Tasting nuclear pasta made with classical molecular dynamics simulations

Bao-An Li

PDF(625 KB)
PDF(625 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (2) : 24302. DOI: 10.1007/s11467-020-1043-8
VIEW & PERSPECTIVE
VIEW & PERSPECTIVE

Tasting nuclear pasta made with classical molecular dynamics simulations

Author information +
History +

Abstract

Nuclear clusters or voids in the inner crust of neutron stars were predicted to have various shapes collectively nicknamed nuclear pasta. The recent review in Ref. [1] by López, Dorso and Frank summarized their systematic investigations into properties especially the morphological and thermodynamical phase transitions of the nuclear pasta within a Classical Molecular Dynamics model, providing further stimuli to find more observational evidences of the predicted nuclear pasta in neutron stars.

Cite this article

Download citation ▾
Bao-An Li. Tasting nuclear pasta made with classical molecular dynamics simulations. Front. Phys., 2021, 16(2): 24302 https://doi.org/10.1007/s11467-020-1043-8

References

[1]
J. A. López, C. O. Dorso, and G. Frank, Properties of nuclear pastas, Front. Phys. 16(2), 24301 (2021)
CrossRef ADS Google scholar
[2]
The National Academies Press, New Worlds, New Horizons in Astronomy and Astrophysics, 2011, https ://www.nap.edu/catalog/12951/new-worlds-new-horizons-inastronomy-and-astrophysics
[3]
The National Academies Press, Nuclear Physics: Exploring the Heart of Matter, Report of the Committee on the Assessment of and Outlook for Nuclear Physics, 2012, https ://www.nap.edu/catalog/13438/nuclear-physicsexploring-the-heart-of-matter
[4]
The 2015 U.S. Long Range Plan for Nuclear Science, Reaching for the Horizon, https ://science.energy.gov/∼/media/np/nsac/pdf/2015LRP/2015_LRPNS_091815.pdf
[5]
The Nuclear Physics European Collaboration Committee (NuPECC) Long Range Plan, 2017, Perspectives in Nuclear Physics, http ://www.esf.org/fileadmin/user_upload/esf/Nupecc-LRP2017.pdf
[6]
P. J. Siemens, Liquid–gas phase transition in nuclear matter, Nature 305(5933), 29 (1983)
CrossRef ADS Google scholar
[7]
J. M. Lattimer and M. Prakash, Nuclear matter and its role in supernovae, neutron stars and compact object binary mergers, Phys. Rep. 333, 121 (2000)
CrossRef ADS Google scholar
[8]
B. A. Li, P. G. Krastev, D. H. Wen, and N. B. Zhang, Towards understanding astrophysical effects of nuclear symmetry energy, Eur. Phys. J. A 55(7), 39 (2019)
CrossRef ADS Google scholar
[9]
J. Xu, L. W. Chen, B. A. Li, and H. R. Ma, Nuclear constraints on properties of neutron star crusts, Astrophys. J. 697(2), 1549 (2009)
CrossRef ADS Google scholar
[10]
W. G. Newton, M. Gearheart, and B. A. Li, A survey of the parameter space of the compressible liquid drop model as applied to the neutron star inner crust, Astrophys. J. Suppl. Ser. 204(1), 9 (2013)
CrossRef ADS Google scholar
[11]
C. J. Pethick and D. G. Ravenhall, Matter at large neutron excess and the physics of neutron-star crusts, Annu. Rev. Nucl. Part. Sci. 45(1), 429 (1995)
CrossRef ADS Google scholar
[12]
D. G. Ravenhall, C. J. Pethick, and J. R. Wilson, Structure of matter below nuclear saturation density, Phys. Rev. Lett. 50(26), 2066 (1983)
CrossRef ADS Google scholar
[13]
M. Hashimoto, H. Seki, and M. Yamada, Shape of nuclei in the crust of neutron star, Prog. Theor. Phys. 71(2), 320 (1984)
CrossRef ADS Google scholar
[14]
K. I. Nakazato, K. Oyamatsu, and S. Yamada, Gyroid phase in nuclear pasta, Phys. Rev. Lett. 103(13), 132501 (2009)
