Analytic phase structures and thermodynamic curvature for the charged AdS black hole in alternative phase space

Zhen-Ming Xu (许震明)

PDF(895 KB)
PDF(895 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (2) : 24502. DOI: 10.1007/s11467-020-1038-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Analytic phase structures and thermodynamic curvature for the charged AdS black hole in alternative phase space

Author information +
History +

Abstract

In this paper, we visit the thermodynamic criticality and thermodynamic curvature of the charged AdS black hole in a new phase space. It is shown that when the square of the total charge of the charged black hole is considered as a thermodynamic quantity, the charged AdS black hole also admits a van der Waals-type critical behavior without the help of thermodynamic pressure and thermodynamic volume. Based on this, we study the fine phase structures of the charged AdS black hole with fixed AdS background in the new framework. On the one hand, we give the phase diagram structures of the charged AdS black hole accurately and analytically, which fills up the gap in dealing with the phase transition of the charged AdS black holes by taking the square of the charge as a thermodynamic quantity. On the other hand, we analyse the thermodynamic curvature of the black hole in two coordinate spaces. The thermodynamic curvatures obtained in two different coordinate spaces are equivalent to each other and are also positive. Based on an empirical conclusion under the framework of thermodynamic geometry, we speculate that when the square of charge is treated as an independent thermodynamic quantity, the charged AdS black hole is likely to present a repulsive between its molecules. More importantly, based on the thermodynamic curvature, we obtain a universal exponent at the critical point of phase transition.

Keywords

thermodynamics of black hole / phase transition / the Maxwell construction / the Ruppeiner thermodynamic geometry

Cite this article

Download citation ▾
Zhen-Ming Xu (许震明). Analytic phase structures and thermodynamic curvature for the charged AdS black hole in alternative phase space. Front. Phys., 2021, 16(2): 24502 https://doi.org/10.1007/s11467-020-1038-5

