liu, Insight into high-performance conjugated polymers for organic field-effect transistors, Chem 4(12), 2748 (2018)
CrossRef
ADS
Google scholar
|
[2] |
L. Shi, Y. Guo, W. Hu, and Y. Liu, Design and effective synthesis methods for high-performance polymer semiconductors in organic field-effect transistors, Mater. Chem. Front. 1(12), 2423 (2017)
CrossRef
ADS
Google scholar
|
[3] |
Q. Zhang, Shooting flexible electronics, Front. Phys. 16(1), 13602 (2021)
CrossRef
ADS
Google scholar
|
[4] |
J. Y. Oh, S. Rondeau-Gagne, Y. C. Chiu, A. Chortos, F. Lissel, G. N. Wang, B. C. Schroeder, T. Kurosawa, J. Lopez, T. Katsumata, J. Xu, C. Zhu, X. Gu, W. G. Bae, Y. Kim, L. Jin, J. W. Chung, J. B. Tok, and Z. Bao, Intrinsically stretchable and healable semiconducting polymer for organic transistors, Nature 539(7629), 411 (2016)
CrossRef
ADS
Google scholar
|
[5] |
S. Wang, J. Xu, W. Wang, G. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S. K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B. Tok, and Z. Bao, Skin electronics from scalable fabrication of an intrinsically stretchable transistor array, Nature 555(7694), 83 (2018)
CrossRef
ADS
Google scholar
|
[6] |
L. Hou, X. Zhang, G. F. Cotella, G. Carnicella, M. Herder, B. M. Schmidt, M. Patzel, S. Hecht, F. Cacialli, and P. Samori, Optically switchable organic lightemitting transistors, Nat. Nanotechnol. 14(4), 347 (2019)
CrossRef
ADS
Google scholar
|
[7] |
A. A. Argun, A. Cirpan, and J. R. Reynolds, The first truly all-polymer electrochromic devices, Adv. Mater. 15(16), 1338 (2003)
CrossRef
ADS
Google scholar
|
[8] |
G. Sonmez, H. Meng, Q. Zhang, and F. Wudl, A highly stable, new electrochromic polymers: Poly(1,bis(2-(3′,4′-ethylenedioxy)thienyl)-2-methoxy- 5-2′′-ethylhexyloxybenzene), Adv. Funct. Mater. 13(9), 726 (2003)
CrossRef
ADS
Google scholar
|
[9] |
F. Yu, W. Liu, S. W. Ke, M. Kurmoo, J. L. Zuo, and Q. Zhang, Electrochromic two-dimensional covalent organic framework with a revisable dark-to-transparent switch, Nat. Commun. 11(1), 5534 (2020)
CrossRef
ADS
Google scholar
|
[10] |
F. Yu, W. Liu, B. Li, D. Tian, J. L. Zuo, and Q. Zhang, Photo-stimulus-responsive large-area twodimensional covalent-organic framework films, Angew. Chem. Int. Ed. 58(45), 16101 (2019)
CrossRef
ADS
Google scholar
|
[11] |
H. Wang, C. J. Yao, H. J. Nie, L. Yang, S. Mei, and Q. Zhang, Recent progress in integrated functional electrochromic energy storage devices, J. Mater. Chem. C 8(44), 15507 (2020)
CrossRef
ADS
Google scholar
|
[12] |
Y. Kim, C. Park, S. Im, and J. H. Kim, Design of intrinsically stretchable and highly conductive polymers for fully stretchable electrochromic devices, Sci. Rep. 10(1), 16488 (2020)
CrossRef
ADS
Google scholar
|
[13] |
S. Roy and C. Chakraborty, Nanostructured metallosupramolecular polymer-based gel-type electrochromic devices with ultrafast switching time and high colouration efficiency, J. Mater. Chem. C 7(10), 2871 (2019)
CrossRef
ADS
Google scholar
|
[14] |
L. Li, Q. D. Ling, S. L. Lim, Y. P. Tan, C. Zhu, D. S. H. Chan, E. T. Kang, and K. G. Neoh, A flexible polymer memory device, Org. Electron. 8(4), 401 (2007)
CrossRef
ADS
Google scholar
|
[15] |
M. Walter, F. Friess, M. Krus, S. M. H. Zolanvari, G. Grun, H. Krober, and T. Pretsch, Shape memory polymer foam with programmable apertures, Polymers (Basel) 12(9), 1914 (2020)
CrossRef
ADS
Google scholar
|
[16] |
S. Li, L. Zhan, C. Sun, H. Zhu, G. Zhou, W. Yang, M. Shi, C. Z. Li, J. Hou, Y. Li, and H. Chen, Highly efficient fullerene-free organic solar cells operate at near zero highest occupied molecular orbital offsets, J. Am. Chem. Soc. 141(7), 3073 (2019)
CrossRef
ADS
Google scholar
|
[17] |
W. Chen, X. Yang, G. Long, X. Wan, Y. Chen, and Q. Zhang, Perylene diimide (PDI)-based small molecule with tetrahedral configuration as non-fullerene acceptor for organic solar cells, J. Mater. Chem. C 3(18), 4698 (2015)
CrossRef
ADS
Google scholar
|
[18] |
W. Chen and Q. Zhang, Recent progress on non-fullerene small molecule acceptors in Organic Solar Cells (OSCs), J. Mater. Chem. C 5(6), 1275 (2017)
CrossRef
ADS
Google scholar
|
[19] |
X. Xu, Z. Li, Z. Bi, T. Yu, W. Ma, K. Feng, Y. Li, and Q. Peng, Highly efficient nonfullerene polymer solar cells enabled by a copper(I) coordination strategy employing a 1,3,4-oxadiazole-containing wide-bandgap copolymer donor, Adv. Mater. 30(28), 1800737 (2018)
CrossRef
ADS
Google scholar
|
[20] |
J. Hou, O. Inganas, R. H. Friend, and F. Gao, Organic solar cells based on non-fullerene acceptors, Nat. Mater. 17(2), 119 (2018)
CrossRef
ADS
Google scholar
|
[21] |
J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H. L. Yip, T. K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, and Y. Zou, Singlejunction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core, Joule 3(4), 1140 (2019)
CrossRef
ADS
Google scholar
|
[22] |
L. Lu, M. A. Kelly, W. You, and L. Yu, Status and prospects for ternary organic photovoltaics, Nat. Photonics 9(8), 491 (2015)
CrossRef
ADS
Google scholar
|
[23] |
H. Wu, L. Ying, W. Yang, and Y. Cao, Progress and perspective of polymer white light-emitting devices and materials, Chem. Soc. Rev. 38(12), 3391 (2009)
CrossRef
ADS
Google scholar
|
[24] |
T. Yu, L. Liu, Z. Xie, and Y. Ma, Progress in smallmolecule luminescent materials for organic light-emitting diodes, Sci. China Chem. 58(6), 907 (2015)
CrossRef
ADS
Google scholar
|
[25] |
A. Salleo, R. J. Kline, D. M. DeLongchamp, and M. L. Chabinyc, Microstructural characterization and charge transport in thin films of conjugated polymers, Adv. Mater. 22(34), 3812 (2010)
CrossRef
ADS
Google scholar
|
[26] |
