Machine learning approach for the prediction and optimization of thermal transport properties

Yulou Ouyang, Cuiqian Yu, Gang Yan, Jie Chen

PDF(2563 KB)
PDF(2563 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (4) : 43200. DOI: 10.1007/s11467-020-1041-x
TOPICAL REVIEW
TOPICAL REVIEW

Machine learning approach for the prediction and optimization of thermal transport properties

Author information +
History +

Abstract

Traditional simulation methods have made prominent progress in aiding experiments for understanding thermal transport properties of materials, and in predicting thermal conductivity of novel materials. However, huge challenges are also encountered when exploring complex material systems, such as formidable computational costs. As a rising computational method, machine learning has a lot to offer in this regard, not only in speeding up the searching and optimization process, but also in providing novel perspectives. In this work, we review the state-of-the-art studies on material’s thermal properties based on machine learning technique. First, the basic principles of machine learning method are introduced. We then review applications of machine learning technique in the prediction and optimization of material’s thermal properties, including thermal conductivity and interfacial thermal resistance. Finally, an outlook is provided for the future studies.

Keywords

machine learning / thermal transport / optimization / prediction

Cite this article

Download citation ▾
Yulou Ouyang, Cuiqian Yu, Gang Yan, Jie Chen. Machine learning approach for the prediction and optimization of thermal transport properties. Front. Phys., 2021, 16(4): 43200 https://doi.org/10.1007/s11467-020-1041-x