References

[1]
S. Hawking, Particle creation by black holes, Commun. Math. Phys. 43, 199 (1975); Errutum, Commun. Math. Phys. 46, 206 (1976)
CrossRef ADS Google scholar
[2]
J. M. Bardeen, B. Carter, and S. Hawking, The four laws of black hole mechanics, Commun. Math. Phys. 31(2), 161 (1973)
CrossRef ADS Google scholar
[3]
J. D. Bekenstein, Black holes and entropy, Phys. Rev. D 7(8), 2333 (1973)
CrossRef ADS Google scholar
[4]
S. Hawking and D. N. Page, Thermodynamics of black holes in anti-de Sitter space, Commun. Math. Phys. 87(4), 577 (1983)
CrossRef ADS Google scholar
[5]
R. M. Wald, The thermodynamics of black holes, Living Rev. Relativ. 4(1), 6 (2001)
CrossRef ADS Google scholar
[6]
T. Padmanabhan, Thermodynamical aspects of gravity: New insights, Rep. Prog. Phys. 73(4), 046901 (2010)
CrossRef ADS Google scholar
[7]
S. Carlip, Black hole thermodynamics, Int. J. Mod. Phys. D 23(11), 1430023 (2014)
CrossRef ADS Google scholar
[8]
D. Kubiznak, R. B. Mann, and M. Teo, Black hole chemistry: Thermodynamics with Lambda, Class. Quantum Gravity 34(6), 063001 (2017)
CrossRef ADS Google scholar
[9]
D. Kastor, S. Ray, and J. Traschen, Enthalpy and the mechanics of AdS black holes, Class. Quantum Gravity 26(19), 195011 (2009)
CrossRef ADS Google scholar
[10]
B. P. Dolan, The cosmological constant and the black hole equation of state, Class. Quantum Gravity 28, 125020 (2011)
CrossRef ADS Google scholar
[11]
N. Altamirano, D. Kubiznak, R. B. Mann, and Z. Sherkatghanad, Thermodynamics of rotating black holes and black rings: Phase transitions and thermodynamic volume, Galaxies 2(1), 89 (2014)
CrossRef ADS Google scholar
[12]
D. Kubiznak and R. B. Mann, P–Vcriticality of charged AdS black holes, J. High Energy Phys. 2012, 33 (2012)
CrossRef ADS Google scholar
[13]
A. Belhaj, M. Chabab, H. El Moumni, K. Masmar, M. B. Sedra, and A. Segui, On heat properties of AdS black holes in higher dimensions, J. High Energy Phys. 05(5), 149 (2015)
CrossRef ADS Google scholar
[14]
S. W. Wei and Y. X. Liu, Clapeyron equations and fitting formula of the coexistence curve in the extended phase space of charged AdS black holes, Phys. Rev. D 91(4), 044018 (2015)
CrossRef ADS Google scholar
[15]
R.-G. Cai, L.-M. Cao, L. Li, and R.-Q. Yang, P–Vcriticality in the extended phase space of GB black holes in AdS space, J. High Energy Phys. 2013, 5 (2013)
CrossRef ADS Google scholar
[16]
W. Xu, H. Xu, and L. Zhao, Gauss–Bonnet coupling constant as a free thermodynamical variable and the associated criticality, Eur. Phys. J. C 74(7), 2970 (2014)
CrossRef ADS Google scholar
[17]
S. H. Hendi, S. Panahiyan, B. E. Panah, M. Faizal, and M. Momennia, Critical behavior of charged black holes in Gauss–Bonnet gravity’s rainbow, Phys. Rev. D 94(2), 024028 (2016)
CrossRef ADS Google scholar
[18]
M. Cvetič, S. Nojiri, and S. D. Odintsov, 0, S. Nojiri, and S.D. Odintsov, Black hole thermodynamics and negative entropy in de Sitter and anti-de Sitter Einstein–Gauss– Bonnet gravity, Nucl. Phys. B 628(1–2), 295 (2002)
CrossRef ADS Google scholar
[19]
S. W. Wei and Y. X. Liu, Critical phenomena and thermodynamic geometry of charged Gauss–Bonnet AdS black holes, Phys. Rev. D 87(4), 044014 (2013)
CrossRef ADS Google scholar
[20]
D. C. Zou, Y. Q. Liu, and B. Wang, Critical behavior of charged Gauss-Bonnet AdS black holes in the grand canonical ensemble, Phys. Rev. D 90(4), 044063 (2014)
CrossRef ADS Google scholar
[21]
A. Belhaj, M. Chabab, H. El Moumni, K. Masmar, and M. B. Sedra, Maxwell’s equal-area law for Gauss–Bonnet anti-de Sitter black holes, Eur. Phys. J. C 75(2), 71 (2015)
CrossRef ADS Google scholar
[22]
H. Xu, and Z. M. Xu, Maxwell’s equal area law for Lovelock thermodynamics, Int. J. Mod. Phys. D 26(04), 1750037 (2017)
CrossRef ADS Google scholar
[23]
Y. G. Miao and Z. M. Xu, Validity of Maxwell equal area law for black holes conformally coupled to scalar fields in AdS5 spacetime, Eur. Phys. J. C 77(6), 403 (2017)
[24]
Y. G. Miao and Z. M. Xu, Thermodynamics of noncommutative high-dimensional AdS black holes with non- Gaussian smeared matter distributions, Eur. Phys. J. C 76(4), 217 (2016)
CrossRef ADS Google scholar
[25]
A. Smailagic and E. Spallucci, Thermodynamical phases of a regular SAdS black hole, Int. J. Mod. Phys. D 22(03), 1350010 (2013)
CrossRef ADS Google scholar
[26]
M. Cvetic, G. W. Gibbons, D. Kubiznak, and C. N. Pope, Black hole enthalpy and an entropy inequality for the thermodynamic volume, Phys. Rev. D 84(2), 024037 (2011)
CrossRef ADS Google scholar
[27]