Y. Xu, H. Sun, W. Li, Y. F. Lin, F. Balestra, G. Ghibaudo, and Y. Y. Noh, Exploring the charge transport in conjugated polymers, Adv. Mater. 29(41), 1702729 (2017)
CrossRef
ADS
Google scholar
|
[27] |
K. S. Park, J. J. Kwok, R. Dilmurat, G. Qu, P. Kafle, X. Luo, S.H. Jung, Y. Olivier, J. K. Lee, J. Mei, D. Beljonne, and Y. Diao, Tuning conformation, assembly, and charge transport properties of conjugated polymers by printing flow, Sci. Adv. 5(8), eaaw7757 (2019)
CrossRef
ADS
Google scholar
|
[28] |
R. Noriega, J. Rivnay, K. Vandewal, F. P. Koch, N. Stingelin, P. Smith, M. F. Toney, and A. Salleo, A general relationship between disorder, aggregation and charge transport in conjugated polymers, Nat. Mater. 12(11), 1038 (2013)
CrossRef
ADS
Google scholar
|
[29] |
Y. Zhao, X. Zhao, M. Roders, G. Qu, Y. Diao, A. L. Ayzner, and J. Mei, Complementary semiconducting polymer blends for efficient charge transport, Chem. Mater. 27(20), 7164 (2015)
CrossRef
ADS
Google scholar
|
[30] |
Y. Yang, Z. Liu, G. Zhang, X. Zhang, and D. Zhang, The effects of side chains on the charge mobilities and functionalities of semiconducting conjugated polymers beyond solubilities, Adv. Mater. 31(46), 1903104 (2019)
CrossRef
ADS
Google scholar
|
[31] |
M. Kim, S. U. Ryu, S. A. Park, K. Choi, T. Kim, D. Chung, and T. Park, Donor-acceptor-conjugated polymer for high‐performance organic field‐effect transistors: A progress report, Adv. Funct. Mater. 30(20), 1904545 (2020)
CrossRef
ADS
Google scholar
|
[32] |
H. Zhang, K. Yang, K. Zhang, Z. Zhang, Q. Sun, and W. Yang, Thionating iso-diketopyrrolopyrrole-based polymers: From p-type to ambipolar field effect transistors with enhanced charge mobility, Polym. Chem. 9(14), 1807 (2018)
CrossRef
ADS
Google scholar
|
[33] |
L. Chen, S. Chi, K. Zhao, J. Liu, X. Yu, and Y. Han, Aligned films of the DPP-Based conjugated polymer by solvent vapor enhanced drop casting, Polymer (Guildf.) 104, 123 (2016)
CrossRef
ADS
Google scholar
|
[34] |
J. Park, S. Lee, and H. H. Lee, High-mobility polymer thin-film transistors fabricated by solvent-assisted dropcasting, Org. Electron. 7(5), 256 (2006)
CrossRef
ADS
Google scholar
|
[35] |
E. Mohammadi, C. Zhao, Y. Meng, G. Qu, F. Zhang, X. Zhao, J. Mei, J. M. Zuo, D. Shukla, and Y. Diao, Dynamic-template-directed multiscale assembly for largearea coating of highly-aligned conjugated polymer thin films, Nat. Commun. 8(1), 16070 (2017)
CrossRef
ADS
Google scholar
|
[36] |
Q. Y. Li, Z. F. Yao, Y. Lu, S. Zhang, Z. Ahmad, J. Y. Wang, X. Gu, and J. Pei, Achieving high alignment of conjugated polymers by controlled dip‐coating, Adv. Electron. Mater. 6(6), 2000080 (2020)
CrossRef
ADS
Google scholar
|
[37] |
J. Xu, H. C. Wu, C. Zhu, A. Ehrlich, L. Shaw, M. Nikolka, S. Wang, F. Molina-Lopez, X. Gu, S. Luo, D. Zhou, Y. H. Kim, G. N. Wang, K. Gu, V. R. Feig, S. Chen, Y. Kim, T. Katsumata, Y. Q. Zheng, H. Yan, J. W. Chung, J. Lopez, B. Murmann, and Z. Bao, Multi-scale ordering in highly stretchable polymer semiconducting films, Nat. Mater. 18(6), 594 (2019)
CrossRef
ADS
Google scholar
|
[38] |
X. Cao, Z. Du, L. Chen, K. Zhao, H. Li, J. Liu, and Y. Han, Long diketopyrrolopyrrole-based polymer nanowires prepared by decreasing the aggregate speed of the polymer in solution, Polymer (Guildf.) 118, 135 (2017)
CrossRef
ADS
Google scholar
|
[39] |
G. G. Jeon, M. Lee, J. Nam, W. Park, M. Yang, J. H. Choi, D. K. Yoon, E. Lee, B. Kim, and J. H. Kim, Simple solvent engineering for high-mobility and thermally robust conjugated polymer nanowire field-effect transistors, ACS Appl. Mater. Interfaces 10(35), 29824 (2018)
CrossRef
ADS
Google scholar
|
[40] |
K. J. Ihn, J. Moulton, and P. Smith, Whiskers of poly (3-alkylthiophene)s, J. Polym. Sci. B 31(6), 735 (1993)
CrossRef
ADS
Google scholar
|
[41] |
X. Cao, L. Chen, K. Zhao, J. Liu, and Y. Han, Diketopyrrolopyrrole-based polymer nanowires: Control of chain conformation and nucleation, J. Polym. Sci. B 56(11), 833 (2018)
CrossRef
ADS
Google scholar
|
[42] |
J. Qian, G. Guerin, Y. Lu, G. Cambridge, I. Manners, and M. A. Winnik, Self-seeding in one dimension: An approach to control the length of fiberlike polyisoprenepolyferrocenylsilane block copolymer micelles, Angew. Chem. Int. Ed. 50(7), 1622 (2011)
CrossRef
ADS
Google scholar
|
[43] |
J. Y. Oh, M. Shin, T. I. Lee, W. S. Jang, Y. Min, J. M. Myoung, H. K. Baik, and U. Jeong, Self-seeded growth of poly(3-hexylthiophene) (P3HT) nanofibrils by a cycle of cooling and heating in solutions, Macromolecules 45(18), 7504 (2012)
CrossRef
ADS
Google scholar
|
[44] |
D. Venkateshvaran, M. Nikolka, A. Sadhanala, V. Lemaur, M. Zelazny, M. Kepa, M. Hurhangee, A. J. Kronemeijer, V. Pecunia, I. Nasrallah, I. Romanov, K. Broch, I. McCulloch, D. Emin, Y. Olivier, J. Cornil, D. Beljonne, and H. Sirringhaus, Approaching disorder-free transport in high-mobility conjugated polymers, Nature 515(7527), 384 (2014)
CrossRef
ADS
Google scholar
|
[45] |
P. H. Chu, N. Kleinhenz, N. Persson, M. McBride, J. L. Hernandez, B. Fu, G. Zhang, and E. Reichmanis, Toward precision control of nanofiber orientation in conjugated polymer thin films: impact on charge transport, Chem. Mater. 28(24), 9099 (2016)
CrossRef
ADS
Google scholar
|
[46] |
I. Botiz and N. Stingelin, Influence of molecular conformations and microstructure on the optoelectronic properties of conjugated polymers, Materials (Basel) 7(3), 2273 (2014)
CrossRef
ADS
Google scholar
|
[47] |
P. Prins, F. C. Grozema, J. M. Schins, S. Patil, U. Scherf, and L. D. Siebbeles, High intrachain hole mobility on molecular wires of ladder-type poly(p-phenylenes), Phys. Rev. Lett. 96(14), 146601 (2006)
CrossRef
ADS
Google scholar
|
[48] |