References

[1]
Z. Zhang, Y. Ouyang, Y. Cheng, J. Chen, N. Li, and G. Zhang, Size-dependent phononic thermal transport in low-dimensional nanomaterials, Phys. Rep. 860, 1 (2020)
CrossRef ADS Google scholar
[2]
X. Xu, J. Zhou, and J. Chen, Thermal transport in conductive polymer-based materials, Adv. Funct. Mater. 30(8), 1904704 (2020)
CrossRef ADS Google scholar
[3]
Z. Zhang and J. Chen, Thermal conductivity of nanowires, Chin. Phys. B 27(3), 035101 (2018)
CrossRef ADS Google scholar
[4]
X. Xu, J. Chen, J. Zhou, and B. Li, Thermal conductivity of polymers and their nanocomposites, Adv. Mater. 30(17), 1705544 (2018)
CrossRef ADS Google scholar
[5]
Z. Zhang, Y. Ouyang, Y. Guo, T. Nakayama, M. Nomura, S. Volz, and J. Chen, Hydrodynamic phonon transport in bulk crystalline polymers, Phys. Rev. B 102(19), 195302 (2020)
CrossRef ADS Google scholar
[6]
R. J. McGlen, R. Jachuck, and S. Lin, Integrated thermal management techniques for high power electronic devices, Appl. Therm. Eng. 24(8–9), 1143 (2004)
CrossRef ADS Google scholar
[7]
S. G. Kandlikar and C. N. II Hayner, Liquid Cooled Cold Plates for Industrial High-Power Electronic Devices— Thermal Design and Manufacturing Considerations, Heat Transf. Eng. 30(12), 918 (2009)
CrossRef ADS Google scholar
[8]
J. P. Rojas, D. Singh, S. B. Inayat, G. A. T. Sevilla, H. M. Fahad, and M. M. Hussain, Review — Micro and nano-engineering enabled new generation of thermoelectric generator devices and applications, ECS J. Solid State Sci. Technol. 6(3), N3036 (2017)
CrossRef ADS Google scholar
[9]
Y. Ouyang, Z. Zhang, D. Li, J. Chen, and G. Zhang, Emerging theory, materials, and screening methods: New opportunities for promoting thermoelectric performance, Ann. Phys. (Berlin) 531(4), 1800437 (2019)
CrossRef ADS Google scholar
[10]
L. Shi, J. Chen, G. Zhang, and B. Li, Thermoelectric figure of merit in Ga-doped [0001] ZnO nanowires, Phys. Lett. A 376(8–9), 978 (2012)
CrossRef ADS Google scholar
[11]
X. L. Zhu, P. F. Liu, J. Zhang, P. Zhang, W. X. Zhou, G. Xie, and B. T. Wang, Monolayer SnP3: An excellent p-type thermoelectric material, Nanoscale 11(42), 19923 (2019)
CrossRef ADS Google scholar
[12]
D. Alexeev, J. Chen, J. H. Walther, K. P. Giapis, P. Angelikopoulos, and P. Koumoutsakos, Kapitza resistance between few-layer graphene and water: Liquid layering effects, Nano Lett. 15(9), 5744 (2015)
CrossRef ADS Google scholar
[13]
Y. Ma, Z. Zhang, J. Chen, K. Sääskilahti, S. Volz, and J. Chen, Ordered water layers by interfacial charge decoration leading to an ultra-low Kapitza resistance between graphene and water, Carbon 135, 263 (2018)
CrossRef ADS Google scholar
[14]
X. Liu, J. Gao, G. Zhang, and Y. W. Zhang, Design of phosphorene/graphene heterojunctions for high and tunable interfacial thermal conductance, Nanoscale 10(42), 19854 (2018)
CrossRef ADS Google scholar
[15]
J. Wang, Z. Zhang, R. Shi, B. N. Chandrashekar, N. Shen, H. Song, N. Wang, J. Chen, and C. Cheng, Impact of nanoscale roughness on heat transport across the solid–solid interface, Adv. Mater. Interfaces 7(4), 1901582 (2020)
CrossRef ADS Google scholar
[16]
M. Zhou, H. Bi, T. Lin, X. Lü, D. Wan, F. Huang, and J. Lin, Heat transport enhancement of thermal energy storage material using graphene/ceramic composites, Carbon 75, 314 (2014)
CrossRef ADS Google scholar
[17]
F. Gong, Z. Ding, Y. Fang, C.J. Tong, D. Xia, Y. Lv, B. Wang, D. V. Papavassiliou, J. Liao, and M. Wu, Enhanced electrochemical and thermal transport properties of graphene/MoS2 heterostructures for energy storage: Insights from multiscale modeling, ACS Appl. Mater. Interfaces 10(17), 14614 (2018)
CrossRef ADS Google scholar
[18]
C. Z. Fan, Y. Gao, and J. P. Huang, Shaped graded materials with an apparent negative thermal conductivity, Appl. Phys. Lett. 92(25), 251907 (2008)