CrossRef ADS Google scholar
[15]
C. O. Dorso, P. A. Giménez Molinelli, and J. A. López, Topological characterization of neutron star crusts, Phys. Rev. C 86(5), 055805 (2012)
CrossRef ADS Google scholar
[16]
D. K. Berry, M. E. Caplan, C. J. HorowitzG. Huber, and A. S. Schneider, “parking-garage” structures in nuclear astrophysics and cellular biophysics, Phys. Rev. C 94, 055801 (2016)
CrossRef ADS Google scholar
[17]
R. D. Williams and S. E. Koonin, Sub-saturation phases of nuclear matter, Nucl. Phys. A 435(3–4), 844 (1985)
CrossRef ADS Google scholar
[18]
K. Oyamatsu, Nuclear shapes in the inner crust of a neutron star, Nucl. Phys. A 561(3), 431 (1993)
CrossRef ADS Google scholar
[19]
C. P. Lorenz, D. G. Ravenhall, and C. J. Pethick, Neutron star crusts, Phys. Rev. Lett. 70(4), 379 (1993)
CrossRef ADS Google scholar
[20]
K. S. Cheng, C. C. Yao, and Z. G. Dai, Properties of nuclei in the inner crusts of neutron stars in the relativistic meanfield theory, Phys. Rev. C 55(4), 2092 (1997)
CrossRef ADS Google scholar
[21]
G. Watanabe, K. Iida, and K. Sato, Thermodynamic properties of nuclear “pasta” in neutron star crusts, Nucl. Phys. A 676(1–4), 445 (2000)
CrossRef ADS Google scholar
[22]
G. Watanabe, K. Sato, K. Yasuoka, and T. Ebisuzaki, Microscopic study of slablike and rodlike nuclei: Quantum molecular dynamics approach, Phys. Rev. C 66(1), 012801 (2002)
CrossRef ADS Google scholar
[23]
G. Watanabe and K. Iida, Electron screening in the liquidgas mixed phases of nuclear matter, Phys. Rev. C 68(4), 045801 (2003)
CrossRef ADS Google scholar
[24]
T. Maruyama, K. Niita, K. Oyamatsu, T. Maruyama, S. Chiba, and A. Iwamoto, Quantum molecular dynamics approach to the nuclear matter below the saturation density, Phys. Rev. C 57(2), 655 (1998)
CrossRef ADS Google scholar
[25]
T. Kido, T. Maruyama, K. Niita, and S. Chiba, MD simulation study for nuclear matter, Nucl. Phys. A663–664, 877c (2000)
CrossRef ADS Google scholar
[26]
C. J. Horowitz, M. A. Pérez-Garcia, J. Carriere, D. K. Berry, and J. Piekarewicz, Nonuniform neutron-rich matter and coherent neutrino scattering, Phys. Rev. C 70(6), 065806 (2004)
CrossRef ADS Google scholar
[27]
W. G. Newton and J. R. Stone, Modeling nuclear “pasta” and the transition to uniform nuclear matter with the 3D Skyrme–Hartree–Fock method at finite temperature: Core-collapse supernovae, Phys. Rev. C 79(5), 055801 (2009)
CrossRef ADS Google scholar
[28]
S. S. Bao and H. Shen, Impact of the symmetry energy on nuclear pasta phases and crust-core transition in neutron stars, Phys. Rev. C 91(1), 015807 (2015)
CrossRef ADS Google scholar
[29]
K. Oyamatsu, K. Iida, and H. Sotani, Systematic study of pasta nuclei in neutron stars with families of the empirical nuclear equations of state, J. Phys. Conf. Ser. 1643, 012059 (2020)
CrossRef ADS Google scholar
[30]
C. J. Xia, T. Maruyama, N. Yasutake, T. Tatsumi, and J. X. Zhang, Nuclear pasta structures and symmetry energy, arXiv: 2012.01218
[31]
N. Chamel and P. Haensel, Physics of neutron star crusts, Living Rev. Relativ. 11(1), 10 (2008)
CrossRef ADS Google scholar
[32]
W. G. Newton, J. Hooker, M. Gearheart, K. Murphy, D. H. Wen, F. Fattoyev, and B. A. Li, Constraints on the symmetry energy from observational probes of the neutron star crust, Euro. Phys. J. A 50, 41 (2014)
CrossRef ADS Google scholar
[33]
M. E. Caplan and C. J. Horowitz, Astromaterial science and nuclear pasta, Rev. Mod. Phys. 89(4), 041002 (2017)
CrossRef ADS Google scholar
[34]