L. Bürgi, T. J. Richards, R. H. Friend, and H. Sirringhaus, Close look at charge carrier injection in polymer field-effect transistors, J. Appl. Phys. 94(9), 6129 (2003)
CrossRef
ADS
Google scholar
|
[49] |
V. Chaudhary, R. K. Pandey, R. Prakash, N. Kumar, and A. K. Singh, Highly aligned and crystalline poly(3- hexylthiophene) thin films by off-center spin coating for high performance organic field-effect transistors, Synth. Met. 258, 116221 (2019)
CrossRef
ADS
Google scholar
|
[50] |
D. Alberga, A. Perrier, I. Ciofini, G. F. Mangiatordi, G. Lattanzi, and C. Adamo, Morphological and charge transport properties of amorphous and crystalline P3HT and PBTTT: Insights from theory, Phys. Chem. Chem. Phys. 17(28), 18742 (2015)
CrossRef
ADS
Google scholar
|
[51] |
Y. Lei, P. Deng, Q. Zhang, Z. Xiong, Q. Li, J. Mai, X. Lu, X. Zhu, and B. S. Ong, Hydrocarbons-driven crystallization of polymer semiconductors for low-temperature fabrication of high-performance organic field-effect transistors, Adv. Funct. Mater. 28(15), 1706372 (2018)
CrossRef
ADS
Google scholar
|
[52] |
S. Wang, S. Fabiano, S. Himmelberger, S. Puzinas, X. Crispin, A. Salleo, and M. Berggren, Experimental evidence that short-range intermolecular aggregation is sufficient for efficient charge transport in conjugated polymers, Proc. Natl. Acad. Sci. USA 112(34), 10599 (2015)
CrossRef
ADS
Google scholar
|
[53] |
X. Guo, A. Facchetti, and T. J. Marks, Imide- and amide-functionalized polymer semiconductors, Chem. Rev. 114(18), 8943 (2014)
CrossRef
ADS
Google scholar
|
[54] |
Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, A universal method to produce low–work function electrodes for organic electronics, Science 336(6079), 327 (2012)
CrossRef
ADS
Google scholar
|
[55] |
M. Tantiwiwat, A. Tamayo, N. Luu, X. D. Dang, and T. Q. Nguyen, Oligothiophene derivatives functionalized with a diketopyrrolopyrrolo core for solution-processed field effect transistors: Effect of alkyl substituents and thermal annealing, J. Phys. Chem. C 112(44), 17402 (2008)
CrossRef
ADS
Google scholar
|
[56] |
M. Gruber, S. H. Jung, S. Schott, D. Venkateshvaran, A. J. Kronemeijer, J. W. Andreasen, C. R. McNeill, W. W. H. Wong, M. Shahid, M. Heeney, J. K. Lee, and H. Sirringhaus, Enabling high-mobility, ambipolar charge-transport in a DPP-benzotriazole copolymer by side-chain engineering, Chem. Sci. (Camb.) 6(12), 6949 (2015)
CrossRef
ADS
Google scholar
|
[57] |
W. Hong, S. Chen, B. Sun, M. A. Arnould, Y. Meng, and Y. Li, Is a polymer semiconductor having a “perfect” regular structure desirable for organic thin film transistors? Chem. Sci. (Camb.) 6(5), 3225 (2015)
CrossRef
ADS
Google scholar
|
[58] |
Y. Yu, Y. Wu, A. Zhang, C. Li, Z. Tang, W. Ma, Y. Wu, and W. Li, Diketopyrrolopyrrole polymers with Thienyl and Thiazolyl linkers for application in field-effect transistors and polymer solar cells, ACS Appl. Mater. Interfaces 8(44), 30328 (2016)
CrossRef
ADS
Google scholar
|
[59] |
A. Zhang, C. Xiao, Y. Wu, C. Li, Y. Ji, L. Li, W. Hu, Z. Wang, W. Ma, and W. Li, Effect of fluorination on molecular orientation of conjugated polymers in high performance field-effect transistors, Macromolecules 49(17), 6431 (2016)
CrossRef
ADS
Google scholar
|
[60] |
Y. Yang, Z. Liu, L. Chen, J. Yao, G. Lin, X. Zhang, G. Zhang, and D. Zhang, Conjugated semiconducting polymer with thymine groups in the side chains: Charge mobility enhancement and application for selective fieldeffect transistor sensors toward CO and H2S, Chem. Mater. 31(5), 1800 (2019)
CrossRef
ADS
Google scholar
|
[61] |
A. R. Han, G. K. Dutta, J. Lee, H. R. Lee, S. M. Lee, H. Ahn, T. J. Shin, J. H. Oh, and C. Yang, ε-branched flexible side chain substituted diketopyrrolopyrrolecontaining polymers designed for high hole and electron mobilities, Adv. Funct. Mater. 25(2), 247 (2015)
CrossRef
ADS
Google scholar
|
[62] |
Z. Wang, Z. Liu, L. Ning, M. Xiao, Y. Yi, Z. Cai, A. Sadhanala, G. Zhang, W. Chen, H. Sirringhaus, and D. Zhang, Charge mobility enhancement for conjugated dpp-selenophene polymer by simply replacing one bulky branching alkyl chain with linear one at each DPP unit, Chem. Mater. 30(9), 3090 (2018)
CrossRef
ADS
Google scholar
|
[63] |
J. Li, Y. Zhao, H. S. Tan, Y. Guo, C. A. Di, G. Yu, Y. Liu, M. Lin, S. H. Lim, Y. Zhou, H. Su, and B. S. Ong, A stable solution-processed polymer semiconductor with record high-mobility for printed transistors, Sci. Rep. 2(1), 754 (2012)
CrossRef
ADS
Google scholar
|
[64] |
Y. Lei, P. Deng, J. Li, M. Lin, F. Zhu, T. W. Ng, C. S. Lee, and B. S. Ong, Solution-processed donoracceptor polymer nanowire network semiconductors for high-performance field-effect transistors, Sci. Rep. 6(1), 24476 (2016)
CrossRef
ADS
Google scholar
|
[65] |
B. C. Schroeder, T. Kurosawa, T. Fu, Y. Chiu, J. Mun, G. N. Wang, X. Gu, L. Shaw, J. W. E. Kneller, T. Kreouzis, M. F. Toney, and Z. Bao, Taming charge transport in semiconducting polymers with branched alkyl side chains, Adv. Funct. Mater. 27(34), 1701973 (2017)
CrossRef
ADS
Google scholar
|
[66] |
C. Xiao, G. Zhao, A. Zhang, W. Jiang, R. A. Janssen, W. Li, W. Hu, and Z. Wang, High performance polymer nanowire field-effect transistors with distinct molecular orientations, Adv. Mater. 27(34), 4963 (2015)
CrossRef
ADS
Google scholar
|
[67] |
J. Xu, S. Wang, G. N. Wang, C. Zhu, S. Luo, L. Jin, X. Gu, S. Chen, V. Feig, J. W. F. To, S. R. Gagné, J. Park, B. C. Schroeder, C. Lu, J. Oh, Y. Wang, Y. H. Kim, H. Yan, R. Sinclair, D. Zhou, G. Xue, B. Murmann, C. Linder, W. Cai, J. B. H. Tok, J. W. Chung, and Z. Bao, Highly stretchable polymer semiconductor films through the nanoconfinement effect, Science 355(6320), 59 (2017)
CrossRef
ADS