CrossRef ADS Google scholar
[19]
J. Doty, K. Yerkes, L. Byrd, J. Murthy, A. Alleyne, M. Wolff, S. Heister, and T. S. Fisher, Dynamic thermal management for aerospace technology: Review and outlook, J. Thermophys. Heat Transfer 31(1), 86 (2017)
CrossRef ADS Google scholar
[20]
P. Jiang, S. Hu, Y. Ouyang, W. Ren, C. Yu, Z. Zhang, and J. Chen, Remarkable thermal rectification in pristine and symmetric monolayer graphene enabled by asymmetric thermal contact, J. Appl. Phys. 127(23), 235101 (2020)
CrossRef ADS Google scholar
[21]
A. L. Moore and L. Shi, Emerging challenges and materials for thermal management of electronics, Mater. Today 17(4), 163 (2014)
CrossRef ADS Google scholar
[22]
Z. Zhang, J. Chen, and B. Li, Negative Gaussian curvature induces significant suppression of thermal conduction in carbon crystals, Nanoscale 9(37), 14208 (2017)
CrossRef ADS Google scholar
[23]
M. Soltanimehr and M. Afrand, Thermal conductivity enhancement of COOH-functionalized MWCNTs/ethylene glycol–water nanofluid for application in heating and cooling systems, Appl. Therm. Eng. 105, 716 (2016)
CrossRef ADS Google scholar
[24]
Z. Zhang, S. Hu, T. Nakayama, J. Chen, and B. Li, Reducing lattice thermal conductivity in schwarzites via engineering the hybridized phonon modes, Carbon 139, 289 (2018)
CrossRef ADS Google scholar
[25]
G. Xie, Z. Ju, K. Zhou, X. Wei, Z. Guo, Y. Cai, and G. Zhang, Ultra-low thermal conductivity of twodimensional phononic crystals in the incoherent regime, npj Comput. Mater. 4, 1 (2018)
CrossRef ADS Google scholar
[26]
Z. Zhang, S. Hu, Q. Xi, T. Nakayama, S. Volz, J. Chen, and B. Li, Tunable phonon nanocapacitor built by carbon schwarzite based host–guest system, Phys. Rev. B 101(8), 081402 (2020)
CrossRef ADS Google scholar
[27]
S. Hu, Z. Zhang, P. Jiang, W. Ren, C. Yu, J. Shiomi, and J. Chen, Disorder limits the coherent phonon transport in two-dimensional phononic crystal structures, Nanoscale 11(24), 11839 (2019)
CrossRef ADS Google scholar
[28]
Y. Ouyang, Z. Zhang, Q. Xi, P. Jiang, W. Ren, N. Li, J. Zhou, and J. Chen, Effect of boundary chain folding on thermal conductivity of lamellar amorphous polyethylene, RSC Adv. 9(57), 33549 (2019)
CrossRef ADS Google scholar
[29]
M. Yang, Y. Zhu, X. Wang, Q. Wang, L. Ai, L. Zhao, and Y. Chu, A novel low thermal conductivity thermal barrier coating at super high temperature, Appl. Surf. Sci. 497, 143774 (2019)
CrossRef ADS Google scholar
[30]
M. Arai, H. Ochiai, and T. Suidzuc, A novel low-thermalconductivity plasma-sprayed thermal barrier coating controlled by large pores, Surf. Coat. Tech. 285, 120 (2016)
CrossRef ADS Google scholar
[31]
M. Bharti, A. Singh, S. Samanta, and D. K. Aswal, Conductive polymers for thermoelectric power generation, Prog. Mater. Sci. 93, 270 (2018)
CrossRef ADS Google scholar
[32]
D. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits, Appl. Phys. Lett. 92(15), 151911 (2008)
CrossRef ADS Google scholar
[33]
Z. Zhang, S. Hu, J. Chen, and B. Li, Hexagonal boron nitride: A promising substrate for graphene with high heat dissipation, Nanotechnology 28(22), 225704 (2017)
CrossRef ADS Google scholar
[34]
A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8(3), 902 (2008)
CrossRef ADS Google scholar
[35]
P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, Thermal transport measurements of individual multiwalled nanotubes, Phys. Rev. Lett. 87(21), 215502 (2001)
CrossRef ADS Google scholar
[36]
L. Shi, D. Li, C. Yu, W. Jang, D. Kim, Z. Yao, P. Kim, and A. Majumdar, Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device, J. Heat Transfer 125(5), 881 (2003)
CrossRef ADS Google scholar
[37]
D. G. Cahill, M. Katiyar, and J. R. Abelson, Thermal conductivity of a-Si: H thin films, Phys. Rev. B 50(9), 6077 (1994)
CrossRef ADS Google scholar
[38]
