Molecular collisions: From near-cold to ultra-cold
Yang Liu, Le Luo
Molecular collisions: From near-cold to ultra-cold
In the past two decades, the revolutionary technologies of creating cold and ultracold molecules have provided cutting-edge experiments for studying the fundamental phenomena of collision physics. To a large degree, the recent explosion of interest in the molecular collisions has been sparked by dramatic progress of experimental capabilities and theoretical methods, which permit molecular collisions to be explored deep in the quantum mechanical limit. Tremendous experimental advances in the field have already been achieved, and the authors, from an experimental perspective, provide a review of these studies for exploring the nature of molecular collisions occurring at temperatures ranging from the Kelvin to the nanoKelvin regime, as well as for applications of producing ultracold molecules.
molecular collision / near cold collisions / cold collisions / ultracold collisions
[1] |
Y. T. Lee, J. McDonald, P. LeBreton, and D. Herschbach, Molecular beam reactive scattering apparatus with electron bombardment detector, Rev. Sci. Instrum. 40(11), 1402 (1969)
CrossRef
ADS
Google scholar
|
[2] |
D. R. Herschbach, Molecular dynamics of elementary chemical reactions, Angew. Chem. Int. Ed. Engl. 26(12), 1221 (1987)
CrossRef
ADS
Google scholar
|
[3] |
J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, Experiments and theory in cold and ultracold collisions, Rev. Mod. Phys. 71(1), 1 (1999)
CrossRef
ADS
Google scholar
|
[4] |
https://www.nobelprize.org/prizes/chemistry/1986/
|
[5] |
https://www.nobelprize.org/prizes/physics/1997/
|
[6] |
E. R. Hudson, H. Lewandowski, B. C. Sawyer, and J. Ye, Cold molecule spectroscopy for constraining the evolution of the fine structure constant, Phys. Rev. Lett. 96(14), 143004 (2006)
CrossRef
ADS
Google scholar
|
[7] |
T. Zelevinsky, S. Kotochigova, and J. Ye, Precision test of mass-ratio variations with lattice-confined ultracold molecules, Phys. Rev. Lett. 100(4), 043201 (2008)
CrossRef
ADS
Google scholar
|
[8] |
C. Chin, V. Flambaum, and M. Kozlov, Ultracold molecules: New probes on the variation of fundamental constants, New J. Phys. 11(5), 055048 (2009)
CrossRef
ADS
Google scholar
|
[9] |
J. Baron, W. C. Campbell, D. DeMille, J. M. Doyle, G. Gabrielse, Y. V. Gurevich, P. W. Hess, N. R. Hutzler, E. Kirilov, I. Kozyryev, B. R. O’Leary, C. D. Panda, M. F. Parsons, E. S. Petrik, B. Spaun, A. C. Vutha, and A. D. West, Order of magnitude smaller limit on the electric dipole moment of the electron, Science 343(6168), 269 (2014)
CrossRef
ADS
Google scholar
|
[10] |
J. Kobayashi, A. Ogino, and S. Inouye, Measurement of the variation of electron-to-proton mass ratio using ultracold molecules produced from laser-cooled atoms, Nat. commun. 10, 3771 (2019)
CrossRef
ADS
Google scholar
|
[11] |
M. A. Baranov, Theoretical progress in many-body physics with ultracold dipolar gases, Phys. Rep. 464(3), 71 (2008)
CrossRef
ADS
Google scholar
|
[12] |
J. Eisert, M. Friesdorf, and C. Gogolin, Quantum manybody systems out of equilibrium, Nat. Phys. 11(2), 124 (2015)
CrossRef
ADS
Google scholar
|
[13] |
D. DeMille, Quantum computation with trapped polar molecules, Phys. Rev. Lett. 88(6), 067901 (2002)
CrossRef
ADS
Google scholar
|
[14] |
P. Rabl, D. DeMille, J. M. Doyle, M. D. Lukin, R. Schoelkopf, and P. Zoller, Hybrid quantum processors: Molecular ensembles as quantum memory for solid state circuits, Phys. Rev. Lett. 97(3), 033003 (2006)
CrossRef
ADS
Google scholar
|
[15] |
A. Micheli, G. Brennen, and P. Zoller, A toolbox for lattice-spin models with polar molecules, Nat. Phys. 2(5), 341 (2006)
CrossRef
ADS
Google scholar
|
[16] |
A. V. Gorshkov, S. R. Manmana, G. Chen, J. Ye, E. Demler, M. D. Lukin, and A. M. Rey, Tunable superfluidity and quantum magnetism with ultracold polar molecules, Phys. Rev. Lett. 107(11), 115301 (2011)
CrossRef
ADS
Google scholar
|
[17] |
B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R. Hazzard, A. M. Rey, D. S. Jin, and J. Ye, Observation of dipolar spin-exchange interactions with lattice-confined polar molecules, Nature 501(7468), 521 (2013)
CrossRef
ADS
Google scholar
|
[18] |
N. Balakrishnan and A. Dalgarno, Chemistry at ultracold temperatures, Chem. Phys. Lett. 341(5–6), 652 (2001)
CrossRef
ADS
Google scholar
|
[19] |
R. V. Krems, Cold controlled chemistry, Phys. Chem. Chem. Phys. 10(28), 4079 (2008)
CrossRef
ADS
Google scholar
|
[20] |
M. T. Bell and T. P. Softley, Ultracold molecules and ultracold chemistry, Mol. Phys. 107(2), 99 (2009)
CrossRef
ADS
Google scholar
|
[21] |
K. K. Ni, S. Ospelkaus, D. Wang, G. Quéméner, B. Neyenhuis, M. De Miranda, J. Bohn, J. Ye, and D. Jin, Dipolar collisions of polar molecules in the quantum regime, Nature 464(7293), 1324 (2010)
CrossRef
ADS
Google scholar
|
[22] |
S. Ospelkaus, K. K. Ni, D. Wang, M. De Miranda, B. Neyenhuis, G. Quéméner, P. Julienne, J. Bohn, D. Jin, and J. Ye, Quantum-state controlled chemical reactions of ultracold potassium–rubidium molecules, Science 327(5967), 853 (2010)
CrossRef
ADS
Google scholar
|
[23] |
B. K. Stuhl, M. T. Hummon, and J. Ye, Cold stateselected molecular collisions and reactions, Annu. Rev. Phys. Chem. 65(1), 501 (2014)
CrossRef
ADS
Google scholar
|
[24] |
O. Dulieu and A. Osterwalder, Cold Chemistry: Molecular Scattering and Reactivity Near Absolute Zero, Vol. 11, Royal Society of Chemistry, 2017
CrossRef
ADS
Google scholar
|
[25] |
C. Naulin and M. Costes, Experimental search for scattering resonances in near cold molecular collisions, Int. Rev. Phys. Chem. 33(4), 427 (2014)
CrossRef
ADS
Google scholar
|
[26] |
L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, Cold and ultracold molecules: Science, technology and applications, New J. Phys. 11(5), 055049 (2009)