Google scholar
|
[68] |
H. Chen, Y. Guo, G. Yu, Y. Zhao, J. Zhang, D. Gao, H. Liu, and Y. Liu, Highly Pi-extended copolymers with diketopyrrolopyrrole moieties for high-performance fieldeffect transistors, Adv. Mater. 24(34), 4618 (2012)
CrossRef
ADS
Google scholar
|
[69] |
H. Yu, K. H. Park, I. Song, M. J. Kim, Y. H. Kim, and J. H. Oh, Effect of the alkyl spacer length on the electrical performance of diketopyrrolopyrrole-thiophene vinylene thiophene polymer semiconductors, J. Mater. Chem. C 3(44), 11697 (2015)
CrossRef
ADS
Google scholar
|
[70] |
J. Y. Back, H. Yu, I. Song, I. Kang, H. Ahn, T. J. Shin, S. K. Kwon, J. H. Oh, and Y. H. Kim, Investigation of structure–property relationships in diketopyrrolopyrrolebased polymer semiconductors via side-chain engineering, Chem. Mater. 27(5), 1732 (2015)
CrossRef
ADS
Google scholar
|
[71] |
I. Kang, H. J. Yun, D. S. Chung, S. K. Kwon, and Y. H. Kim, Record high hole mobility in polymer semiconductors via side-chain engineering, J. Am. Chem. Soc. 135(40), 14896 (2013)
CrossRef
ADS
Google scholar
|
[72] |
H. H. Choi, J. Y. Baek, E. Song, B. Kang, K. Cho, S. K. Kwon, and Y. H. Kim, A pseudo-regular alternating conjugated copolymer using an asymmetric monomer: a high-mobility organic transistor in nonchlorinated solvents, Adv. Mater. 27(24), 3626 (2015)
CrossRef
ADS
Google scholar
|
[73] |
X. Zhang, H. Bronstein, A. J. Kronemeijer, J. Smith, Y. Kim, R. J. Kline, L. J. Richter, T. D. Anthopoulos, H. Sirringhaus, K. Song, M. Heeney, W. Zhang, I. McCulloch, and D. M. DeLongchamp, Molecular origin of high field-effect mobility in an indacenodithiophenebenzothiadiazole copolymer, Nat. Commun. 4(1), 2238 (2013)
CrossRef
ADS
Google scholar
|
[74] |
A. Wadsworth, H. Chen, K. J. Thorley, C. Cendra, M. Nikolka, H. Bristow, M. Moser, A. Salleo, T. D. Anthopoulos, H. Sirringhaus, and I. McCulloch, Modification of indacenodithiophene-based polymers and its impact on charge carrier mobility in organic thin-film transistors, J. Am. Chem. Soc. 142(2), 652 (2020)
CrossRef
ADS
Google scholar
|
[75] |
H. Bronstein, D. S. Leem, R. Hamilton, P. Woebkenberg, S. King, W. Zhang, R. S. Ashraf, M. Heeney, T. D. Anthopoulos, J. Mello, and I. McCulloch, Indacenodithiophene-Co-benzothiadiazole copolymers for high performance solar cells or transistors via alkyl chain optimization, Macromolecules 44(17), 6649 (2011)
CrossRef
ADS
Google scholar
|
[76] |
J. H. Kim, M. W. Choi, W. S. Yoon, S. Oh, S. H. Hong, and S. Y. Park, Structural and electronic origin of bislactam- based high-performance organic thin-film transistors, ACS Appl. Mater. Interfaces 11(8), 8301 (2019)
CrossRef
ADS
Google scholar
|
[77] |
Z. Fei, Y. Han, E. Gann, T. Hodsden, A. S. R. Chesman, C. R. McNeill, T. D. Anthopoulos, and M. Heeney, Alkylated selenophene-based ladder-type monomers via a facile route for high-performance thin-film transistor applications, J. Am. Chem. Soc. 139(25), 8552 (2017)
CrossRef
ADS
Google scholar
|
[78] |
H. Chen, A. Wadsworth, C. Ma, A. Nanni, W. Zhang, M. Nikolka, A. M. T. Luci, L. M. A. Perdigao, K. J. Thorley, C. Cendra, B. Larson, G. Rumbles, T. D. Anthopoulos, A. Salleo, G. Costantini, H. Sirringhaus, and I. McCulloch, The effect of ring expansion in thienobenzo[b]indacenodithiophene polymers for organic field-effect transistors, J. Am. Chem. Soc. 141(47), 18806 (2019)
CrossRef
ADS
Google scholar
|
[79] |
W. Zhang, Y. Han, X. Zhu, Z. Fei, Y. Feng, N. D. Treat, H. Faber, N. Stingelin, I. McCulloch, T. D. Anthopoulos, and M. Heeney, A novel alkylated indacenodithieno[3,2- b]thiophene-based polymer for high-performance fieldeffect transistors, Adv. Mater. 28(20), 3922 (2016)
CrossRef
ADS
Google scholar
|
[80] |
H. Chen, M. Hurhangee, M. Nikolka, W. Zhang, M. Kirkus, M. Neophytou, S. J. Cryer, D. Harkin, P. Hayoz, M. Abdi-Jalebi, C. R. McNeill, H. Sirringhaus, and I. Mc-Culloch, Dithiopheneindenofluorene (tif) semiconducting polymers with very high mobility in field-effect transistors, Adv. Mater. 29(36), 1702523 (2017)
CrossRef
ADS
Google scholar
|
[81] |
M. Zhang, H. N. Tsao, W. Pisula, C. Yang, A. K. Mishra, and K. Müllen, Field-effect transistors based on a benzothiadiazole cyclopentadithiophene copolymer, J. Am. Chem. Soc. 129(12), 3472 (2007)
CrossRef
ADS
Google scholar
|
[82] |
H. N. Tsao, D. M. Cho, I. Park, M. R. Hansen, A. Mavrinskiy, D. Y. Yoon, R. Graf, W. Pisula, H. W. Spiess, and K. Mullen, Ultrahigh mobility in polymer field-effect transistors by design, J. Am. Chem. Soc. 133(8), 2605 (2011)
CrossRef
ADS
Google scholar
|
[83] |
S. Wang, M. Kappl, I. Liebewirth, M. Muller, K. Kirchhoff, W. Pisula, and K. Mullen, Organic field-effect transistors based on highly ordered single polymer fibers, Adv. Mater. 24(3), 417 (2012)
CrossRef
ADS
Google scholar
|
[84] |
Y. Yamashita, F. Hinkel, T. Marszalek, W. Zajaczkowski, W. Pisula, M. Baumgarten, H. Matsui, K. Müllen, and J. Takeya, Mobility exceeding 10 cm2/(V·s) in donoracceptor polymer transistors with band-like charge transport, Chem. Mater. 28(2), 420 (2016)
CrossRef
ADS
Google scholar
|
[85] |
C. Luo, A. K. Kyaw, L. A. Perez, S. Patel, M. Wang, B. Grimm, G. C. Bazan, E. J. Kramer, and A. J. Heeger, General strategy for self-assembly of highly oriented nanocrystalline semiconducting polymers with high mobility, Nano Lett. 14(5), 2764 (2014)
CrossRef
ADS
Google scholar
|
[86] |
Y. Park, J. W. Jung, H. Kang, J. Seth, Y. Kang, and M. M. Sung, Single-crystal poly[4-(4,4- dihexadecyl-4H-cyclopenta[1,2-b:5,4-b′]dithiophen-2- yl)-alt-[1,2,5]thiadiazolo[3,4-c]pyridine] nanowires with ultrahigh mobility, Nano Lett. 19(2), 1028 (2019)
CrossRef
ADS
Google scholar
|
[87] |