D. G. Cahill, Analysis of heat flow in layered structures for time-domain thermoreflectance, Rev. Sci. Instrum. 75(12), 5119 (2004)
CrossRef ADS Google scholar
[39]
C. C. Williams and H. K. Wickramasinghe, Scanning thermal profiler, Appl. Phys. Lett. 49(23), 1587 (1986)
CrossRef ADS Google scholar
[40]
X. Xu, J. Chen, and B. Li, Phonon thermal conduction in novel 2D materials, J. Phys.: Condens. Matter 28(48), 483001 (2016)
CrossRef ADS Google scholar
[41]
A. J. H. McGaughey, A. Jain, and H. Y. Kim, Phonon properties and thermal conductivity from first principles, lattice dynamics, and the Boltzmann transport equation, J. Appl. Phys. 125(1), 011101 (2019)
CrossRef ADS Google scholar
[42]
H. Bao, J. Chen, X. Gu, and B. Cao, A review of simulation methods in micro/nanoscale heat conduction, ES Energy Environ. 1, 16 (2018)
CrossRef ADS Google scholar
[43]
J. S. Wang, J. Wang, and J. Lü, Quantum thermal transport in nanostructures, Eur. Phys. J. B 62(4), 381 (2008)
CrossRef ADS Google scholar
[44]
Y. Liu, W. Hong, and B. Cao, Machine learning for predicting thermodynamic properties of pure fluids and their mixtures, Energy 188, 116091 (2019)
CrossRef ADS Google scholar
[45]
Y. J. Wu, L. Fang, and Y. Xu, Predicting interfacial thermal resistance by machine learning, npj Comput. Mater. 5, 56 (2019)
CrossRef ADS Google scholar
[46]
A. Zendehboudi and R. Saidur, A reliable model to estimate the effective thermal conductivity of nanofluids, Heat Mass Transf. 55(2), 397 (2019)
CrossRef ADS Google scholar
[47]
X. Gu and C. Y. Zhao, Thermal conductivity of singlelayer MoS2(1−x)Se2x alloys from molecular dynamics simulations with a machine-learning-based interatomic potential, Comput. Mater. Sci. 165, 74 (2019)
CrossRef ADS Google scholar
[48]
G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto, and L. Zdeborová, Machine learning and the physical sciences, Rev. Mod. Phys. 91(4), 045002 (2019)
CrossRef ADS Google scholar
[49]
A. O. Oliynyk and J. M. Buriak, Virtual issue on machine-learning discoveries in materials science, Chem. Mater. 31(20), 8243 (2019)
CrossRef ADS Google scholar
[50]
G. R. Schleder, A. C. M. Padilha, C. M. Acosta, M. Costa, and A. Fazzio, From DFT to machine learning: recent approaches to materials science — a review, J. Phys.: Mater 2(3), 032001 (2019)
CrossRef ADS Google scholar
[51]
J. Schmidt, M. R. G. Marques, S. Botti, and M. A. L. Marques, Recent advances and applications of machine learning in solid-state materials science, npj Comput. Mater. 5, 83 (2019)
CrossRef ADS Google scholar
[52]
J. Graser, S. K. Kauwe, and T. D. Sparks, Machine learning and energy minimization approaches for crystal structure predictions: A review and new horizons, Chem. Mater. 30(11), 3601 (2018)
CrossRef ADS Google scholar
[53]
S. K. Kauwe, J. Graser, R. Murdock, and T. D. Sparks, Can machine learning find extraordinary materials? Comput. Mater. Sci. 174, 109498 (2020)
CrossRef ADS Google scholar
[54]
H. Zhang, K. Hippalgaonkar, T. Buonassisi, O. M. Løvvik, E. Sagvolden, and D. Ding, Machine learning for novel thermal-materials discovery: Early successes, opportunities, and challenges, ES Energy Environ. 2, 1 (2018)
CrossRef ADS Google scholar
[55]
D. H. Kim, T. J. Y. Kim, X. Wang, M. Kim, Y.-J. Quan, J. W. Oh, S.-H. Min, H. Kim, B. Bhandari, I. Yang, and S.-H. Ahn, Smart machining process using machine learning: A review and perspective on machining industry, Int. J. Precis. Eng. Manuf. Green Tech. 5, 555 (2018)
CrossRef ADS Google scholar
[56]
S. Ekins, A. C. Puhl, K. M. Zorn, T. R. Lane, D. P. Russo, J. J. Klein, A. J. Hickey, and A. M. Clark, Exploiting machine learning for end-to-end drug discovery and development, Nat. Mater. 18(5), 435 (2019)
CrossRef ADS Google scholar
[57]
W. S. McCulloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys. 5(4), 115 (1943)