CrossRef
ADS
Google scholar
|
[27] |
S. A. Harich, D. Dai, C. C. Wang, X. Yang, S. Der Chao, and R. T. Skodje, Forward scattering due to slow-down of the intermediate in the H+ HD → D+ H2 reaction, Nature 419(6904), 281 (2002)
CrossRef
ADS
Google scholar
|
[28] |
X. Yang and D. H. Zhang, Dynamical resonances in the fluorine atom reaction with the hydrogen molecule, Acc. Chem. Res. 41(8), 981 (2008)
CrossRef
ADS
Google scholar
|
[29] |
C. Berteloite, M. Lara, A. Bergeat, S. D. Le Picard, F. Dayou, K. M. Hickson, A. Canosa, C. Naulin, J. M. Launay, I. R. Sims, and M. Costes, Kinetics and dynamics of the S(2D1) + H2 → SH+ H reaction at very low temperatures and collision energies, Phys. Rev. Lett. 105(20), 203201 (2010)
CrossRef
ADS
Google scholar
|
[30] |
A. Bergeat, J. Onvlee, C. Naulin, A. Van Der Avoird, and M. Costes, Quantum dynamical resonances in low-energy CO(j= 0) + He inelastic collisions, Nat. Chem. 7(4), 349 (2015)
CrossRef
ADS
Google scholar
|
[31] |
J. J. Gilijamse, S. Hoekstra, S. Y. van de Meerakker, G. C. Groenenboom, and G. Meijer, Near-threshold inelastic collisions using molecular beams with a tunable velocity, Science 313(5793), 1617 (2006)
CrossRef
ADS
Google scholar
|
[32] |
H. L. Bethlem, G. Berden, and G. Meijer, Decelerating neutral dipolar molecules, Phys. Rev. Lett. 83(8), 1558 (1999)
CrossRef
ADS
Google scholar
|
[33] |
M. Kirste, X. Wang, H. C. Schewe, G. Meijer, K. Liu, A. van der Avoird, L. M. Janssen, K. B. Gubbels, G. C. Groenenboom, and S. Y. van de Meerakker, Quantumstate resolved bimolecular collisions of velocity-controlled OH with NO radicals, Science 338(6110), 1060 (2012)
CrossRef
ADS
Google scholar
|
[34] |
S. N. Vogels, J. Onvlee, S. Chefdeville, A. van der Avoird, G. C. Groenenboom, and S. Y. van de Meerakker, Imaging resonances in low-energy NO–He inelastic collisions, Science 350(6262), 787 (2015)
CrossRef
ADS
Google scholar
|
[35] |
K. Liu, Crossed-beam studies of neutral reactions: Statespecific differential cross sections, Annu. Rev. Phys. Chem. 52(1), 139 (2001)
CrossRef
ADS
Google scholar
|
[36] |
K. Liu, Vibrational control of bimolecular reactions with methane by mode, bond, and stereo selectivity, Annu. Rev. Phys. Chem. 67(1), 91 (2016)
CrossRef
ADS
Google scholar
|
[37] |
R. Liu, F. Wang, B. Jiang, G. Czakó, M. Yang, K. Liu, and H. Guo, Rotational mode specificity in the Cl+ CHD3 → HCl+ CD3 reaction, J. Chem. Phys. 141(7), 074310 (2014)
CrossRef
ADS
Google scholar
|
[38] |
Y. Shagam, A. Klein, W. Skomorowski, R. Yun, V. Averbukh, C. P. Koch, and E. Narevicius, Molecular hydrogen interacts more strongly when rotationally excited at low temperatures leading to faster reactions, Nat. Chem. 7(11), 921 (2015)
CrossRef
ADS
Google scholar
|
[39] |
Ian W. M. Smith, Low Temperatures and Cold Molecules, World Scientific, 2008
|
[40] |
R. Krems, B. Friedrich, and W. C. Stwalley, Cold Molecules: Theory, Experiment, Applications, CRC Press, 2009
CrossRef
ADS
Google scholar
|
[41] |
X. Yang, State-to-state dynamics of elementary bimolecular reactions, Annu. Rev. Phys. Chem. 58(1), 433 (2007)
CrossRef
ADS
Google scholar
|
[42] |
R. B. Bernstein, Atom–Molecule Collision Theory, Plenum Press, 1979
CrossRef
ADS
Google scholar
|
[43] |
M. S. Child, Molecular Collision Theory, Courier Corporation, 1996
|
[44] |
R. D. Levine, Molecular Reaction Dynamics, Cambridge University Press, 2009
|
[45] |
G. Chalasinski and M. M. Szczesniak, Origins of structure and energetics of van der Waals clusters from ab initiocalculations, Chem. Rev. 94(7), 1723 (1994)
CrossRef
ADS
Google scholar
|
[46] |
G. Chałasiński and M. M. Szcześniak, State of the art and challenges of the ab initio theory of intermolecular interactions, Chem. Rev. 100(11), 4227 (2000)
CrossRef
ADS
Google scholar
|
[47] |
K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, A fifth-order perturbation comparison of electron correlation theories, Chem. Phys. Lett. 157(6), 479 (1989)
CrossRef
ADS
Google scholar
|
[48] |
B. O. Roos, The complete active space self-consistent field method and its applications in electronic structure calculations, Adv. Chem. Phys. 69, 399 (1987)
|
[49] |
H. J. Werner and P. J. Knowles, A second order multiconfiguration SCF procedure with optimum convergence, J. Chem. Phys. 82(11), 5053 (1985)
CrossRef
ADS
Google scholar
|
[50] |
Jr Dunning, Gaussian basis sets for use in correlated molecular calculations (I): The atoms boron through neon and hydrogen, J. Chem. Phys. 90(2), 1007 (1989)
CrossRef
ADS
Google scholar
|
[51] |
E. S. Sachs, J. Hinze, and N. H. Sabelli, Frozen core approximation, a pseudopotential method tested on six states of NaH, J. Chem. Phys. 62(9), 3393 (1975)
CrossRef
ADS
Google scholar
|
[52] |
H. J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, and M. Schütz, Molpro: A general-purpose quantum chemistry program package, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2(2), 242 (2012)
CrossRef
ADS
Google scholar
|
[53] |
G. C. Schatz, The analytical representation of electronic potential-energy surfaces, Rev. Mod. Phys. 61(3), 669 (1989)
CrossRef
ADS
Google scholar
|
[54] |
T. Hollebeek, T. S. Ho, and H. Rabitz, Constructing multidimensional molecular potential energy surfaces from ab initiodata, Annu. Rev. Phys. Chem. 50(1), 537 (1999)
CrossRef
ADS
Google scholar
|
[55] |
P. Kuntz and A. Roach, Ion-molecule reactions of the rare gases with hydrogen (Part 1): Diatomics-in-molecules potential energy surface for ArH+2, Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics 68, 259 (1972)
CrossRef
ADS
Google scholar
|
[56] |
T. S. Ho and H. Rabitz, Proper construction of ab initio global potential surfaces with accurate long-range interactions, J. Chem. Phys. 113(10), 3960 (2000)