M. Wang, M. J. Ford, C. Zhou, M. Seifrid, T. Q. Nguyen, and G. C. Bazan, Linear conjugated polymer backbones improve alignment in nanogroove-assisted organic fieldeffect transistors, J. Am. Chem. Soc. 139(48), 17624 (2017)
CrossRef
ADS
Google scholar
|
[88] |
J. Lee, S. H. Kang, S. M. Lee, K. C. Lee, H. Yang, Y. Cho, D. Han, Y. Li, B. H. Lee, and C. Yang, An ultrahigh mobility in isomorphic fluorobenzo[c][1,2,5]thiadiazole-based polymers, Angew. Chem. Int. Ed. 57(41), 13629 (2018)
CrossRef
ADS
Google scholar
|
[89] |
B. Nketia-Yawson, H. S. Lee, D. Seo, Y. Yoon, W. T. Park, K. Kwak, H. J. Son, B. Kim, and Y. Y. Noh, A highly planar fluorinated benzothiadiazole-based conjugated polymer for high-performance organic thin-film transistors, Adv. Mater. 27(19), 3045 (2015)
CrossRef
ADS
Google scholar
|
[90] |
B. Nketia-Yawson, A. R. Jung, H. D. Nguyen, K. K. Lee, B. Kim, and Y. Y. Noh, Difluorobenzothiadiazole and selenophene-based conjugated polymer demonstrating an effective hole mobility exceeding 5 cm2·V−1·s−1 with solid-state electrolyte dielectric, ACS Appl. Mater. Interfaces 10(38), 32492 (2018)
CrossRef
ADS
Google scholar
|
[91] |
T. Lei, J. Y. Wang, and J. Pei, Design, synthesis, and structure-property relationships of isoindigo-based conjugated polymers, Acc. Chem. Res. 47(4), 1117 (2014)
CrossRef
ADS
Google scholar
|
[92] |
T. Lei, Y. Cao, Y. Fan, C. J. Liu, S. C. Yuan, and J. Pei, High-performance air-stable organic field-effect transistors: Isoindigo-based conjugated polymers, J. Am. Chem. Soc. 133(16), 6099 (2011)
CrossRef
ADS
Google scholar
|
[93] |
T. Lei, J. H. Dou, and J. Pei, Influence of alkyl chain branching positions on the hole mobilities of polymer thin-film transistors, Adv. Mater. 24(48), 6457 (2012)
CrossRef
ADS
Google scholar
|
[94] |
J. Mei, D. H. Kim, A. L. Ayzner, M. F. Toney, and Z. Bao, Siloxane-terminated solubilizing side chains: Bringing conjugated polymer backbones closer and boosting hole mobilities in thin-film transistors, J. Am. Chem. Soc. 133(50), 20130 (2011)
CrossRef
ADS
Google scholar
|
[95] |
H. C. Wu, C. C. Hung, C. W. Hong, H. S. Sun, J. T. Wang, G. Yamashita, T. Higashihara, and W. C. Chen, Isoindigo-based semiconducting polymers using carbosilane side chains for high performance stretchable fieldeffect transistors, Macromolecules 49(22), 8540 (2016)
CrossRef
ADS
Google scholar
|
[96] |
G. Xue, X. Zhao, G. Qu, T. Xu, A. Gumyusenge, Z. Zhang, Y. Zhao, Y. Diao, H. Li, and J. Mei, Symmetry breaking in side chains leading to mixed orientations and improved charge transport in isoindigo-alt-bithiophene based polymer thin films, ACS Appl. Mater. Interfaces 9(30), 25426 (2017)
CrossRef
ADS
Google scholar
|
[97] |
J. Mei, H. Wu, Y. Diao, A. Appleton, H. Wang, Y. Zhou, W. Y. Lee, T. Kurosawa, W. C. Chen, and Z. Bao, Effect of spacer length of siloxane-terminated side chains on charge transport in isoindigo-based polymer semiconductor thin films, Adv. Funct. Mater. 25(23), 3455 (2015)
CrossRef
ADS
Google scholar
|
[98] |
H. T. Nicolai, M. Kuik, G. A. Wetzelaer, B. de Boer, C. Campbell, C. Risko, J. L. Bredas, and P. W. Blom, Unification of trap-limited electron transport in semiconducting polymers, Nat. Mater. 11(10), 882 (2012)
CrossRef
ADS
Google scholar
|
[99] |
R. Zhao, Y. Min, C. Dou, B. Lin, W. Ma, J. Liu, and L. Wang, A conjugated polymer containing a B ← N unit for unipolar n-type organic field-effect transistors, ACS Appl. Polym. Mater. 2(1), 19 (2020)
CrossRef
ADS
Google scholar
|
[100] |
H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dotz, M. Kastler, and A. Facchetti, A high-mobility electron-transporting polymer for printed transistors, Nature 457(7230), 679 (2009)
CrossRef
ADS
Google scholar
|
[101] |
Y. J. Kim, N. K. Kim, W. T. Park, C. Liu, Y. Y. Noh, and D. Y. Kim, Kinetically controlled crystallization in conjugated polymer films for high‐performance organic field‐effect transistors, Adv. Funct. Mater. 29(23), 1807786 (2019)
CrossRef
ADS
Google scholar
|
[102] |
D. H. Lee, M. Kang, D. H. Lim, Y. Kim, J. Lee, D. Y. Kim, and K. J. Baeg, Simultaneous enhancement of charge density and molecular stacking order of polymer semiconductors by viologen dopants for high performance organic field-effect transistors, J. Mater. Chem. C 6(20), 5497 (2018)
CrossRef
ADS
Google scholar
|
[103] |
T. Kurosawa, Y. C. Chiu, Y. Zhou, X. Gu, W. C. Chen, and Z. Bao, Impact of polystyrene oligomer side chains on naphthalene diimide-bithiophene polymers as n-type semiconductors for organic field-effect transistors, Adv. Funct. Mater. 26(8), 1261 (2016)
CrossRef
ADS
Google scholar
|
[104] |
J. Panidi, J. Kainth, A. F. Paterson, S. Wang, L. Tsetseris, A. H. Emwas, M. A. McLachlan, M. Heeney, and T. D. Anthopoulos, Introducing a nonvolatile N‐type dopant drastically improves electron transport in polymer and small‐molecule organic transistors, Adv. Funct. Mater. 29(34), 1902784 (2019)
CrossRef
ADS
Google scholar
|
[105] |
W. Wang, R. Chen, Y. Hu, H. Lu, L. Qiu, Y. Ding, D. Sun, and G. Zhang, High-efficiency synthesis of a naphthalene-diimide-based conjugated polymer using continuous flow technology for organic field-effect transistors, J. Mater. Chem. C 7(27), 8450 (2019)
CrossRef
ADS
Google scholar
|
[106] |
B. Kang, R. Kim, S. B. Lee, S. K. Kwon, Y. H. Kim, and K. Cho, Side-chain-induced rigid backbone organization of polymer semiconductors through semifluoroalkyl side chains, J. Am. Chem. Soc. 138(11), 3679 (2016)
CrossRef
ADS
Google scholar
|
[107] |
R. Kim, P. S. K. Amegadze, I. Kang, H. J. Yun, Y. Y. Noh, S. K. Kwon, and Y. H. Kim, High-mobility airstable naphthalene diimide-based copolymer containing extended π-conjugation for n-channel organic field effect transistors, Adv. Funct. Mater. 23(46), 5719 (2013)