CrossRef ADS Google scholar
[58]
F. Rosenblatt, The Perceptron, A Perceiving and Recognizing Automaton Project Para, Cornell Aeronautical Laboratory, Buffalo, NY, 1957
[59]
S. B. Kotsiantis, Supervised machine learning — a review of classification techniques, Informatica (Vilnius) 31, 249 (2007)
[60]
S. B. Kotsiantis, I. D. Zaharakis, and P. E. Pintelas, Machine learning: A review of classification and combining techniques, Artif. Intell. Rev. 26(3), 159 (2006)
CrossRef ADS Google scholar
[61]
M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich, A review of relational machine learning for knowledge graphs, Proc. IEEE 104(1), 11 (2016)
CrossRef ADS Google scholar
[62]
C. Voyant, G. Notton, S. Kalogirou, M. L. Nivet, C. Paoli, F. Motte, and A. Fouilloy, Machine learning methods for solar radiation forecasting: A review, Renew. Energy 105, 569 (2017)
CrossRef ADS Google scholar
[63]
M. I. Jordan and T. M. Mitchell, Machine learning: Trends, perspectives, and prospects, Science 349(6245), 255 (2015)
CrossRef ADS Google scholar
[64]
K. P. Murphy, Machine Learning: A Probabilistic Perspective, MIT Press, 2012
[65]
L. Chen, H. Tran, R. Batra, C. Kim, and R. Ramprasad, Machine learning models for the lattice thermal conductivity prediction of inorganic materials, Comput. Mater. Sci. 170, 109155 (2019)
CrossRef ADS Google scholar
[66]
F. H. Allen, The Cambridge Structural Database: A quarter of a million crystal structures and rising, Acta Crystallogr. B 58(3), 380 (2002)
CrossRef ADS Google scholar
[67]
F. C. Bernstein, T. F. Koetzle, G. J. B. Williams, E. F. Meyer, M. D. Brice, J. R. Rodgers, O. Kennard, T. Shimanouchi, and M. Tasumi, The Protein Data Bank: A computer‐based archival file for macromolecular structures, Eur. J. Biochem. 80(2), 319 (1977)
CrossRef ADS Google scholar
[68]
S. Gražulis, D. Chateigner, R. T. Downs, A. F. T. Yokochi, M. Quirós, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck, and A. Le Bail, Crystallography Open Database — an open-access collection of crystal structures, J. Appl. Cryst. 42(4), 726 (2009)
CrossRef ADS Google scholar
[69]
A. Belsky, M. Hellenbrandt, V. L. Karen, and P. Luksch, New developments in the Inorganic Crystal Structure Database (ICSD): Accessibility in support of materials research and design, Acta Crystallogr. B 58(3), 364 (2002)
CrossRef ADS Google scholar
[70]
Y. Xu, M. Yamazaki, and P. Villars, Inorganic materials database for exploring the nature of material, Jpn. J. Appl. Phys. 50(11S), 11RH02 (2011)
CrossRef ADS Google scholar
[71]
A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. A. Persson, Commentary: The Materials Project: A materials genome approach to accelerating materials innovation, APL Mater. 1(1), 011002 (2013)
CrossRef ADS Google scholar
[72]
S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R. H. Taylor, L. J. Nelson, G. L. W. Hart, S. Sanvito, M. Buongiorno-Nardelli, N. Mingo, and O. Levy, AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initiocalculations, Comput. Mater. Sci. 58, 227 (2012)
CrossRef ADS Google scholar
[73]
N. E. R. Zimmermann and A. Jain, Local structure order parameters and site fingerprints for quantification of coordination environment and crystal structure similarity, RSC Adv. 10(10), 6063 (2020)
CrossRef ADS Google scholar
[74]
L. Zhu, M. Amsler, T. Fuhrer, B. Schaefer, S. Faraji, S. Rostami, S. A. Ghasemi, A. Sadeghi, M. Grauzinyte, C. Wolverton, and S. Goedecker, A fingerprint based metric for measuring similarities of crystalline structures, J. Chem. Phys. 144(3), 034203 (2016)
CrossRef ADS Google scholar
[75]
A. Seko, H. Hayashi, K. Nakayama, A. Takahashi, and I. Tanaka, Representation of compounds for machinelearning prediction of physical properties, Phys. Rev. B 95(14), 144110 (2017)
CrossRef ADS Google scholar
[76]