CrossRef
ADS
Google scholar
|
[57] |
A. Frishman, D. K. Hoffman, and D. J. Kouri, Distributed approximating functional fit of the H3ab initiopotentialenergy data of Liu and Siegbahn, J. Chem. Phys. 107(3), 804 (1997)
CrossRef
ADS
Google scholar
|
[58] |
E. Garcia and A. Lagana’, A fit of the potential energy surface of the LiHF system, Mol. Phys. 52(5), 1115 (1984)
CrossRef
ADS
Google scholar
|
[59] |
J. N. Murrell, Molecular Potential Energy Functions, John Wiley, 1984
|
[60] |
G. S. Dhont, J. H. van Lenthe, G. C. Groenenboom, and A. van der Avoird, Ab initiocalculation of the NH(3Σ−)–NH(3Σ−) interaction potentials in the quintet, triplet,and singlet states, J. Chem. Phys. 123(18), 184302 (2005)
CrossRef
ADS
Google scholar
|
[61] |
L. M. Janssen, G. C. Groenenboom, A. van der Avoird, P. S. Żuchowski, and R. Podeszwa, Ab initio potential energy surfaces for NH(3Σ−)–NH(3Σ−) with analytical long range, J. Chem. Phys. 131(22), 224314 (2009)
CrossRef
ADS
Google scholar
|
[62] |
Z. Li, V. Apkarian, and L. B. Harding, A theoretical study of solid hydrogens doped with atomic oxygen, J. Chem. Phys. 106(3), 942 (1997)
CrossRef
ADS
Google scholar
|
[63] |
M. H. Alexander, Theoretical investigation of weaklybound complexes of O(3P) with H2, J. Chem. Phys. 108(11), 4467 (1998)
CrossRef
ADS
Google scholar
|
[64] |
S. Rogers, D. Wang, A. Kuppermann, and S. Walch, Chemically accurate ab initiopotential energy surfaces for the lowest 3A′ and 3A′′ electronically adiabatic states of O(3P) + H2, J. Phys. Chem. A 104(11), 2308 (2000)
CrossRef
ADS
Google scholar
|
[65] |
J. Brandão, C. Mogo, and B. C. Silva, Potential energy surface for H2O(3A′′) from accurate ab initio data with inclusion of long-range interactions, J. Chem. Phys. 121(18), 8861 (2004)
CrossRef
ADS
Google scholar
|
[66] |
S. Atahan, J. Kłos, P. S. Żuchowski, and M. H. Alexander, An ab initio investigation of the O(3P)–H2(1Σ+g) van der Waals well, Phys. Chem. Chem. Phys. 8(38), 4420 (2006)
CrossRef
ADS
Google scholar
|
[67] |
P. J. Knowles and H. J. Werner, An efficient method for the evaluation of coupling coefficients in configuration interaction calculations, Chem. Phys. Lett. 145(6), 514 (1988)
CrossRef
ADS
Google scholar
|
[68] |
H. J. Werner and P. J. Knowles, An efficient internally contracted multiconfiguration–reference configuration interaction method, J. Chem. Phys. 89(9), 5803 (1988)
CrossRef
ADS
Google scholar
|
[69] |
B. Jeziorski, R. Moszynski, and K. Szalewicz, Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes, Chem. Rev. 94(7), 1887 (1994)
CrossRef
ADS
Google scholar
|
[70] |
A. S. Zyubin, A. M. Mebel, S. Der Chao, and R. T. Skodje, Reaction dynamics of S(1D)+H2/D2 on a new ab initiopotential surface, J. Chem. Phys. 114(1), 320 (2001)
CrossRef
ADS
Google scholar
|
[71] |
T. S. Ho, T. Hollebeek, H. Rabitz, S. Der Chao, R. T. Skodje, A. S. Zyubin, and A. M. Mebel, A globally smooth ab initiopotential surface of the 1A state for the reaction S(1D)+H2, J. Chem. Phys. 116(10), 4124 (2002)
CrossRef
ADS
Google scholar
|
[72] |
R. T. Pack and G. A. Parker, Quantum reactive scattering in three dimensions using hyperspherical (APH) coordinates: Theory, J. Chem. Phys. 87(7), 3888 (1987)
CrossRef
ADS
Google scholar
|
[73] |
C. Makrides, J. Hazra, G. Pradhan, A. Petrov, B. K. Kendrick, T. González-Lezana, N. Balakrishnan, and S. Kotochigova, Ultracold chemistry with alkali-metal–rareearth molecules, Phys. Rev. A 91(1), 012708 (2015)
CrossRef
ADS
Google scholar
|
[74] |
J. Croft, C. Makrides, M. Li, A. Petrov, B. Kendrick, N. Balakrishnan, and S. Kotochigova, Universality and chaoticity in ultracold K+KRb chemical reactions, Nat. Commun. 8(1), 15897 (2017)
CrossRef
ADS
Google scholar
|
[75] |
B. J. Braams and J. M. Bowman, Permutationally invariant potential energy surfaces in high dimensionality, Int. Rev. Phys. Chem. 28(4), 577 (2009)
CrossRef
ADS
Google scholar
|
[76] |
J. M. Bowman, G. Czako, and B. Fu, High-dimensional ab initio potential energy surfaces for reaction dynamics calculations, Phys. Chem. Chem. Phys. 13(18), 8094 (2011)
CrossRef
ADS
Google scholar
|
[77] |
G. Czakó and J. M. Bowman, Dynamics of the reaction of methane with chlorine atom on an accurate potential energy surface, Science 334(6054), 343 (2011)
CrossRef
ADS
Google scholar
|
[78] |
S. C. Althorpe and D. C. Clary, Quantum scattering calculations on chemical reactions, Annu. Rev. Phys. Chem. 54(1), 493 (2003)
CrossRef
ADS
Google scholar
|
[79] |
M. Brouard and C. Vallance, Tutorials in Molecular Reaction Dynamics, Royal Society of Chemistry, 2015
|
[80] |
A. Klein, Y. Shagam, W. Skomorowski, P. S. Żuchowski, M. Pawlak, L. M. Janssen, N. Moiseyev, S. Y. van de Meerakker, A. van der Avoird, C. P. Koch, and E. Narevicius, Directly probing anisotropy in atom–molecule collisions through quantum scattering resonances, Nat. Phys. 13(1), 35 (2017)
CrossRef
ADS
Google scholar
|
[81] |
A. Arthurs and A. Dalgarno, The theory of scattering by a rigid rotator, Proc. R. Soc. Lond. A 256(1287), 540 (1960)
CrossRef
ADS
Google scholar
|
[82] |
M. Quack and J. Troe, Specific rate constants of unimolecular processes (II): Adiabatic channel model, Ber. Bunsenges. Phys. Chem 78(3), 240 (1974)
CrossRef
ADS
Google scholar
|
[83] |
D. Clary, Calculations of rate constants for ion–molecule reactions using a combined capture and centrifugal sudden approximation, Mol. Phys. 54(3), 605 (1985)
CrossRef
ADS
Google scholar
|
[84] |
D. C. Clary, Journal of the Chemical Society, Faraday Transactions2, Molecular and Chemical Physics 83, 139 (1987)
CrossRef
ADS
Google scholar
|
[85] |
M. Ramillon and R. McCarroll, Adiabatic capture models for fast chemical reactions, J. Chem. Phys. 101(10), 8697 (1994)
CrossRef
ADS
Google scholar
|
[86] |