CrossRef
ADS
Google scholar
|
[108] |
R. Kim, B. Kang, D. H. Sin, H. H. Choi, S. K. Kwon, Y. H. Kim, and K. Cho, Oligo(ethylene glycol)-incorporated hybrid linear alkyl side chains for n-channel polymer semiconductors and their effect on the thin-film crystalline structure, Chem. Commun. (Camb.) 51(8), 1524 (2015)
CrossRef
ADS
Google scholar
|
[109] |
J. Ma, Z. Zhao, Y. Guo, H. Geng, Y. Sun, J. Tian, Q. He, Z. Cai, X. Zhang, G. Zhang, Z. Liu, D. Zhang, and Y. Liu, Improving the electronic transporting property for flexible field-effect transistors with naphthalene diimidebased conjugated polymer through branching/linear sidechain engineering strategy, ACS Appl. Mater. Interfaces 11(17), 15837 (2019)
CrossRef
ADS
Google scholar
|
[110] |
Y. Wang, T. Hasegawa, H. Matsumoto, T. Mori, and T. Michinobu, High-performance n-channel organic transistors using high-molecular-weight electron-deficient copolymers and amine-tailed self-assembled monolayers, Adv. Mater. 30(13), 1707164 (2018)
CrossRef
ADS
Google scholar
|
[111] |
Y. Wang, T. Hasegawa, H. Matsumoto, and T. Michinobu, Significant improvement of unipolar n-type transistor performances by manipulating the coplanar backbone conformation of electron-deficient polymers via hydrogen bonding, J. Am. Chem. Soc. 141(8), 3566 (2019)
CrossRef
ADS
Google scholar
|
[112] |
Y. Wang, S. W. Kim, J. Lee, H. Matsumoto, B. J. Kim, and T. Michinobu, Dual imide-functionalized unit-based regioregular D-A1-D-A2 polymers for efficient unipolar n-channel organic transistors and all-polymer solar cells, ACS Appl. Mater. Interfaces 11(25), 22583 (2019)
CrossRef
ADS
Google scholar
|
[113] |
Z. Zhao, Z. Yin, H. Chen, L. Zheng, C. Zhu, L. Zhang, S. Tan, H. Wang, Y. Guo, Q. Tang, and Y. Liu, High-performance, air-stable field-effect transistors based on heteroatom-substituted naphthalenediimidebenzothiadiazole copolymers exhibiting ultrahigh electron mobility up to 8.5 cm2·V−1·s−1, Adv. Mater. 29(4), 1602410 (2017)
CrossRef
ADS
Google scholar
|
[114] |
L. Zhang, Z. Wang, C. Duan, Z. Wang, Y. Deng, J. Xu, F. Huang, and Y. Cao, Conjugated polymers based on thiazole flanked naphthalene diimide for unipolar n-type organic field-effect transistors, Chem. Mater. 30(22), 8343 (2018)
CrossRef
ADS
Google scholar
|
[115] |
J. T. E. Quinn, J. Zhu, X. Li, J. Wang, and Y. Li, Recent progress in the development of n-type organic semiconductors for organic field effect transistors, J. Mater. Chem. C 5(34), 8654 (2017)
CrossRef
ADS
Google scholar
|
[116] |
C. Kanimozhi, N. Yaacobi-Gross, K. W. Chou, A. Amassian, T. D. Anthopoulos, and S. Patil, Diketopyrrolopyrrole-diketopyrrolopyrrole-based conjugated copolymer for high-mobility organic field-effect transistors, J. Am. Chem. Soc. 134(40), 16532 (2012)
CrossRef
ADS
Google scholar
|
[117] |
J. H. Park, E. H. Jung, J. W. Jung, and W. H. Jo, A fluorinated phenylene unit as a building block for high-performance n-type semiconducting polymer, Adv. Mater. 25(18), 2583 (2013)
CrossRef
ADS
Google scholar
|
[118] |
H. J. Yun, S. J. Kang, Y. Xu, S. O. Kim, Y. H. Kim, Y. Y. Noh, and S. K. Kwon, Dramatic inversion of charge polarity in diketopyrrolopyrrole-based organic field-effect transistors via a simple nitrile group substitution, Adv. Mater. 26(43), 7300 (2014)
CrossRef
ADS
Google scholar
|
[119] |
H. Yu, H. N. Kim, I. Song, Y. H. Ha, H. Ahn, J. H. Oh, and Y. H. Kim, Effect of alkyl chain spacer on charge transport in n-type dominant polymer semiconductors with a diketopyrrolopyrrole-thiophene-bithiazole acceptor-donor-acceptor unit, J. Mater. Chem. C 5(14), 3616 (2017)
CrossRef
ADS
Google scholar
|
[120] |
Z. Ni, H. Dong, H. Wang, S. Ding, Y. Zou, Q. Zhao, Y. Zhen, F. Liu, L. Jiang, and W. Hu, Quinoline-flanked diketopyrrolopyrrole copolymers breaking through electron mobility over 6 cm2·V−1·s−1 in flexible thin film devices, Adv. Mater. 30(10), 1704843 (2018)
CrossRef
ADS
Google scholar
|
[121] |
X. Yan, M. Xiong, J. T. Li, S. Zhang, Z. Ahmad, Y. Lu, Z. Y. Wang, Z. F. Yao, J. Y. Wang, X. Gu, and T. Lei, Pyrazine-flanked diketopyrrolopyrrole (DPP): A new polymer building block for high-performance n-type organic thermoelectrics, J. Am. Chem. Soc. 141(51), 20215 (2019)
CrossRef
ADS
Google scholar
|
[122] |
C. J. Yao, H. L. Zhang, and Q. Zhang, Recent progress in thermoelectric materials based on conjugated polymers, Polymers (Basel) 11(1), 107 (2019)
CrossRef
ADS
Google scholar
|
[123] |
J. Xie, C. E. Zhao, Z. Lin, P. Gu, and Q. Zhang, Nanostructured conjugated polymers for energy-related applications beyond solar cells, Chem. Asian J. 11(10), 1489 (2016)
CrossRef
ADS
Google scholar
|
[124] |
P. Deng and Q. Zhang, Recent developments on isoindigobased conjugated polymers, Polym. Chem. 5(10), 3298 (2014)
CrossRef
ADS
Google scholar
|
[125] |
Y. Olivier, D. Niedzialek, V. Lemaur, W. Pisula, K. Mullen, U. Koldemir, J. R. Reynolds, R. Lazzaroni, J. Cornil, and D. Beljonne, High-mobility hole and electron transport conjugated polymers: How structure defines function, Adv. Mater. 26(14), 2119 (2014)
CrossRef
ADS
Google scholar
|
[126] |
G. Kim, A. R. Han, H. R. Lee, J. Lee, J. H. Oh, and C. Yang, Acceptor-acceptor type isoindigo-based copolymers for high-performance n-channel field-effect transistors, Chem. Commun. (Camb.) 50(17), 2180 (2014)
CrossRef
ADS
Google scholar
|
[127] |
W. Yue, M. Nikolka, M. Xiao, A. Sadhanala, C. B. Nielsen, A. J. P. White, H. Y. Chen, A. Onwubiko, H. Sirringhaus, and I. McCulloch, Azaisoindigo conjugated polymers for high performance n-type and ambipolar thin film transistor applications, J. Mater. Chem. C 4(41), 9704 (2016)