J. Wang, A. Yousefzadi Nobakht, J. D. Blanks, D. Shin, S. Lee, A. Shyam, H. Rezayat, and S. Shin, Machine learning for thermal transport analysis of aluminum alloys with precipitate morphology, Adv. Theory Simul. 2(4), 1800196 (2019)
CrossRef ADS Google scholar
[77]
R. M. Balabin and E. I. Lomakina, Support vector machine regression (LS-SVM) — an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data? Phys. Chem. Chem. Phys. 13(24), 11710 (2011)
CrossRef ADS Google scholar
[78]
H. Kurt and M. Kayfeci, Prediction of thermal conductivity of ethylene glycol–water solutions by using artificial neural networks, Appl. Energy 86(10), 2244 (2009)
CrossRef ADS Google scholar
[79]
J. Carrete, W. Li, N. Mingo, S. Wang, and S. Curtarolo, Finding unprecedentedly low-thermal-conductivity half- Heusler semiconductors via high-throughput materials modeling, Phys. Rev. X 4(1), 011019 (2014)
CrossRef ADS Google scholar
[80]
M. J. Peet, H. S. Hasan, and H. K. D. H. Bhadeshia, Prediction of thermal conductivity of steel, Int. J. Heat Mass Transf. 54(11–12), 2602 (2011)
CrossRef ADS Google scholar
[81]
S. Ju, T. Shiga, L. Feng, Z. Hou, K. Tsuda, and J. Shiomi, Designing nanostructures for phonon transport via bayesian optimization, Phys. Rev. X 7(2), 021024 (2017)
CrossRef ADS Google scholar
[82]
T. Zhou, Z. Song, and K. Sundmacher, Big data creates new opportunities for materials research: A review on methods and applications of machine learning for materials design, Engineering 5(6), 1017 (2019)
CrossRef ADS Google scholar
[83]
Y. Liu, T. Zhao, W. Ju, and S. Shi, Materials discovery and design using machine learning, Journal of Materiomics 3(3), 159 (2017)
CrossRef ADS Google scholar
[84]
S. Ju and J. Shiomi, Materials informatics for heat transfer: Recent progresses and perspectives, Nanoscale Microscale Thermophys. Eng. 23(2), 157 (2019)
CrossRef ADS Google scholar
[85]
T. Ishikawa, T. Miyake, and K. Shimizu, Materials informatics based on evolutionary algorithms: Application to search for superconducting hydrogen compounds, Phys. Rev. B 100(17), 174506 (2019)
CrossRef ADS Google scholar
[86]
C. Chen, Y. Zuo, W. Ye, X. Li, Z. Deng, and S. P. Ong, A critical review of machine learning of energy materials, Adv. Energy Mater. 10(8), 1903242 (2020)
CrossRef ADS Google scholar
[87]
E. Minamitani, M. Ogura, and S. Watanabe, Simulating lattice thermal conductivity in semiconducting materials using high-dimensional neural network potential, Appl. Phys. Express 12(9), 095001 (2019)
CrossRef ADS Google scholar
[88]
H. D. Landahl, W. S. McCulloch, and W. Pitts, A statistical consequence of the logical calculus of nervous nets, Bull. Math. Biophys. 5(4), 135 (1943)
CrossRef ADS Google scholar
[89]
J. Behler and M. Parrinello, Generalized neural-network representation of high-dimensional potential-energy surfaces, Phys. Rev. Lett. 98(14), 146401 (2007)
CrossRef ADS Google scholar
[90]
A. P. Thompson, L. P. Swiler, C. R. Trott, S. M. Foiles, and G. J. Tucker, Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials, J. Comput. Phys. 285, 316 (2015)
CrossRef ADS Google scholar
[91]
M. P. Marder, Condensed Matter Physics, John Wiley & Sons, INC, New Jersey, 2010
CrossRef ADS Google scholar
[92]
R. Hockney, and J. Eastwood, Computer Simulation Using Particles, Taylor & Francis Group, New York, 1988
CrossRef ADS Google scholar
[93]
P. Rowe, G. Csányi, D. Alfè, and A. Michaelides, Development of a machine learning potential for graphene, Phys. Rev. B 97(5), 054303 (2018)
CrossRef ADS Google scholar
[94]
A. P. Bartók, J. Kermode, N. Bernstein, and G. Csányi, Machine learning a general-purpose interatomic potential for silicon, Phys. Rev. X 8(4), 041048 (2018)
CrossRef ADS Google scholar
[95]
X. Wan, W. Feng, Y. Wang, H. Wang, X. Zhang, C. Deng, and N. Yang, Materials discovery and properties prediction in thermal transport via materials informatics: A mini review, Nano Lett. 19(6), 3387 (2019)
