Tasting nuclear pasta made with classical molecular dynamics simulations

Bao-An Li

Front. Phys. ›› 2021, Vol. 16 ›› Issue (2) : 24302

PDF (625KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (2) : 24302 DOI: 10.1007/s11467-020-1043-8
VIEW & PERSPECTIVE

Tasting nuclear pasta made with classical molecular dynamics simulations

Author information +
History +
PDF (625KB)

Abstract

Nuclear clusters or voids in the inner crust of neutron stars were predicted to have various shapes collectively nicknamed nuclear pasta. The recent review in Ref. [1] by López, Dorso and Frank summarized their systematic investigations into properties especially the morphological and thermodynamical phase transitions of the nuclear pasta within a Classical Molecular Dynamics model, providing further stimuli to find more observational evidences of the predicted nuclear pasta in neutron stars.

Cite this article

Download citation ▾
Bao-An Li. Tasting nuclear pasta made with classical molecular dynamics simulations. Front. Phys., 2021, 16(2): 24302 DOI:10.1007/s11467-020-1043-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. A. López, C. O. Dorso, and G. Frank, Properties of nuclear pastas, Front. Phys. 16(2), 24301 (2021)

[2]

The National Academies Press, New Worlds, New Horizons in Astronomy and Astrophysics, 2011,

[3]

The National Academies Press, Nuclear Physics: Exploring the Heart of Matter, Report of the Committee on the Assessment of and Outlook for Nuclear Physics, 2012,

[4]

The 2015 U.S. Long Range Plan for Nuclear Science, Reaching for the Horizon,

[5]

The Nuclear Physics European Collaboration Committee (NuPECC) Long Range Plan, 2017, Perspectives in Nuclear Physics,

[6]

P. J. Siemens, Liquid–gas phase transition in nuclear matter, Nature 305(5933), 29 (1983)

[7]

J. M. Lattimer and M. Prakash, Nuclear matter and its role in supernovae, neutron stars and compact object binary mergers, Phys. Rep. 333, 121 (2000)

[8]

B. A. Li, P. G. Krastev, D. H. Wen, and N. B. Zhang, Towards understanding astrophysical effects of nuclear symmetry energy, Eur. Phys. J. A 55(7), 39 (2019)

[9]

J. Xu, L. W. Chen, B. A. Li, and H. R. Ma, Nuclear constraints on properties of neutron star crusts, Astrophys. J. 697(2), 1549 (2009)

[10]

W. G. Newton, M. Gearheart, and B. A. Li, A survey of the parameter space of the compressible liquid drop model as applied to the neutron star inner crust, Astrophys. J. Suppl. Ser. 204(1), 9 (2013)

[11]

C. J. Pethick and D. G. Ravenhall, Matter at large neutron excess and the physics of neutron-star crusts, Annu. Rev. Nucl. Part. Sci. 45(1), 429 (1995)

[12]

D. G. Ravenhall, C. J. Pethick, and J. R. Wilson, Structure of matter below nuclear saturation density, Phys. Rev. Lett. 50(26), 2066 (1983)

[13]

M. Hashimoto, H. Seki, and M. Yamada, Shape of nuclei in the crust of neutron star, Prog. Theor. Phys. 71(2), 320 (1984)

[14]

K. I. Nakazato, K. Oyamatsu, and S. Yamada, Gyroid phase in nuclear pasta, Phys. Rev. Lett. 103(13), 132501 (2009)

[15]

C. O. Dorso, P. A. Giménez Molinelli, and J. A. López, Topological characterization of neutron star crusts, Phys. Rev. C 86(5), 055805 (2012)

[16]

D. K. Berry, M. E. Caplan, C. J. HorowitzG. Huber, and A. S. Schneider, “parking-garage” structures in nuclear astrophysics and cellular biophysics, Phys. Rev. C 94, 055801 (2016)

[17]

R. D. Williams and S. E. Koonin, Sub-saturation phases of nuclear matter, Nucl. Phys. A 435(3–4), 844 (1985)

[18]

K. Oyamatsu, Nuclear shapes in the inner crust of a neutron star, Nucl. Phys. A 561(3), 431 (1993)

[19]

C. P. Lorenz, D. G. Ravenhall, and C. J. Pethick, Neutron star crusts, Phys. Rev. Lett. 70(4), 379 (1993)

[20]

K. S. Cheng, C. C. Yao, and Z. G. Dai, Properties of nuclei in the inner crusts of neutron stars in the relativistic meanfield theory, Phys. Rev. C 55(4), 2092 (1997)

[21]

G. Watanabe, K. Iida, and K. Sato, Thermodynamic properties of nuclear “pasta” in neutron star crusts, Nucl. Phys. A 676(1–4), 445 (2000)

[22]

G. Watanabe, K. Sato, K. Yasuoka, and T. Ebisuzaki, Microscopic study of slablike and rodlike nuclei: Quantum molecular dynamics approach, Phys. Rev. C 66(1), 012801 (2002)

[23]

G. Watanabe and K. Iida, Electron screening in the liquidgas mixed phases of nuclear matter, Phys. Rev. C 68(4), 045801 (2003)

[24]

T. Maruyama, K. Niita, K. Oyamatsu, T. Maruyama, S. Chiba, and A. Iwamoto, Quantum molecular dynamics approach to the nuclear matter below the saturation density, Phys. Rev. C 57(2), 655 (1998)

[25]

T. Kido, T. Maruyama, K. Niita, and S. Chiba, MD simulation study for nuclear matter, Nucl. Phys. A663–664, 877c (2000)

[26]