M. D. Alloy and D. P. Menezes, Nuclear “pasta phase” and its consequences on neutrino opacities, Phys. Rev. C 83(3), 035803 (2011)
CrossRef ADS Google scholar
[35]
W. G. Newton, K. Murphy, J. Hooker, and B. A. Li, The cooling of the Cassiopeia A neutron star as a probe of the nuclear symmetry energy and nuclear pasta, Astrophys. J. 779(1), L4 (2013)
CrossRef ADS Google scholar
[36]
A. Roggero, J. Margueron, L. F. Roberts, and S. Reddy, Nuclear pasta in hot dense matter and its implications for neutrino scattering, Phys. Rev. C 97(4), 045804 (2018)
CrossRef ADS Google scholar
[37]
B. Schuetrumpf, G. Martinez-Pinedo, and P. G. Reinhard, Survey of nuclear pasta in the intermediate-density regime: Structure functions for neutrino scattering, Phys. Rev. C 101(5), 055804 (2020)
CrossRef ADS Google scholar
[38]
G. Watanabe and C. J. Pethick, Superfluid density of neutrons in the inner crust of neutron stars: New life for pulsar glitch models, Phys. Rev. Lett. 119(6), 062701 (2017)
CrossRef ADS Google scholar
[39]
J. Hooker, W. G. Newton, and B. A. Li, Efficacy of crustal superfluid neutrons in pulsar glitch models, Mon. Not. R. Astron. Soc. 449(4), 3559 (2015)
CrossRef ADS Google scholar
[40]
M. E. Caplan, A. S. Schneider, and C. J. Horowitz, Elasticity of nuclear pasta, Phys. Rev. Lett. 121(13), 132701 (2018)
CrossRef ADS Google scholar
[41]
C. J. Pethick, Z. W. Zhang, and D. N. Kobyakov, Elastic properties of phases with nonspherical nuclei in dense matter, Phys. Rev. C 101(5), 055802 (2020)
CrossRef ADS Google scholar
[42]
B. Biswas, R. Nandi, P. Char, and S. Bose, Role of crustal physics in the tidal deformation of a neutron star, Phys. Rev. D 100(4), 044056 (2019)
CrossRef ADS Google scholar
[43]
F. Gittins, N. Andersson, and J. P. Pereira, Tidal deformations of neutron stars with elastic crusts, Phys. Rev. D 101(10), 103025 (2020)
CrossRef ADS Google scholar
[44]
M. Gearheart, W. G. Newton, J. Hooker, and B. A. Li, Upper limits on the observational effects of nuclear pasta in neutron stars, Mon. Not. R. Astron. Soc. 418(4), 2343 (2011)
CrossRef ADS Google scholar
[45]
H. Sotani, K. Iida, and K. Oyamatsu, Astrophysical implications of double-layer torsional oscillations in a neutron star crust as a lasagna sandwich, Mon. Not. R. Astron. Soc. 489, 3022 (2019)
CrossRef ADS Google scholar
[46]
D. H. Wen, W. G. Newton, and B. A. Li, Sensitivity of the neutron star r-mode instability window to the density dependence of the nuclear symmetry energy, Phys. Rev. C 85(2), 025801 (2012)
CrossRef ADS Google scholar
[47]
I. Vidaña, Nuclear symmetry energy and the r-mode instability of neutron stars, Phys. Rev. C 85(4), 045808 (2012)
CrossRef ADS Google scholar
[48]
R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, K. Ackley, et al., GW190814: Gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object, Astrophys. J. 896(2), L44 (2020)
[49]
E. R. Most, L. J. Papenfort, L. R. Weih, and L. Rezzolla, A lower bound on the maximum mass if the secondary in GW190814 was once a rapidly spinning neutron star, Mon. Not. R. Astron. Soc. Lett. 499(1), L82 (2020)
CrossRef ADS Google scholar
[50]
N. B. Zhang and B. A. Li, GW190814’s secondary component with mass 2.50–2.67 M as a superfast pulsar, Astrophys. J. 902(1), 38 (2020)
CrossRef ADS Google scholar
[51]
X. Zhou, A. Li, and B. A. Li, R-mode stability of GW190814’s secondary component as a supermassive and superfast pulsar, arXiv: 2011.11934

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(625 KB)

Accesses

Citations

Detail

Sections
Recommended

/