CrossRef ADS Google scholar
[96]
X. Wang, S. Zeng, Z. Wang, and J. Ni, Identification of crystalline materials with ultra-low thermal conductivity based on machine learning study, J. Phys. Chem. C 124(16), 8488 (2020)
CrossRef ADS Google scholar
[97]
R. Juneja, G. Yumnam, S. Satsangi, and A. K. Singh, Coupling the high-throughput property map to machine learning for predicting lattice thermal conductivity, Chem. Mater. 31(14), 5145 (2019)
CrossRef ADS Google scholar
[98]
E. J. Kautz, A. R. Hagen, J. M. Johns, and D. E. Burkes, A machine learning approach to thermal conductivity modeling: A case study on irradiated uraniummolybdenum nuclear fuels, Comput. Mater. Sci. 161, 107 (2019)
CrossRef ADS Google scholar
[99]
S. Fujii, T. Yokoi, C. A. J. Fisher, H. Moriwake, and M. Yoshiya, Quantitative prediction of grain boundary thermal conductivities from local atomic environments, Nat. Commun. 11(1), 1854 (2020)
CrossRef ADS Google scholar
[100]
S. Ju, R. Yoshida, C. Liu, K. Hongo, T. Tadano, and J. Shiomi, Exploring diamond-like lattice thermal conductivity crystals via feature-based transfer learning, arXiv: 1909.11234 (2019)
[101]
A. Seko, A. Togo, H. Hayashi, K. Tsuda, L. Chaput, and I. Tanaka, Prediction of low-thermal-conductivity compounds with first-principles anharmonic lattice-dynamics calculations and bayesian optimization, Phys. Rev. Lett. 115(20), 205901 (2015)
CrossRef ADS Google scholar
[102]
A. van Roekeghem, J. Carrete, C. Oses, S. Curtarolo, and N. Mingo, High-throughput computation of thermal conductivity of high-temperature solid phases: The case of oxide and fluoride perovskites, Phys. Rev. X 6(4), 041061 (2016)
CrossRef ADS Google scholar
[103]
C. Zhang and Q. Sun, Gaussian approximation potential for studying the thermal conductivity of silicene, J. Appl. Phys. 126(10), 105103 (2019)
CrossRef ADS Google scholar
[104]
H. Babaei, R. Guo, A. Hashemi, and S. Lee, Machinelearning- based interatomic potential for phonon transport in perfect crystalline Si and crystalline Si with vacancies, Phys. Rev. Mater. 3(7), 074603 (2019)
CrossRef ADS Google scholar
[105]
X. Qian, S. Peng, X. Li, Y. Wei, and R. Yang, Thermal conductivity modeling using machine learning potentials: application to crystalline and amorphous silicon, Mater. Today Phys. 10, 100140 (2019)
CrossRef ADS Google scholar
[106]
B. L. Zink, R. Pietri, and F. Hellman, Thermal conductivity and specific heat of thin-film amorphous silicon, Phys. Rev. Lett. 96(5), 055902 (2006)
CrossRef ADS Google scholar
[107]
K. T. Regner, D. P. Sellan, Z. Su, C. H. Amon, A. J. H. McGaughey, and J. A. Malen, Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance, Nat. Commun. 4(1), 1640 (2013)
CrossRef ADS Google scholar
[108]
P. Korotaev, I. Novoselov, A. Yanilkin, and A. Shapeev, Accessing thermal conductivity of complex compounds by machine learning interatomic potentials, Phys. Rev. B 100(14), 144308 (2019)
CrossRef ADS Google scholar
[109]
A. Agrawal and A. Choudhary, Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science ok, APL Mater. 4(5), 053208 (2016)
CrossRef ADS Google scholar
[110]
T. Zhan, L. Fang, and Y. Xu, Prediction of thermal boundary resistance by the machine learning method, Sci. Rep. 7(1), 7109 (2017)
CrossRef ADS Google scholar
[111]
Y. J. Wu, M. Sasaki, M. Goto, L. Fang, and Y. Xu, Electrically conductive thermally insulating Bi-Si nanocomposites by interface design for thermal management, ACS Appl. Nano Mater. 1(7), 3355 (2018)
CrossRef ADS Google scholar
[112]
Y. J. Wu, T. Zhan, Z. Hou, L. Fang, and Y. Xu, Physical and chemical descriptors for predicting interfacial thermal resistance, Sci. Data 7(1), 36 (2020)
CrossRef ADS Google scholar
[113]
H. Yang, Z. Zhang, J. Zhang, and X. C. Zeng, Machine learning and artificial neural network prediction of interfacial thermal resistance between graphene and hexagonal boron nitride, Nanoscale 10(40), 19092 (2018)
CrossRef ADS Google scholar
[114]
S. Ju, S. Shimizu, and J. Shiomi, Designing thermal functional materials by coupling thermal transport calculations and machine learning, J. Appl. Phys. 128(16), 161102 (2020)
CrossRef ADS Google scholar
[115]
J. Wan, J. W. Jiang, and H. S. Park, Machine learningbased design of porous graphene with low thermal conductivity, Carbon 157, 262 (2020)
CrossRef ADS Google scholar
[116]
S. Hu, Z. Zhang, P. Jiang, J. Chen, S. Volz, M. Nomura, and B. Li, Randomness-induced phonon localization in graphene heat conduction, J. Phys. Chem. Lett. 9(14), 3959 (2018)
CrossRef ADS Google scholar
[117]
T. Juntunen, O. Vänskä, and I. Tittonen, Anderson localization quenches thermal transport in aperiodic superlattices, Phys. Rev. Lett. 122(10), 105901 (2019)
CrossRef ADS Google scholar
[118]
P. Chakraborty, Y. Liu, T. Ma, X. Guo, L. Cao, R. Hu, and Y. Wang, Quenching thermal transport in aperiodic superlattices: A molecular dynamics and machine learning study, ACS Appl. Mater. Interfaces 12(7), 8795 (2020)
CrossRef ADS Google scholar
[119]
P. Roy Chowdhury, C. Reynolds, A. Garrett, T. Feng, S. P. Adiga, and X. Ruan, Machine learning maximized Anderson localization of phonons in aperiodic superlattices, Nano Energy 69, 104428 (2020)
CrossRef ADS Google scholar
[120]
M. Yamawaki, M. Ohnishi, S. Ju, and J. Shiomi, Multifunctional structural design of graphene thermoelectrics by Bayesian optimization, Sci. Adv. 4(6), eaar4192 (2018)
CrossRef ADS Google scholar
[121]
Z. Hou, Y. Takagiwa, Y. Shinohara, Y. Xu, and K. Tsuda, Machine-learning-assisted development and theoretical consideration for the Al2Fe3Si3 thermoelectric material, ACS Appl. Mater. Interfaces 11(12), 11545 (2019)
CrossRef ADS Google scholar
[122]
A. Sakurai, K. Yada, T. Simomura, S. Ju, M. Kashiwagi, H. Okada, T. Nagao, K. Tsuda, and J. Shiomi, Ultranarrow-band wavelength-selective thermal emission with aperiodic multilayered metamaterials designed by bayesian optimization, ACS Cent. Sci. 5(2), 319 (2019)
CrossRef ADS Google scholar
[123]
J. Guo, S. Ju, and J. Shiomi, Design of a highly selective radiative cooling structure accelerated by materials informatics, Opt. Lett. 45(2), 343 (2020)
CrossRef ADS Google scholar
[124]
Z. Li, Q. Xu, Q. Sun, Z. Hou, and W. J. Yin, Thermodynamic stability landscape of halide double perovskites via high-throughput computing and machine learning, Adv. Funct. Mater. 29(9), 1807280 (2019)
CrossRef ADS Google scholar
[125]
K. Homma, Y. Liu, M. Sumita, R. Tamura, N. Fushimi, J. Iwata, K. Tsuda, and C. Kaneta, Optimization of heterogeneous ternary Li3PO4–Li3BO3–Li2SO4 mixture for Li-ion conductivity by machine learning, J. Phys. Chem. C 124(24), 12865 (2020)
CrossRef ADS Google scholar
[126]
H. Hazama, S. Sobue, S. Tajima, and R. Asahi, Phosphorescent material search using a combination of highthroughput evaluation and machine learning, Inorg. Chem. 58(16), 10936 (2019)
CrossRef ADS Google scholar
[127]
Z. Zhou, Y. Zhou, Q. He, Z. Ding, F. Li, and Y. Yang, Machine learning guided appraisal and exploration of phase design for high entropy alloys, npj Comput. Mater. 5, 128 (2019)
CrossRef ADS Google scholar
[128]
H. Salmenjoki, M. J. Alava, and L. Laurson, Machine learning plastic deformation of crystals, Nat. Commun. 9(1), 5307 (2018)
CrossRef ADS Google scholar
[129]
K. Xia, H. Gao, C. Liu, J. Yuan, J. Sun, H. T. Wang, and D. Xing, A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search, Sci. Bull. (Beijing) 63(13), 817 (2018)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(2563 KB)

Accesses

Citations

Detail

Sections
Recommended

/