E. Spallucci and A. Smailagic, Maxwell’s equal area law for charged anti-de Sitter black holes, Phys. Lett. B 723(4–5), 436 (2013)
CrossRef ADS Google scholar
[28]
G. Ruppeiner, Riemannian geometry in thermodynamic fluctuation theory, Rev. Mod. Phys. 67, 605 (1995); Errutum, Rev. Mod. Phys. 68, 313 (1996)
CrossRef ADS Google scholar
[29]
G. Ruppeiner, Thermodynamic curvature and black holes, in: S. Bellucci (Eds.), Breaking of supersymmetry and ultraviolet divergences in extended supergravity, Springer Proceedings in Physics 153, 179 (2014), arXiv: 1309.0901 [gr-qc]
CrossRef ADS Google scholar
[30]
F. Weinhold, Metric geometry of equilibrium thermodynamics, J. Chem. Phys. 63(6), 2479 (1975)
CrossRef ADS Google scholar
[31]
S. W. Wei and Y. X. Liu, Insight into the microscopic structure of an AdS black hole from a thermodynamical phase transition, Phys. Rev. Lett. 115(11), 111302 (2015); Erratum, Phys. Rev. Lett. 116(16), 169903 (2016)
CrossRef ADS Google scholar
[32]
S. W. Wei, Y. X. Liu, and R. B. Mann, Repulsive interactions and universal properties of charged anti-de Sitter black hole microstructures, Phys. Rev. Lett. 123(7), 071102 (2019)
CrossRef ADS Google scholar
[33]
Y. G. Miao and Z. M. Xu, Thermal molecular potential among micromolecules in charged AdS black holes, Phys. Rev. D 98(4), 044001 (2018)
CrossRef ADS Google scholar
[34]
Z. M. Xu, B. Wu, and W. L. Yang, Ruppeiner thermodynamic geometry for the Schwarzschild AdS black hole, Phys. Rev. D 101(2), 024018 (2020)
CrossRef ADS Google scholar
[35]
A. Ghosh and C. Bhamidipati, Thermodynamic geometry for charged Gauss–Bonnet black holes in AdS spacetimes, Phys. Rev. D 101(4), 046005 (2020)
CrossRef ADS Google scholar
[36]
A. Chamblin, R. Emparan, C. V. Johnson, and R. C. Myers, Holography, thermodynamics, and fluctuations of charged AdS black holes, Phys. Rev. D 60(10), 104026 (1999)
CrossRef ADS Google scholar
[37]
A. Chamblin, R. Emparan, C. V. Johnson, and R. C. Myers, Charged AdS black holes and catastrophic holography,Phys. Rev. D 60(6), 064018 (1999)
CrossRef ADS Google scholar
[38]
X. N. Wu, Multicritical phenomena of Reissner–Nordström antide Sitter black holes, Phys. Rev. D 62(12), 124023 (2000)
CrossRef ADS Google scholar
[39]
A. Dehyadegari, A. Sheykhi, and A. Montakhab, Critical behavior and microscopic structure of charged AdS black holes via an alternative phase space, Phys. Lett. B 768, 235 (2017)
CrossRef ADS Google scholar
[40]
Z.-M. Xu, B. Wu, and W.-L. Yang, The fine micro-thermal structures for the Reissner–Nordström black hole, Chin. Phys. C 44(9), 095106 (2020)
CrossRef ADS Google scholar
[41]
H. Yazdikarimi, A. Sheykhi, and Z. Dayyani, Critical behavior of Gauss–Bonnet black holes via an alternative phase space, Phys. Rev. D 99(12), 124017 (2019)
CrossRef ADS Google scholar
[42]
J. E. Aman, I. Bengtsson, and N. Pidokrajt, Geometry of black hole thermodynamics, Gen. Relativ. Gravit. 35(10), 1733 (2003)
CrossRef ADS Google scholar
[43]
J. E. Aman and N. Pidokrajt, Geometry of higherdimensional black hole thermodynamics, Phys. Rev. D 73(2), 024017 (2006)
CrossRef ADS Google scholar
[44]
J. E. Aman, I. Bengtsson, and N. Pidokrajt, Flat information geometries in black hole thermodynamics, Gen. Relativ. Gravit. 38(8), 1305 (2006)
CrossRef ADS Google scholar
[45]
B. Mirza, M. Zamani-Nasab, Ruppeiner geometry of RN black holes: Flat or curved? J. High Energy Phys. 06, 059 (2007)
CrossRef ADS Google scholar
[46]
S. Gunasekaran, D. Kubiznak, and R. B. Mann, Extended phase space thermodynamics for charged and rotating black holes and Born–Infeld vacuum polarization, J. High Energy Phys. 11(11), 110 (2012)
CrossRef ADS Google scholar
[47]
N. Breton, Smarr’s formula for black holes with nonlinear electrodynamics, Gen. Relativ. Gravit. 37(4), 643 (2005)
CrossRef ADS Google scholar
[48]
Y. G. Miao and Z. M. Xu, Thermodynamics of Horndeski black holes with non-minimal derivative coupling, Eur. Phys. J. C 76(11), 638 (2016)
CrossRef ADS Google scholar
[49]
Y.-G. Miao and Z.-M. Xu, Phase transition and entropy inequality of noncommutative black holes in a new extended phase space, J. Cosmol. Astropart. Phys. 03, 046 (2017)
CrossRef ADS Google scholar
[50]
B. P. Dolan, Intrinsic curvature of thermodynamic potentials for black holes with critical points, Phys. Rev. D 92(4), 044013 (2015)
CrossRef ADS Google scholar
[51]
Y. G. Miao and Z. M. Xu, Parametric phase transition for a Gauss–Bonnet AdS black hole, Phys. Rev. D 98(8), 084051 (2018)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(895 KB)

Accesses

Citations

Detail

Sections
Recommended

/