D. Clary, Fast chemical reactions: Theory challenges experiment, Annu. Rev. Phys. Chem. 41(1), 61 (1990)
CrossRef
ADS
Google scholar
|
[87] |
T. J. Frankcombe and G. Nyman, Adiabatic capture theory applied to N+ NH → N2+ H at low temperature, J. Phys. Chem. A 111(50), 13163 (2007)
CrossRef
ADS
Google scholar
|
[88] |
T. V. Tscherbul and A. A. Buchachenko, Adiabatic channel capture theory applied to cold atom–molecule reactions: Li+ CaH → LiH+ Ca at 1 K, New J. Phys. 17(3), 035010 (2015)
CrossRef
ADS
Google scholar
|
[89] |
V. Singh, K. S. Hardman, N. Tariq, M. J. Lu, A. Ellis, M. J. Morrison, and J. D. Weinstein, Chemical reactions of atomic lithium and molecular calcium monohydride at 1 K, Phys. Rev. Lett. 108(20), 203201 (2012)
CrossRef
ADS
Google scholar
|
[90] |
M. Pawlak, Y. Shagam, E. Narevicius, and N. Moiseyev, Adiabatic theory for anisotropic cold molecule collisions, J. Chem. Phys. 143(7), 074114 (2015)
CrossRef
ADS
Google scholar
|
[91] |
M. Pawlak, Y. Shagam, A. Klein, E. Narevicius, and N. Moiseyev, Adiabatic variational theory for cold atom– molecule collisions: Application to a metastable helium atom colliding with ortho- and para-hydrogen molecules, J. Phys. Chem. A 121(10), 2194 (2017)
CrossRef
ADS
Google scholar
|
[92] |
D. Bhattacharya, A. Ben-Asher, I. Haritan, M. Pawlak, A. Landau, and N. Moiseyev, Polyatomic ab initio complex potential energy surfaces: Illustration of ultracold collisions, J. Chem. Theory Comput. 13(4), 1682 (2017)
CrossRef
ADS
Google scholar
|
[93] |
D. Bhattacharya, M. Pawlak, A. Ben-Asher, A. Landau, I. Haritan, E. Narevicius, and N. Moiseyev, Quantum effects in cold molecular collisions from spatial polarization of electronic wave function,J. Phys. Chem. Lett. 10(4), 855 (2019)
CrossRef
ADS
Google scholar
|
[94] |
M. Pawlak, P. S. Żuchowski, N. Moiseyev, and P. Jankowski, Nonrigidity effects — a missing puzzle piece in the description of low-energy anisotropic molecular collisions, J. Chem. Theory Comput. 16, 2450 (2020)
CrossRef
ADS
Google scholar
|
[95] |
R. Krems and A. Dalgarno, Quantum-mechanical theory of atom–molecule and molecular collisions in a magnetic field: Spin depolarization, J. Chem. Phys. 120(5), 2296 (2004)
CrossRef
ADS
Google scholar
|
[96] |
T. Tscherbul, Y. V. Suleimanov, V. Aquilanti, and R. Krems, Magnetic field modification of ultracold molecule– molecule collisions, New J. Phys. 11(5), 055021 (2009)
CrossRef
ADS
Google scholar
|
[97] |
T. V. Tscherbul and A. Dalgarno, Quantum theory of molecular collisions in a magnetic field: Efficient calculations based on the total angular momentum representation, J. Chem. Phys. 133(18), 184104 (2010)
CrossRef
ADS
Google scholar
|
[98] |
T. Tscherbul, Total-angular-momentum representation for atom–molecule collisions in electric fields, Phys. Rev. A 85(5), 052710 (2012)
CrossRef
ADS
Google scholar
|
[99] |
L. M. Janssen, P. S. Żuchowski, A. van der Avoird, G. C. Groenenboom, and J. M. Hutson, Cold and ultracold NH–NH collisions in magnetic fields, Phys. Rev. A 83(2), 022713 (2011)
CrossRef
ADS
Google scholar
|
[100] |
R. V. Krems, Molecules near absolute zero and external field control of atomic and molecular dynamics, Int. Rev. Phys. Chem. 24(1), 99 (2005)
CrossRef
ADS
Google scholar
|
[101] |
R. V. Krems, Molecules in Electromagnetic Fields: From Ultracold Physics to Controlled Chemistry, John Wiley & Sons, 2018
CrossRef
ADS
Google scholar
|
[102] |
J. L. Bohn, Inelastic collisions of ultracold polar molecules, Phys. Rev. A 63(5), 052714 (2001)
CrossRef
ADS
Google scholar
|
[103] |
A. V. Avdeenkov and J. L. Bohn, Collisional dynamics of ultracold OH molecules in an electrostatic field, Phys. Rev. A 66(5), 052718 (2002)
CrossRef
ADS
Google scholar
|
[104] |
C. Ticknor and J. L. Bohn, Influence of magnetic fields on cold collisions of polar molecules, Phys. Rev. A 71(2), 022709 (2005)
CrossRef
ADS
Google scholar
|
[105] |
A. V. Avdeenkov and J. L. Bohn, Ultracold collisions of oxygen molecules, Phys. Rev. A 64(5), 052703 (2001)
CrossRef
ADS
Google scholar
|
[106] |
M. Hapka, G. Chałasiński, J. Kłos, and P. S. Żuchowski, First-principle interaction potentials for metastable He(3S) and Ne(3P) with closed-shell molecules: Application to Penning-ionizing systems, J. Chem. Phys. 139(1), 014307 (2013)
CrossRef
ADS
Google scholar
|
[107] |
A. B. Henson, S. Gersten, Y. Shagam, J. Narevicius, and E. Narevicius, Observation of resonances in penning ionization reactions at sub-Kelvin temperatures in merged beams, Science 338(6104), 234 (2012)
CrossRef
ADS
Google scholar
|
[108] |
N. Balakrishnan, G. C. Groenenboom, R. Krems, and A. Dalgarno, The He–CaH(2Σ+) interaction (II): Collisions at cold and ultracold temperatures, J. Chem. Phys. 118(16), 7386 (2003)
CrossRef
ADS
Google scholar
|
[109] |
R. Krems, A. Dalgarno, N. Balakrishnan, and G. Groenenboom, Spin-flipping transitions in 2Σ molecules induced by collisions with structureless atoms, Phys. Rev. A 67(6), 060703 (2003)
CrossRef
ADS
Google scholar
|
[110] |
R. Krems, H. Sadeghpour, A. Dalgarno, D. Zgid, J. Kłos, and G. Chałasiński, Low-temperature collisions of NH (X3Σ −) molecules with He atoms in a magnetic field: An ab initio study, Phys. Rev. A 68(5), 051401 (2003)
CrossRef
ADS
Google scholar
|
[111] |
H. Cybulski, R. Krems, H. Sadeghpour, A. Dalgarno, J. Kłos, G. Groenenboom, A. van der Avoird, D. Zgid, and G. Chałasiński, Interaction of NH(X3Σ −) with He: Potential energy surface, bound states, and collisional Zeeman relaxation, J. Chem. Phys. 122(9), 094307 (2005)
CrossRef
ADS
Google scholar
|
[112] |
W. C. Campbell, T. V. Tscherbul, H. I. Lu, E. Tsikata, R. V. Krems, and J. M. Doyle, Mechanism of collisional spin relaxation in 3Σ molecules, Phys. Rev. Lett. 102(1), 013003 (2009)
CrossRef
ADS
Google scholar