CrossRef
ADS
Google scholar
|
[128] |
Y. Gao, Y. Deng, H. Tian, J. Zhang, D. Yan, Y. Geng, and F. Wang, Multifluorination toward high-mobility ambipolar and unipolar n-type donor-acceptor conjugated polymers based on isoindigo, Adv. Mater. 29(13), 1606217 (2017)
CrossRef
ADS
Google scholar
|
[129] |
F. Chen, Y. Jiang, Y. Sui, J. Zhang, H. Tian, Y. Han, Y. Deng, W. Hu, and Y. Geng, Donor-acceptor conjugated polymers based on bisisoindigo: Energy level modulation toward unipolar n-type semiconductors, Macromolecules 51(21), 8652 (2018)
CrossRef
ADS
Google scholar
|
[130] |
T. Lei, J. H. Dou, X. Y. Cao, J. Y. Wang, and J. Pei, Electron-deficient poly(p-phenylene vinylene) provides electron mobility over 1 cm2·V−1·s−1 under ambient conditions, J. Am. Chem. Soc. 135(33), 12168 (2013)
CrossRef
ADS
Google scholar
|
[131] |
T. Lei, X. Xia, J. Y. Wang, C. J. Liu, and J. Pei, “Conformation locked” strong electron-deficient poly(pphenylene vinylene) derivatives for ambient-stable n-type field-effect transistors: Synthesis, properties, and effects of fluorine substitution position, J. Am. Chem. Soc. 136(5), 2135 (2014)
CrossRef
ADS
Google scholar
|
[132] |
Y. Q. Zheng, T. Lei, J. H. Dou, X. Xia, J. Y. Wang, C. J. Liu, and J. Pei, Strong electron-deficient polymers lead to high electron mobility in air and their morphologydependent transport behaviors, Adv. Mater. 28(33), 7213 (2016)
CrossRef
ADS
Google scholar
|
[133] |
Y. Z. Dai, N. Ai, Y. Lu, Y. Q. Zheng, J. H. Dou, K. Shi, T. Lei, J. Y. Wang, and J. Pei, Embedding electrondeficient nitrogen atoms in polymer backbone towards high performance n-type polymer field-effect transistors, Chem. Sci. (Camb.) 7(9), 5753 (2016)
CrossRef
ADS
Google scholar
|
[134] |
Y. Q. Zheng, Z. F. Yao, T. Lei, J. H. Dou, C. Y. Yang, L. Zou, X. Meng, W. Ma, J. Y. Wang, and J. Pei, Unraveling the solution-state supramolecular structures of donor-acceptor polymers and their influence on solidstate morphology and charge-transport properties, Adv. Mater. 29(42), 1701072 (2017)
CrossRef
ADS
Google scholar
|
[135] |
Z. Yi, S. Wang, and Y. Liu, Design of high-mobility diketopyrrolopyrrole-based pi-conjugated copolymers for organic thin-film transistors, Adv. Mater. 27(24), 3589 (2015)
CrossRef
ADS
Google scholar
|
[136] |
B. Sun, W. Hong, Z. Yan, H. Aziz, and Y. Li, Record high electron mobility of 6.3 cm2·V−1·s−1 achieved for polymer semiconductors using a new building block, Adv. Mater. 26(17), 2636 (2014)
CrossRef
ADS
Google scholar
|
[137] |
Y. Gao, X. Zhang, H. Tian, J. Zhang, D. Yan, Y. Geng, and F. Wang, High mobility ambipolar diketopyrrolopyrrole-based conjugated polymer synthesized via direct arylation polycondensation, Adv. Mater. 27(42), 6753 (2015)
CrossRef
ADS
Google scholar
|
[138] |
K. Guo, J. Bai, Y. Jiang, Z. Wang, Y. Sui, Y. Deng, Y. Han, H. Tian, and Y. Geng, Diketopyrrolopyrrolebased conjugated polymers synthesized via direct arylation polycondensation for high mobility pure n-channel organic field-effect transistors, Adv. Funct. Mater. 28(31), 1801097 (2018)
CrossRef
ADS
Google scholar
|
[139] |
D. Khim, Y. R. Cheon, Y. Xu, W. T. Park, S. K. Kwon, Y. Y. Noh, and Y. H. Kim, Facile route to control the ambipolar transport in semiconducting polymers, Chem. Mater. 28(7), 2287 (2016)
CrossRef
ADS
Google scholar
|
[140] |
J. Yang, H. Wang, J. Chen, J. Huang, Y. Jiang, J. Zhang, L. Shi, Y. Sun, Z. Wei, G. Yu, Y. Guo, S. Wang, and Y. Liu, Bis-diketopyrrolopyrrole moiety as a promising building block to enable balanced ambipolar polymers for flexible transistors, Adv. Mater. 29(22), 1606162 (2017)
CrossRef
ADS
Google scholar
|
[141] |
Z. Ni, H. Wang, Q. Zhao, J. Zhang, Z. Wei, H. Dong, and W. Hu, Ambipolar conjugated polymers with ultrahigh balanced hole and electron mobility for printed organic complementary logic via a two-step ch activation strategy, Adv. Mater. 31(10), 1806010 (2019)
CrossRef
ADS
Google scholar
|
[142] |
Z. Ni, H. Wang, H. Dong, Y. Dang, Q. Zhao, X. Zhang, and W. Hu, Mesopolymer synthesis by ligand-modulated direct arylation polycondensation towards n-type and ambipolar conjugated systems, Nat. Chem. 11(3), 271 (2019)
CrossRef
ADS
Google scholar
|
[143] |
D. Shi, Z. Liu, J. Ma, Z. Zhao, L. Tan, G. Lin, J. Tian, X. Zhang, G. Zhang, and D. Zhang, Half-fused diketopyrrolopyrrole-based conjugated donoracceptor polymer for ambipolar field-effect transistors, Adv. Funct. Mater. 30(21), 1910235 (2020)
CrossRef
ADS
Google scholar
|
[144] |
J. Yang, Z. Zhao, H. Geng, C. Cheng, J. Chen, Y. Sun, L. Shi, Y. Yi, Z. Shuai, Y. Guo, S. Wang, and Y. Liu, Isoindigo-based polymers with small effective masses for high-mobility ambipolar field-effect transistors, Adv. Mater. 29(36), 1702115 (2017)
CrossRef
ADS
Google scholar
|
[145] |
T. Takaya, M. D. Mamo, M. Karakawa, and Y. Y. Noh, Isoindigo benzodifurandione based conjugated polymers for high performance organic field-effect transistors, J. Mater. Chem. C 6(29), 7822 (2018)
CrossRef
ADS
Google scholar
|
[146] |
K. Huang, X. Zhao, Y. Du, S. Kim, X. Wang, H. Lu, K. Cho, G. Zhang, and L. Qiu, Modulating charge transport characteristics of bis-azaisoindigo-based D–A conjugated polymers through energy level regulation and side chain optimization, J. Mater. Chem. C 7(25), 7618 (2019)
CrossRef
ADS
Google scholar
|
[147] |
Y. Jiang, J. Chen, Y. Sun, Q. Li, Z. Cai, J. Li, Y. Guo, W. Hu, and Y. Liu, Fast deposition of aligning edge-on polymers for high-mobility ambipolar transistors, Adv. Mater. 31(2), 1805761 (2019)
CrossRef
ADS
Google scholar
|
[148] |