C. J. Horowitz, M. A. Pérez-Garcia, J. Carriere, D. K. Berry, and J. Piekarewicz, Nonuniform neutron-rich matter and coherent neutrino scattering, Phys. Rev. C 70(6), 065806 (2004)

[27]

W. G. Newton and J. R. Stone, Modeling nuclear “pasta” and the transition to uniform nuclear matter with the 3D Skyrme–Hartree–Fock method at finite temperature: Core-collapse supernovae, Phys. Rev. C 79(5), 055801 (2009)

[28]

S. S. Bao and H. Shen, Impact of the symmetry energy on nuclear pasta phases and crust-core transition in neutron stars, Phys. Rev. C 91(1), 015807 (2015)

[29]

K. Oyamatsu, K. Iida, and H. Sotani, Systematic study of pasta nuclei in neutron stars with families of the empirical nuclear equations of state, J. Phys. Conf. Ser. 1643, 012059 (2020)

[30]

C. J. Xia, T. Maruyama, N. Yasutake, T. Tatsumi, and J. X. Zhang, Nuclear pasta structures and symmetry energy, arXiv: 2012.01218

[31]

N. Chamel and P. Haensel, Physics of neutron star crusts, Living Rev. Relativ. 11(1), 10 (2008)

[32]

W. G. Newton, J. Hooker, M. Gearheart, K. Murphy, D. H. Wen, F. Fattoyev, and B. A. Li, Constraints on the symmetry energy from observational probes of the neutron star crust, Euro. Phys. J. A 50, 41 (2014)

[33]

M. E. Caplan and C. J. Horowitz, Astromaterial science and nuclear pasta, Rev. Mod. Phys. 89(4), 041002 (2017)

[34]

M. D. Alloy and D. P. Menezes, Nuclear “pasta phase” and its consequences on neutrino opacities, Phys. Rev. C 83(3), 035803 (2011)

[35]

W. G. Newton, K. Murphy, J. Hooker, and B. A. Li, The cooling of the Cassiopeia A neutron star as a probe of the nuclear symmetry energy and nuclear pasta, Astrophys. J. 779(1), L4 (2013)

[36]

A. Roggero, J. Margueron, L. F. Roberts, and S. Reddy, Nuclear pasta in hot dense matter and its implications for neutrino scattering, Phys. Rev. C 97(4), 045804 (2018)

[37]

B. Schuetrumpf, G. Martinez-Pinedo, and P. G. Reinhard, Survey of nuclear pasta in the intermediate-density regime: Structure functions for neutrino scattering, Phys. Rev. C 101(5), 055804 (2020)

[38]

G. Watanabe and C. J. Pethick, Superfluid density of neutrons in the inner crust of neutron stars: New life for pulsar glitch models, Phys. Rev. Lett. 119(6), 062701 (2017)

[39]

J. Hooker, W. G. Newton, and B. A. Li, Efficacy of crustal superfluid neutrons in pulsar glitch models, Mon. Not. R. Astron. Soc. 449(4), 3559 (2015)

[40]

M. E. Caplan, A. S. Schneider, and C. J. Horowitz, Elasticity of nuclear pasta, Phys. Rev. Lett. 121(13), 132701 (2018)

[41]

C. J. Pethick, Z. W. Zhang, and D. N. Kobyakov, Elastic properties of phases with nonspherical nuclei in dense matter, Phys. Rev. C 101(5), 055802 (2020)

[42]

B. Biswas, R. Nandi, P. Char, and S. Bose, Role of crustal physics in the tidal deformation of a neutron star, Phys. Rev. D 100(4), 044056 (2019)

[43]

F. Gittins, N. Andersson, and J. P. Pereira, Tidal deformations of neutron stars with elastic crusts, Phys. Rev. D 101(10), 103025 (2020)

[44]

M. Gearheart, W. G. Newton, J. Hooker, and B. A. Li, Upper limits on the observational effects of nuclear pasta in neutron stars, Mon. Not. R. Astron. Soc. 418(4), 2343 (2011)

[45]

H. Sotani, K. Iida, and K. Oyamatsu, Astrophysical implications of double-layer torsional oscillations in a neutron star crust as a lasagna sandwich, Mon. Not. R. Astron. Soc. 489, 3022 (2019)

[46]

D. H. Wen, W. G. Newton, and B. A. Li, Sensitivity of the neutron star r-mode instability window to the density dependence of the nuclear symmetry energy, Phys. Rev. C 85(2), 025801 (2012)

[47]

I. Vidaña, Nuclear symmetry energy and the r-mode instability of neutron stars, Phys. Rev. C 85(4), 045808 (2012)

[48]

R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, K. Ackley, et al., GW190814: Gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object, Astrophys. J. 896(2), L44 (2020)

[49]

E. R. Most, L. J. Papenfort, L. R. Weih, and L. Rezzolla, A lower bound on the maximum mass if the secondary in GW190814 was once a rapidly spinning neutron star, Mon. Not. R. Astron. Soc. Lett. 499(1), L82 (2020)

[50]

N. B. Zhang and B. A. Li, GW190814’s secondary component with mass 2.50–2.67 M as a superfast pulsar, Astrophys. J. 902(1), 38 (2020)

[51]

X. Zhou, A. Li, and B. A. Li, R-mode stability of GW190814’s secondary component as a supermassive and superfast pulsar, arXiv: 2011.11934

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (625KB)

904

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/