|
[113] |
H. A. Bethe, Theory of disintegration of nuclei by neutrons, Phys. Rev. 47(10), 747 (1935)
CrossRef
ADS
Google scholar
|
[114] |
E. P. Wigner, On the behavior of cross sections near thresholds, Phys. Rev. 73(9), 1002 (1948)
CrossRef
ADS
Google scholar
|
[115] |
M. Langevin, in: Annales de chimie et de physique, Series, Vol. 5, 1905, pp 245–288
|
[116] |
P. Soldán, M. T. Cvitaš, J. M. Hutson, P. Honvault, and J. M. Launay, Quantum dynamics of ultracold Na+ Na2 collisions, Phys. Rev. Lett. 89(15), 153201 (2002)
CrossRef
ADS
Google scholar
|
[117] |
G. Quéméner, P. Honvault, and J. M. Launay, Sensitivity of the dynamics of Na+ Na2 collisions on the three-body interaction at ultralow energies, Europ. Phys. J. D 30, 201 (2004)
CrossRef
ADS
Google scholar
|
[118] |
M. T. Cvitaš, P. Soldán, J. M. Hutson, P. Honvault, and J. M. Launay, Ultracold collisions involving heteronuclear alkali metal dimers, Phys. Rev. Lett. 94(20), 200402 (2005)
CrossRef
ADS
Google scholar
|
[119] |
M. T. Cvitaš, P. Soldán, J. M. Hutson, P. Honvault, and J. M. Launay, Ultracold Li+ Li2 collisions: Bosonic and fermionic cases, Phys. Rev. Lett. 94(3), 033201 (2005)
CrossRef
ADS
Google scholar
|
[120] |
M. T. Cvitaš, P. Soldán, J. M. Hutson, P. Honvault, and J. M. Launay, Interactions and dynamics in Li+Li2 ultracold collisions, J. Chem. Phys. 127(7), 074302 (2007)
CrossRef
ADS
Google scholar
|
[121] |
G. Quéméner, J. M. Launay, and P. Honvault, Ultracold collisions between Li atoms and Li2 diatoms in high vibrational states, Phys. Rev. A 75(5), 050701 (2007)
CrossRef
ADS
Google scholar
|
[122] |
G. Quéméner and J. L. Bohn, Strong dependence of ultracold chemical rates on electric dipole moments, Phys. Rev. A 81(2), 022702 (2010)
CrossRef
ADS
Google scholar
|
[123] |
G. Quéméner, J. L. Bohn, A. Petrov, and S. Kotochigova, Universalities in ultracold reactions of alkali-metal polar molecules, Phys. Rev. A 84(6), 062703 (2011)
CrossRef
ADS
Google scholar
|
[124] |
P. S. Julienne, T. M. Hanna, and Z. Idziaszek, Universal ultracold collision rates for polar molecules of two alkalimetal atoms, Phys. Chem. Chem. Phys. 13(42), 19114 (2011)
CrossRef
ADS
Google scholar
|
[125] |
P. S. Julienne and F. H. Mies, Collisions of ultracoldtrapped atoms, J. Opt. Soc. Am. B 6(11), 2257 (1989)
CrossRef
ADS
Google scholar
|
[126] |
C. H. Burke, Greene, and J. L. Bohn, Multichannel cold collisions: Simple dependences on energy and magnetic field, Phys. Rev. Lett. 81(16), 3355 (1998)
CrossRef
ADS
Google scholar
|
[127] |
B. Gao, E. Tiesinga, C. J. Williams, and P. S. Julienne, Multichannel quantum-defect theory for slow atomic collisions, Phys. Rev. A 72(4), 042719 (2005)
CrossRef
ADS
Google scholar
|
[128] |
Z. Idziaszek and P. S. Julienne, Universal rate constants for reactive collisions of ultracold molecules, Phys. Rev. Lett. 104(11), 113202 (2010)
CrossRef
ADS
Google scholar
|
[129] |
K. Jachymski, M. Krych, P. S. Julienne, and Z. Idziaszek, Quantum theory of reactive collisions for 1/rnpotentials, Phys. Rev. Lett. 110(21), 213202 (2013)
CrossRef
ADS
Google scholar
|
[130] |
P. S. Julienne, Ultracold molecules from ultracold atoms: A case study with the KRb molecule, Faraday Discuss. 142, 361 (2009)
CrossRef
ADS
Google scholar
|
[131] |
B. Gao, Universal model for exoergic bimolecular reactions and inelastic processes, Phys. Rev. Lett. 105(26), 263203 (2010)
CrossRef
ADS
Google scholar
|
[132] |
P. S. Żuchowski and J. M. Hutson, Reactions of ultracold alkali-metal dimers, Phys. Rev. A 81(6), 060703 (2010)
CrossRef
ADS
Google scholar
|
[133] |
L. De Marco, G. Valtolina, K. Matsuda, W. G. Tobias, J. P. Covey, and J. Ye, A degenerate Fermi gas of polar molecules, Science 363(6429), 853 (2019)
CrossRef
ADS
Google scholar
|
[134] |
T. M. Rvachov, H. Son, A. T. Sommer, S. Ebadi, J. J. Park, M. W. Zwierlein, W. Ketterle, and A. O. Jamison, Long-lived ultracold molecules with electric and magnetic dipole moments, Phys. Rev. Lett. 119(14), 143001 (2017)
CrossRef
ADS
Google scholar
|
[135] |
B. Drews, M. Deiß, K. Jachymski, Z. Idziaszek, and J. H. Denschlag, Inelastic collisions of ultracold triplet Rb2 molecules in the rovibrational ground state, Nat. Commun. 8(1), 14854 (2017)
CrossRef
ADS
Google scholar
|
[136] |
X. Ye, M. Guo, M. L. González-Martínez, G. Quéméner, and D. Wang, Collisions of ultracold 23Na87Rb molecules with controlled chemical reactivities, Sci. Adv. 4(1), eaaq0083 (2018)
CrossRef
ADS
Google scholar
|
[137] |
P. D. Gregory, M. D. Frye, J. A. Blackmore, E. M. Bridge, R. Sawant, J. M. Hutson, and S. L. Cornish, Sticky collisions of ultracold RbCs molecules, Nat. Commun. 10(1), 1 (2019)
CrossRef
ADS
Google scholar
|
[138] |
M. Mayle, B. P. Ruzic, and J. L. Bohn, Statistical aspects of ultracold resonant scattering, Phys. Rev. A 85(6), 062712 (2012)
CrossRef
ADS
Google scholar
|
[139] |
M. Mayle, G. Quéméner, B. P. Ruzic, and J. L. Bohn, Scattering of ultracold molecules in the highly resonant regime, Phys. Rev. A 87(1), 012709 (2013)
CrossRef
ADS
Google scholar
|
[140] |
Z. Idziaszek, G. Quéméner, J. L. Bohn, and P. S. Julienne, Simple quantum model of ultracold polar molecule collisions, Phys. Rev. A 82(2), 020703 (2010)
CrossRef
ADS
Google scholar
|
[141] |
F. H. Mies, A multichannel quantum defect analysis of diatomic predissociation and inelastic atomic scattering, J. Chem. Phys. 80(6), 2514 (1984)
CrossRef
ADS
Google scholar
|
[142] |
F. H. Mies and P. S. Julienne, A multichannel quantum defect analysis of two-state couplings in diatomic molecules, J. Chem. Phys. 80(6), 2526 (1984)
CrossRef
ADS
Google scholar
|
[143] |
J. Jankunas, B. Bertsche, K. Jachymski, M. Hapka, and A. Osterwalder, Dynamics of gas phase Ne∗ + NH3 and Ne∗ + ND3 Penning ionisation at low temperatures, J. Chem. Phys. 140(24), 244302 (2014)