X. Zhou, N. Ai, Z. H. Guo, F. D. Zhuang, Y. S. Jiang, J. Y. Wang, and J. Pei, Balanced ambipolar organic thinfilm transistors operated under ambient conditions: Role of the donor moiety in BDOPV-based conjugated copolymers, Chem. Mater. 27(5), 1815 (2015)
CrossRef
ADS
Google scholar
|
[149] |
Y. Deng, B. Sun, Y. He, J. Quinn, C. Guo, and Y. Li, (3E,8E)-3,8-Bis(2-oxoindolin-3-ylidene)naphtho-[1,2- b:5,6-b′]difuran-2,7(3H,8H)-dione (INDF) based polymers for organic thin-film transistors with highly balanced ambipolar charge transport characteristics, Chem. Commun. (Camb.) 51(70), 13515 (2015)
CrossRef
ADS
Google scholar
|
[150] |
H. Luo, C. Yu, Z. Liu, G. Zhang, H. Geng, Y. Yi, K. Broch, Y. Hu, A. Sadhanala, L. Jiang, P. Qi, Z. Cai, H. Sirringhaus, and D. Zhang, Remarkable enhancement of charge carrier mobility of conjugated polymer field-effect transistors upon incorporating an ionic additive, Sci. Adv. 2(5), e1600076 (2016)
CrossRef
ADS
Google scholar
|
[151] |
M. Kang, J. Yeo, W. Park, N. Kim, D. Lim, H. Hwang, K. Baeg, Y. Noh, and D. Kim, Favorable molecular orientation enhancement in semiconducting polymer assisted by conjugated organic small molecules, Adv. Funct. Mater. 26(46), 8527 (2016)
CrossRef
ADS
Google scholar
|
[152] |
K. Wasapinyokul, T. Panjasamanwong, W. Ponkasemsuk, C. Sriprachuabwong, and T. Lomas, Mathematical model for thickness of off‐center spin‐coated polymer films, J. Appl. Polym. Sci. 137(6), 48356 (2020)
CrossRef
ADS
Google scholar
|
[153] |
H. Wang, L. Chen, R. Xing, J. Liu, and Y. Han, Simultaneous control over both molecular order and long-range alignment in films of the donor-acceptor copolymer, Langmuir 31(1), 469 (2015)
CrossRef
ADS
Google scholar
|
[154] |
A. Li, D. Bilby, B. X. Dong, J. Amonoo, J. Kim, and P. F. Green, Macroscopic alignment of poly(3-hexylthiophene) for enhanced long-range collection of photogenerated carriers, J. Polym. Sci. B 54(2), 180 (2016)
CrossRef
ADS
Google scholar
|
[155] |
S. Wang, A. Kiersnowski, W. Pisula, and K. Mullen, Microstructure evolution and device performance in solution-processed polymeric field-effect transistors: The key role of the first monolayer, J. Am. Chem. Soc. 134(9), 4015 (2012)
CrossRef
ADS
Google scholar
|
[156] |
S. Wang, W. Pisula, and K. Müllen, Nanofiber growth and alignment in solution processed n-type naphthalenediimide- based polymeric field-effect transistors, J. Mater. Chem. 22(47), 24827 (2012)
CrossRef
ADS
Google scholar
|
[157] |
X. Gu, L. Shaw, K. Gu, M. F. Toney, and Z. Bao, The meniscus-guided deposition of semiconducting polymers, Nat. Commun. 9(1), 534 (2018)
CrossRef
ADS
Google scholar
|
[158] |
G. Qu, J. J. Kwok, and Y. Diao, Flow-directed crystallization for printed electronics, Acc. Chem. Res. 49(12), 2756 (2016)
CrossRef
ADS
Google scholar
|
[159] |
Z. Zhao, H. Liu, Y. Zhao, C. Cheng, J. Zhao, Q. Tang, G. Zhang, and Y. Liu, Anisotropic charge-carrier transport in high-mobility donor-acceptor conjugated polymer semiconductor films,Chem. Asian J. 11(19), 2725 (2016)
CrossRef
ADS
Google scholar
|
[160] |
G. Wang, W. Huang, N. D. Eastham, S. Fabiano, E. F. Manley, L. Zeng, B. Wang, X. Zhang, Z. Chen, R. Li, R. P. H. Chang, L. X. Chen, M. J. Bedzyk, F. S. Melkonyan, A. Facchetti, and T. J. Marks, Aggregation control in natural brush-printed conjugated polymer films and implications for enhancing charge transport, Proc. Natl. Acad. Sci. USA 114(47), E10066 (2017)
CrossRef
ADS
Google scholar
|
[161] |
F. Ge, Z. Liu, S. B. Lee, X. Wang, G. Zhang, H. Lu, K. Cho, and L. Qiu, Bar-coated ultrathin semiconductors from polymer blend for one-step organic field-effect transistors, ACS Appl. Mater. Interfaces 10(25), 21510 (2018)
CrossRef
ADS
Google scholar
|
[162] |
B. J. Worfolk, S. C. Andrews, S. Park, J. Reinspach, N. Liu, M. F. Toney, S. C. Mannsfeld, and Z. Bao, Ultrahigh electrical conductivity in solution-sheared polymeric transparent films, Proc. Natl. Acad. Sci. USA 112(46), 14138 (2015)
CrossRef
ADS
Google scholar
|
[163] |
J. Liu, M. Arif, J. Zou, S. I. Khondaker, and L. Zhai, Controlling poly(3-hexylthiophene) crystal dimension: nanowhiskers and nanoribbons, Macromolecules 42(24), 9390 (2009)
CrossRef
ADS
Google scholar
|
[164] |
D. H. Kim, J. T. Han, Y. D. Park, Y. Jang, J. H. Cho, M. Hwang, and K. Cho, Single-crystal polythiophene microwires grown by self-assembly, Adv. Mater. 18(6), 719 (2006)
CrossRef
ADS
Google scholar
|
[165] |
H. A. Um, D. H. Lee, D. U. Heo, D. S. Yang, J. Shin, H. Baik, M. J. Cho, and D. H. Choi, High aspect ratio conjugated polymer nanowires for high performance fieldeffect transistors and phototransistors, ACS Nano 9(5), 5264 (2015)
CrossRef
ADS
Google scholar
|
[166] |
X. Xiao, Z. Hu, Z. Wang, and T. He, Study on the single crystals of poly(3-octylthiophene) induced by solventvapor annealing, J. Phys. Chem. B 113(44), 14604 (2009)
CrossRef
ADS
Google scholar
|
[167] |
X. Xiao, Z. Wang, Z. Hu, and T. He, Single crystals of polythiophene with different molecular conformations obtained by tetrahydrofuran vapor annealing and controlling solvent evaporation, J. Phys. Chem. B 114(22), 7452 (2010)
CrossRef
ADS
Google scholar
|
[168] |
H. Wang, J. Liu, Y. Xu, and Y. Han, Fibrillar morphology of derivatives of poly(3-alkylthiophene)s by solvent vapor annealing: Effects of conformational transition and conjugate length, J. Phys. Chem. B 117(19), 5996 (2013)
CrossRef
ADS
Google scholar
|
[169] |
X. Li, P. J. Wolanin, L. R. MacFarlane, R. L. Harniman, J. Qian, O. E. C. Gould, T. G. Dane, J. Rudin, M. J. Cryan, T. Schmaltz, H. Frauenrath, M. A. Winnik, C. F. J. Faul, and I. Manners, Uniform electroactive fibre-like micelle nanowires for organic electronics, Nat. Commun. 8(1), 1 (2017)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |