Physical description of the monoclinic phase of zirconia based on the bond-order characteristic of the Tersoff potential

Run-Sen Zhang, Ji-Dong He, Bing-Shen Wang, Jin-Wu Jiang

PDF(2928 KB)
PDF(2928 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (3) : 33505. DOI: 10.1007/s11467-020-1044-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Physical description of the monoclinic phase of zirconia based on the bond-order characteristic of the Tersoff potential

Author information +
History +

Abstract

Zirconia has many important phases with Zr coordination varying from six-fold in the orthorhombic phase to eight-fold in the cubic and tetragonal phases. Development of empirical potentials to describe these zirconia phases is an important but long-standing challenge, and it is a bottleneck for theoretical investigation of large zirconia structures. Here, instead of using the standard core–shell model, we developed a new potential for zirconia by combining the long-range Coulomb interaction and bondorder Tersoff model. The bond-order characteristic of the Tersoff potential enables it to be well suited to describe the zirconia phases with different coordination numbers. In particular, the complex monoclinic phase with two inequivalent oxygen atoms, which is difficult to describe with most existing empirical potentials, is well described by this newly developed potential. This potential provides reasonable predictions of most of the static and dynamic properties of various zirconia phases. Besides its clear physical essence, this potential is at least one order of magnitude faster than core–shell based potentials in molecular dynamics simulation. This is because it does not include an ultralight shell that requires an extremely small time step. We also provide potential scripts for the widely used simulation packages GULP and LAMMPS.

Keywords

zirconia / ZrO2 / empirical potential / molecular dynamics simulation

Cite this article

Download citation ▾
Run-Sen Zhang, Ji-Dong He, Bing-Shen Wang, Jin-Wu Jiang. Physical description of the monoclinic phase of zirconia based on the bond-order characteristic of the Tersoff potential. Front. Phys., 2021, 16(3): 33505 https://doi.org/10.1007/s11467-020-1044-7

References

[1]
E. H. Kisi and C. J. Howard, Crystal structures of zirconia phases and their inter-relation, Key Eng. Mater.153–154, 1 (1998)
CrossRef ADS Google scholar
[2]
N. P. Padture, M. Gell, and E. H. Jordan, Thermal barrier coatings for gas-turbine engine applications, Science 296(5566), 280 (2002)
CrossRef ADS Google scholar
[3]
E. H. Kisi and C. J. Howard, in: Zirconia Engineering Ceramics: Old Challenges-new Ideas, Netikon-Zurich: Trans Tech, 1998
[4]
H. J. F. Jansen and J. A. Gardner, Total energy calculations for ZrO2, Physica B 150(1–2), 10 (1988)
CrossRef ADS Google scholar
[5]
K. Parlinski, Z. Q. Li, and Y. Kawazoe, First-principles determination of the soft mode in cubic ZrO2, Phys. Rev. Lett. 78(21), 4063 (1997)
CrossRef ADS Google scholar
[6]
G. Jomard, T. Petit, A. Pasturel, L. Magaud, G. Kresse, and J. Hafner, First-principles calculations to describe zirconia pseudopolymorphs, Phys. Rev. B 59(6), 4044 (1999)
CrossRef ADS Google scholar
[7]
A. Kuwabara, T. Tohei, T. Yamamoto, and I. Tanaka, Ab initiolattice dynamics and phase transformations of ZrO2, Phys. Rev. B 71(6), 064301 (2005)
CrossRef ADS Google scholar
[8]
P. Souvatzis and S. P. Rudin, Dynamical stabilization of cubic ZrO2 by phonon-phonon interactions: Ab initio calculations, Phys. Rev. B 78(18), 184304 (2008)
CrossRef ADS Google scholar
[9]
H. Wu, Y. Duan, K. Liu, D. Lv, L. Qin, L. Shi, and G. Tang, First-principles study of phase transition and band structure of ZrO2 under pressure, J. Alloys Compd. 645, 352 (2015)
[10]
C. W. Li, H. L. Smith, T. Lan, J. L. Niedziela, J. A. Munoz, J. B. Keith, L. Mauger, D. L. Abernathy, and B. Fultz, Phonon anharmonicity of monoclinic zirconia and yttrium-stabilized zirconia, Phys. Rev. B 91(14), 144302 (2015)
CrossRef ADS Google scholar
[11]
G. V. Lewis and C. R. A. Catlow, Potential models for ionic oxides, J. Phys. C 18(6), 1149 (1985)
CrossRef ADS Google scholar
[12]
M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Oxford: Oxford University Press, 1954
[13]
P. K. Schelling, S. R. Phillpot, and D. Wolf, Mechanism of the cubic-to-tetragonal phase transition in zirconia and yttria-stabilized zirconia by molecular-dynamics simulation, J. Am. Ceram. Soc. 84(7), 1609 (2001)
CrossRef ADS Google scholar
[14]
M. Kilo, C. Argirusis, G. Borchardt, and R. A. Jackson, Oxygen diffusion in yttria stabilised zirconia — experimental results and molecular dynamics calculations, Phys. Chem. Chem. Phys. 5(11), 2219 (2003)
CrossRef ADS Google scholar
[15]
C. Yang, K. Trachenko, S. Hull, I. T. Todorov, and M. T. Dove, Emergence of microstructure and oxygen diffusion in yttrium-stabilized cubic zirconia, Phys. Rev. B 97(18), 184107 (2018)
CrossRef ADS Google scholar
[16]
J. B. G. Dick and A. W. Overhauser, Theory of the dielectric constants of alkali halide crystals, Phys. Rev. 112(1), 90 (1958)
CrossRef ADS Google scholar
[17]
A. Dwivedi and A. N. Cormack, A computer simulation study of the defect structure of calcia-stabilized zirconia, Philos. Mag. A 61(1), 1 (1990)
CrossRef ADS Google scholar
[18]
M. Wilson, U. Schonberger, and M. W. Finnis, Transferable atomistic model to describe the energetics of zirconia, Phys. Rev. B 54(13), 9147 (1996)
CrossRef ADS Google scholar
[19]
K. C. Lau and B. I. Dunlap, Molecular dynamics simulation of yttria-stabilized zirconia (YSZ) crystalline and amorphous solids, J. Phys.: Condens. Matter 23(3), 035401 (2011)
CrossRef ADS Google scholar
[20]
F. Shimojo, T. Okabe, F. Tachibana, M. Kobayashi, and H. Okazaki, Molecular dynamics studies of yttria stabilized zirconia (I): Structure and oxygen diffusion, J. Phys. Soc. Jpn. 61(8), 2848 (1992)
CrossRef ADS Google scholar
[21]
M. Smirnov, A. Mirgorodsky, and R. Guinebretiere, Phenomenological theory of lattice dynamics and polymorphism of ZrO2, Phys. Rev. B 68(10), 104106 (2003)
CrossRef ADS Google scholar
[22]
S. Fabris, A. T. Paxton, and M. W. Finnis, Relative energetics and structural properties of zirconia using a selfconsistent tight-binding model, Phys. Rev. B 61(10), 6617 (2000)
CrossRef ADS Google scholar
[23]
A. C. T. van Duin, B. V. Merinov, S. S. Jang, and W. A. Goddard, The ReaxFF reactive force field for solid oxide fuel cell systems with application to oxygen ion transport in yttria-stabilized zirconia, J. Phys. Chem. A 112, 3133 (2008)
CrossRef ADS Google scholar
[24]
C. Wang, A. Tharval, and J. R. Kitchin, A density functional theory parameterised neural network model of zirconia, Mol. Simul. 44(8), 623 (2018)
CrossRef ADS Google scholar
[25]
J. Tersoff, New empirical model for the structural properties of silicon, Phys. Rev. Lett. 56(6), 632 (1986)
CrossRef ADS Google scholar
[26]
O. Ohtaka, H. Fukui, T. Kunisada, T. Fujisawa, K. Funakoshi, W. Utsumi, T. Irifune, K. Kuroda, and T. Kikegawa, Phase relations and equations of state of ZrO2 under high temperature and high pressure, Phys. Rev. B 63(17), 174108 (2001)
CrossRef ADS Google scholar
[27]
D. Wolf, P. Keblinski, S. R. Phillpot, and J. Eggebrecht, Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r–1 summation, J. Chem. Phys. 110(17), 8254 (1999)
CrossRef ADS Google scholar
[28]
C. J. Fennell and J. D. Gezelter, Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics, J. Chem. Phys. 124(23), 234104 (2006)
CrossRef ADS Google scholar
[29]
S. Dai, M. Gharbi, P. Sharma, and H. S. Park, Surface piezoelectricity: Size effects in nanostructures and the emergence of piezoelectricity in non-piezoelectric materials, J. Appl. Phys. 110(10), 104305 (2011)
CrossRef ADS Google scholar
[30]
R. Agrawal, B. Peng, E. E. Gdoutos, and H. D. Espinosa, Elasticity size effects in ZnO nanowires: A combined experimental-computational approach, Nano Lett. 8(11), 3668 (2008)
CrossRef ADS Google scholar
[31]
J. Tersoff, New empirical approach for the structure and energy of covalent systems, Phys. Rev. B 37(12), 6991 (1988)
CrossRef ADS Google scholar
[32]
J. Tersoff, Modeling solid-state chemistry: Interatomic potentials for multicomponent systems, Phys. Rev. B 39(8), 5566 (1989)
CrossRef ADS Google scholar
[33]
P. M. Morse, Diatomic molecules according to the wave mechanics (II): Vibrational levels, Phys. Rev. 34(1), 57 (1929)
CrossRef ADS Google scholar
[34]
W. A. Harrison, Elemetary Electronic Structure, Singapore: World Scientific, 2004
CrossRef ADS Google scholar
[35]
J. D. Gale, GULP: A computer program for the symmetryadapted simulation of solids, J. Chem. Soc. Faraday Trans. 93(4), 629 (1997)
CrossRef ADS Google scholar
[36]
S. J. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117(1), 1 (1995)
CrossRef ADS Google scholar
[37]
A. Christensen and E. A. Carter, First-principles study of the surfaces of zirconia, Phys. Rev. B 58(12), 8050 (1998)
CrossRef ADS Google scholar
[38]
A. Kokalj, Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale, Comput. Mater. Sci. 28(2), 155 (2003)
CrossRef ADS Google scholar
[39]
A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO — the Open Visualization Tool, Model. Simul. Mater. Sci. Eng. 18(1), 015012 (2010)
CrossRef ADS Google scholar
[40]
A. Eichler and G. Kresse, First-principles calculations for the surface termination of pure and yttria-doped zirconia surfaces, Phys. Rev. B 69(4), 045402 (2004)
CrossRef ADS Google scholar
[41]
G. Ballabio, M. Bernasconi, F. Pietrucci, and S. Serra, Ab initio study of yttria-stabilized cubic zirconia surfaces, Phys. Rev. B 70(7), 075417 (2004)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(2928 KB)

Accesses

Citations

Detail

Sections
Recommended

/