CrossRef
ADS
Google scholar
|
[144] |
J. Jankunas, K. Jachymski, M. Hapka, and A. Osterwalder, Observation of orbiting resonances in He(3S1) + NH3 Penning ionization, J. Chem. Phys. 142(16), 164305 (2015)
CrossRef
ADS
Google scholar
|
[145] |
J. Jankunas, K. Jachymski, M. Hapka, and A. Osterwalder, Communication: Importance of rotationally inelastic processes in low-energy penning ionization of CHF3, J. Chem. Phys. 144, 221102 (2016)
CrossRef
ADS
Google scholar
|
[146] |
E. Herbst and J. T. Yates Jr, Introduction: Astrochemistry, Chem. Rev. 113(12), 8707 (2013)
CrossRef
ADS
Google scholar
|
[147] |
R. Sahai and L. Å. Nyman, The boomerang nebula: The coldest region of the universe? Astrophys. J. 487(2), L155 (1997)
CrossRef
ADS
Google scholar
|
[148] |
D. Herschbach, Molecular collisions, from warm to ultracold, Faraday Discuss. 142, 9 (2009)
CrossRef
ADS
Google scholar
|
[149] |
S. Chefdeville, T. Stoecklin, A. Bergeat, K. M. Hickson, C. Naulin, and M. Costes, Appearance of low energy resonances in CO–para-H2 inelastic collisions, Phys. Rev. Lett. 109(2), 023201 (2012)
CrossRef
ADS
Google scholar
|
[150] |
S. Chefdeville, Y. Kalugina, S. Y. van de Meerakker, C. Naulin, F. Lique, and M. Costes, Observation of partial wave resonances in low-energy O2–H2 inelastic collisions, Science 341(6150), 1094 (2013)
CrossRef
ADS
Google scholar
|
[151] |
C. Xiao, X. Xu, S. Liu, T. Wang, W. Dong, T. Yang, Z. Sun, D. Dai, D. H. Zhang, and X. Yang, Experimental and theoretical differential cross sections for a four-atom reaction: HD+ OH → H2O+ D, Science 333(6041), 440 (2011)
CrossRef
ADS
Google scholar
|
[152] |
D. R. Willey, R. L. Crownover, D. Bittner, and F. C. De Lucia, Very low temperature spectroscopy: The pressure broadening coefficients for CO–He between 4.3 and 1.7 K, J. Chem. Phys. 89(4), 1923 (1988)
CrossRef
ADS
Google scholar
|
[153] |
S. Nandi, S. J. Blanksby, X. Zhang, M. R. Nimlos, D. C. Dayton, and G. B. Ellison, Polarized infrared absorption spectrum of matrix-isolated methylperoxyl radicals, CH3OOX̃2A′′, J. Phys. Chem. A 106(33), 7547 (2002)
CrossRef
ADS
Google scholar
|
[154] |
A. M. Morrison, J. Agarwal, H. F. Schaefer, and G. E. Douberly, Infrared laser spectroscopy of the CH3OO radical formed from the reaction of CH3 and O2 within a helium nanodroplet, J. Phys. Chem. A 116(22), 5299 (2012)
CrossRef
ADS
Google scholar
|
[155] |
L. Schnieder, K. Seekamp-Rahn, J. Borkowski, E. Wrede, K. Welge, F. J. Aoiz, L. Bañiares, M. D’Mello, V. J. Herrero, V. S. Rabanos, and R. E. Wyatt, Experimental studies and theoretical predictions for the H+ D2 → HD+ D Reaction, Science 269(5221), 207 (1995)
CrossRef
ADS
Google scholar
|
[156] |
R. T. Skodje, D. Skouteris, D. E. Manolopoulos, S. H. Lee, F. Dong, and K. Liu, Resonance-mediated chemical reaction: F+ HD → HF+ D, Phys. Rev. Lett. 85(6), 1206 (2000)
CrossRef
ADS
Google scholar
|
[157] |
W. Dong, C. Xiao, T. Wang, D. Dai, X. Yang, and D. H. Zhang, Transition-state spectroscopy of partial wave resonances in the F+ HD reaction, Science 327(5972), 1501 (2010)
CrossRef
ADS
Google scholar
|
[158] |
T. Wang, J. Chen, T. Yang, C. Xiao, Z. Sun, L. Huang, D. Dai, X. Yang, and D. H. Zhang, Dynamical resonances accessible only by reagent vibrational excitation in the F+ HD → HF+ D reaction, Science 342(6165), 1499 (2013)
CrossRef
ADS
Google scholar
|
[159] |
M. Qiu, Z. Ren, L. Che, D. Dai, S. A. Harich, X. Wang, X. Yang, C. Xu, D. Xie, M. Gustafsson, R. T. Skodje, Z. Sun, and D. H. Zhang, Observation of Feshbach resonances in the F+ H2 → HF+ H reaction, Science 311(5766), 1440 (2006)
CrossRef
ADS
Google scholar
|
[160] |
J. B. Kim, M. L. Weichman, T. F. Sjolander, D. M. Neumark, J. Kłos, M. H. Alexander, and D. E. Manolopoulos, Spectroscopic observation of resonances in the F+ H2 reaction, Science 349(6247), 510 (2015)
CrossRef
ADS
Google scholar
|
[161] |
F. Wang, J. S. Lin, and K. Liu, Steric control of the reaction of CH stretch-excited CHD3 with chlorine atom, Science 331(6019), 900 (2011)
CrossRef
ADS
Google scholar
|
[162] |
S. N. Vogels, T. Karman, J. Kłos, M. Besemer, J. Onvlee, A. van der Avoird, G. C. Groenenboom, and S. Y. van de Meerakker, Scattering resonances in bimolecularcollisions between NO radicals and H2 challenge the theoretical gold standard, Nat. Chem. 10(4), 435 (2018)
CrossRef
ADS
Google scholar
|
[163] |
A. von Zastrow, J. Onvlee, S. N. Vogels, G. C. Groenenboom, A. Van Der Avoird, and S. Y. Van De Meerakker, State-resolved diffraction oscillations imaged for inelastic collisions of NO radicals with He, Ne and Ar, Nat. Chem. 6(3), 216 (2014)
CrossRef
ADS
Google scholar
|
[164] |
J. Onvlee, S. D. Gordon, S. N. Vogels, T. Auth, T. Karman, B. Nichols, A. van der Avoird, G. C. Groenenboom, M. Brouard, and S. Y. van de Meerakker, Imaging quantum stereodynamics through Fraunhofer scattering of NO radicals with rare-gas atoms, Nat. Chem. 9(3), 226 (2017)
CrossRef
ADS
Google scholar
|
[165] |
M. Lara, F. Dayou, J. M. Launay, A. Bergeat, K. M. Hickson, C. Naulin, and M. Costes, Observation of partial wave structures in the integral cross section of the S(1D2) + H2(j= 0) reaction, Phys. Chem. Chem. Phys. 13(18), 8127 (2011)
CrossRef
ADS
Google scholar
|
[166] |
M. Lara, S. Chefdeville, K. M. Hickson, A. Bergeat, C. Naulin, J. M. Launay, and M. Costes, Dynamics of the S(2D1) + HD (j= 0 ) reaction at collision energies approaching the cold regime: A stringent test for theory, Phys. Rev. Lett. 109(13), 133201 (2012)
CrossRef
ADS
Google scholar
|
[167] |
S. Y. van de Meerakker, H. L. Bethlem, N. Vanhaecke, and G. Meijer, Manipulation and control of molecular beams, Chem. Rev. 112(9), 4828 (2012)
CrossRef
ADS
Google scholar
|
[168] |
L. Scharfenberg, J. Kłos, P. J. Dagdigian, M. H. Alexander, G. Meijer, and S. Y. van de Meerakker, State-to-state inelastic scattering of Stark-decelerated OH radicals with Ar atoms, Phys. Chem. Chem. Phys. 12(36), 10660 (2010)
CrossRef
ADS
Google scholar
|
[169] |
L. Scharfenberg, K. B. Gubbels, M. Kirste, G. C. Groenenboom, A. van der Avoird, G. Meijer, and S. Y. van de Meerakker, Scattering of Stark-decelerated OH radicals with rare-gas atoms, Eur. Phys. J. D 65(1–2), 189 (2011)
CrossRef
ADS
Google scholar
|
[170] |
M. Kirste, L. Scharfenberg, J. Kłos, F. Lique, M. H. Alexander, G. Meijer, and S. Y. van de Meerakker, Lowenergy inelastic collisions of OH radicals with He atoms and D2 molecules, Phys. Rev. A 82(4), 042717 (2010)
CrossRef
ADS
Google scholar
|
[171] |
B. Rowe, G. Dupeyrat, J. Marquette, and P. Gaucherel, Study of the reactions N+2+2N2 → N+4+N2 and O+2+2O2 → O+4+O2 from 20 to 160 K by the CRESU technique, J. Chem. Phys. 80(10), 4915 (1984)
CrossRef
ADS
Google scholar
|
[172] |
G. Dupeyrat, J. Marquette, and B. Rowe, Design and testing of axisymmetric nozzles for ion–molecule reaction studies between 20 °K and 160 °K, Phys. Fluids 28(5), 1273 (1985)
CrossRef
ADS
Google scholar
|
[173] |
I. R. Sims and I. W. Smith, Gas–phase reactions and energy transfer at very low temperatures, Annu. Rev. Phys. Chem. 46(1), 109 (1995)
CrossRef
ADS
Google scholar
|
[174] |
I. W. Smith and B. R. Rowe, Reaction kinetics at very low temperatures: Laboratory studies and interstellar chemistry, Acc. Chem. Res. 33(5), 261 (2000)
CrossRef
ADS
Google scholar
|
[175] |
I. W. Smith, Reactions at very low temperatures: Gas kinetics at a new frontier, Angew. Chem. Int. Ed. 45(18), 2842 (2006)
CrossRef
ADS
Google scholar
|
[176] |
P. L. James, I. R. Sims, I. W. Smith, M. H. Alexander, and M. Yang, A combined experimental and theoretical study of rotational energy transfer in collisions between NO(X2Π1/2, v=3,J) and He, Ar and N2 at temperatures down to 7 K, J. Chem. Phys. 109(10), 3882 (1998)
CrossRef
ADS
Google scholar
|
[177] |
D. Chastaing, P. L. James, I. R. Sims, and I. W. Smith, Neutral–neutral reactions at the temperatures of interstellar clouds: Rate coefficients for reactions of atomic carbon, C(3P), with O2, C2H2, C2H4 and C3H6 down to 15 K, Phys. Chem. Chem. Phys. 1(9), 2247 (1999)
CrossRef
ADS
Google scholar
|
[178] |
W. E. Perreault, N. Mukherjee, and R. N. Zare, Quantum control of molecular collisions at 1 kelvin, Science 358(6361), 356 (2017)
CrossRef
ADS
Google scholar
|
[179] |
W. E. Perreault, N. Mukherjee, and R. N. Zare, Cold quantum-controlled rotationally inelastic scattering of HD with H2 and D2 reveals collisional partner reorientation, Nat. Chem. 10(5), 561 (2018)
CrossRef
ADS
Google scholar
|
[180] |
W. E. Perreault, N. Mukherjee, and R. N. Zare, HD (v= 1, j= 2, m) orientation controls HD–He rotationally inelastic scattering near 1 K, J. Chem. Phys. 150(17), 174301 (2019)
CrossRef
ADS
Google scholar
|
[181] |
J. D. Barnwell, J. G. Loeser, and D. R. Herschbach, Angular correlations in chemical reactions: Statistical theory for four-vector correlations,J. Phys. Chem. 87(15), 2781 (1983)
CrossRef
ADS
Google scholar
|
[182] |
X. Wu, T. Gantner, M. Koller, M. Zeppenfeld, S. Chervenkov, and G. Rempe, A cryofuge for cold-collision experiments with slow polar molecules, Science 358(6363), 645 (2017)
CrossRef
ADS
Google scholar
|
[183] |
M. Cavagnero and C. Newell, Inelastic semiclassical collisions in cold dipolar gases, New J. Phys. 11(5), 055040 (2009)
CrossRef
ADS
Google scholar
|
[184] |
D. R. Willey, R. L. Crownover, D. Bittner, and F. C. De Lucia, Very low temperature spectroscopy: The pressure broadening coefficients for CH3F between 4.2 and 1.9 K, J. Chem. Phys. 89(10), 6147 (1988)
CrossRef
ADS
Google scholar
|
[185] |
C. D. Ball and F. C. De Lucia, Direct measurement of rotationally inelastic cross sections at astrophysical and quantum collisional temperatures, Phys. Rev. Lett. 81(2), 305 (1998)
CrossRef
ADS
Google scholar
|
[186] |
C. D. Ball and F. C. De Lucia, Direct observation of Λ- doublet and hyperfine branching ratios for rotationally inelastic collisions of NO–He at 4.2 K, Chem. Phys. Lett. 300(1–2), 227 (1999)
CrossRef
ADS
Google scholar
|
[187] |
G. K. Drayna, C. Hallas, K. Wang, S. R. Domingos, S. Eibenberger, J. M. Doyle, and D. Patterson, Direct timedomain observation of conformational relaxation in gasphase cold collisions, Angew. Chem. Int. Ed. 55(16), 4957 (2016)
CrossRef
ADS
Google scholar
|
[188] |
B. C. Sawyer, B. L. Lev, E. R. Hudson, B. K. Stuhl, M. Lara, J. L. Bohn, and J. Ye, Magnetoelectrostatic trapping of ground state OH molecules, Phys. Rev. Lett. 98(25), 253002 (2007)
CrossRef
ADS
Google scholar
|
[189] |
Y. Liu, M. Vashishta, P. Djuricanin, S. Zhou, W. Zhong, T. Mittertreiner, D. Carty, and T. Momose, Magnetic trapping of cold methyl radicals, Phys. Rev. Lett. 118(9), 093201 (2017)
CrossRef
ADS
Google scholar
|
[190] |
B. C. Sawyer, B. K. Stuhl, M. Yeo, T. V. Tscherbul, M. T. Hummon, Y. Xia, J. Kłos, D. Patterson, J. M. Doyle, and J. Ye, Cold heteromolecular dipolar collisions, Phys. Chem. Chem. Phys. 13(42), 19059 (2011)
CrossRef
ADS
Google scholar
|
[191] |
B. C. Sawyer, B. K. Stuhl, D. Wang, M. Yeo, and J. Ye, Molecular beam collisions with a magnetically trapped target, Phys. Rev. Lett. 101(20), 203203 (2008)
CrossRef
ADS
Google scholar
|
[192] |
M. Strebel, T. O. Müller, B. Ruff, F. Stienkemeier, and M. Mudrich, Quantum rainbow scattering at tunable velocities, Phys. Rev. A 86(6), 062711 (2012)
CrossRef
ADS
Google scholar
|
[193] |
M. Gupta and D. Herschbach, Slowing and speeding molecular beams by means of a rapidly rotating source, J. Phys. Chem. A 105(9), 1626 (2001)
CrossRef
ADS
Google scholar
|
[194] |
M. Strebel, F. Stienkemeier, and M. Mudrich, Improved setup for producing slow beams of cold molecules using a rotating nozzle, Phys. Rev. A 81(3), 033409 (2010)
CrossRef
ADS
Google scholar
|
[195] |
N. R. Thomas, N. Kjærgaard, P. S. Julienne, and A. C. Wilson, Imaging of s and d partial-wave interference in quantum scattering of identical bosonic atoms, Phys. Rev. Lett. 93(17), 173201 (2004)
CrossRef
ADS
Google scholar
|
[196] |
J. D. Weinstein, R. DeCarvalho, T. Guillet, B. Friedrich, and J. M. Doyle, Magnetic trapping of calcium monohydride molecules at millikelvin temperatures, Nature 395(6698), 148 (1998)
CrossRef
ADS
Google scholar
|
[197] |
K. Maussang, D. Egorov, J. S. Helton, S. V. Nguyen, and J. M. Doyle, Zeeman relaxation of CaF in lowtemperature collisions with helium, Phys. Rev. Lett. 94(12), 123002 (2005)
CrossRef
ADS
Google scholar
|
[198] |
W. C. Campbell, E. Tsikata, H. I. Lu, L. D. van Buuren, and J. M. Doyle, Magnetic trapping and Zeeman relaxation of NH(X3Σ −), Phys. Rev. Lett. 98(21), 213001 (2007)
CrossRef
ADS
Google scholar
|
[199] |
E. Tsikata, W. Campbell, M. Hummon, H. I. Lu, and J. M. Doyle, Magnetic trapping of NH molecules with 20 s lifetimes, New J. Phys. 12(6), 065028 (2010)
CrossRef
ADS
Google scholar
|
[200] |
D. Egorov, W. Campbell, B. Friedrich, S. Maxwell, E. Tsikata, L. Van Buuren, and J. Doyle, Buffer-gas cooling of NH via the beam loaded buffer-gas method, Europ. Phys. J. D 31, 307 (2004)
CrossRef
ADS
Google scholar
|
[201] |
M. T. Hummon, T. V. Tscherbul, J. Kłos, H. I. Lu, E. Tsikata, W. C. Campbell, A. Dalgarno, and J. M. Doyle, Cold N+ NH collisions in a magnetic trap, Phys. Rev. Lett. 106(5), 053201 (2011)
CrossRef
ADS
Google scholar
|
[202] |
N. Brahms, T. V. Tscherbul, P. Zhang, J. Kłos, R. C. Forrey, Y. S. Au, H. R. Sadeghpour, A. Dalgarno, J. M. Doyle, and T. G. Walker, Formation and dynamics of van der Waals molecules in buffer-gas traps, Phys. Chem. Chem. Phys. 13(42), 19125 (2011)
CrossRef
ADS
Google scholar
|
[203] |
N. Brahms, T. V. Tscherbul, P. Zhang, J. Kłos, H. R. Sadeghpour, A. Dalgarno, J. M. Doyle, and T. G. Walker, Formation of van der Waals molecules in buffer-gascooled magnetic traps, Phys. Rev. Lett. 105(3), 033001 (2010)
CrossRef
ADS
Google scholar
|
[204] |
N. Tariq, N. A. Taisan, V. Singh, and J. D. Weinstein, Spectroscopic detection of the LiHe molecule, Phys. Rev. Lett. 110(15), 153201 (2013)
CrossRef
ADS
Google scholar
|
[205] |
N. Quiros, N. Tariq, T. V. Tscherbul, J. Kłos, and J. D. Weinstein, Cold anisotropically interacting van der Waals molecule: TiHe, Phys. Rev. Lett. 118(21), 213401 (2017)
CrossRef
ADS
Google scholar
|
[206] |
M. I. Fabrikant, T. Li, N. J. Fitch, N. Farrow, J. D. Weinstein, and H. J. Lewandowski, Method for travelingwave deceleration of buffer-gas beams of CH, Phys. Rev. A 90(3), 033418 (2014)
CrossRef
ADS
Google scholar
|
[207] |
M. Petzold, P. Kaebert, P. Gersema, M. Siercke, and S. Ospelkaus, A Zeeman slower for diatomic molecules, New J. Phys. 20(4), 042001 (2018)
CrossRef
ADS
Google scholar
|
[208] |
E. Shuman, J. Barry, D. Glenn, and D. DeMille, Radiative force from optical cycling on a diatomic molecule, Phys. Rev. Lett. 103(22), 223001 (2009)
CrossRef
ADS
Google scholar
|
[209] |
E. S. Shuman, J. F. Barry, and D. DeMille, Laser cooling of a diatomic molecule, Nature 467(7317), 820 (2010)
CrossRef
ADS
Google scholar
|
[210] |
M. Zeppenfeld, B. G. Englert, R. Glöckner, A. Prehn, M. Mielenz, C. Sommer, L. D. van Buuren, M. Motsch, and G. Rempe, Sisyphus cooling of electrically trapped polyatomic molecules, Nature 491(7425), 570 (2012)
CrossRef
ADS
Google scholar
|
[211] |
A. Prehn, M. Ibrügger, R. Glöckner, G. Rempe, and M. Zeppenfeld, Optoelectrical cooling of polar molecules to submillikelvin temperatures, Phys. Rev. Lett. 116(6), 063005 (2016)
CrossRef
ADS
Google scholar
|
[212] |
D. Patterson, M. Schnell, and J. M. Doyle, Enantiomerspecific detection of chiral molecules via microwave spectroscopy, Nature 497(7450), 475 (2013)
CrossRef
ADS
Google scholar
|
[213] |
S. Eibenberger, J. Doyle, and D. Patterson, Enantiomerspecific state transfer of chiral molecules, Phys. Rev. Lett. 118(12), 123002 (2017)
CrossRef
ADS
Google scholar
|
[214] |
B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, Continuous probing of cold complex molecules with infrared frequency comb spectroscopy, Nature 533(7604), 517 (2016)
CrossRef
ADS
Google scholar
|
[215] |
P. B. Changala, M. L. Weichman, K. F. Lee, M. E. Fermann, and J. Ye, Rovibrational quantum state resolution of the C60 fullerene, Science 363(6422), 49 (2019)
CrossRef
ADS
Google scholar
|
[216] |
J. Baron, W. C. Campbell, D. DeMille, J. M. Doyle, G. Gabrielse, Y. V. Gurevich, P. W. Hess, N. R. Hutzler, E. Kirilov, I. Kozyryev, B. R. O’Leary, C. D. Panda, M. F. Parsons, E. S. Petrik, B. Spaun, A. C. Vutha, and A. D. West, Order of magnitude smaller limit on the electric dipole moment of the electron, Science 343(6168), 269 (2014)
CrossRef
ADS
Google scholar
|
[217] |
ACME Collaboration, V. Andreev, et al., Improved limit on the electric dipole moment of the electron, Nature 562, 355 (2018)
CrossRef
ADS
Google scholar
|
[218] |
G. Chen, A New Tool for Col Ion–Molecule Chemistry, Ph.D. Thesis, UCLA, 2019
|
[219] |
J. Greenberg, Cold, Controlled, Ion–molecule Reactions, Ph.D. Thesis, University of Colorado at Boulder, 2020
|
[220] |
Q. Wei, I. Lyuksyutov, and D. Herschbach, Mergedbeams for slow molecular collision experiments, J. Chem. Phys. 137(5), 054202 (2012)
CrossRef
ADS
Google scholar
|
[221] |
E. Lavert-Ofir, Y. Shagam, A. B. Henson, S. Gersten, J. Kłos, P. S. Żuchowski, J. Narevicius, and E. Narevicius, Observation of the isotope effect in sub-Kelvin reactions, Nat. Chem. 6(4), 332 (2014)
CrossRef
ADS
Google scholar
|
[222] |
Y. Shagam, A. Klein, W. Skomorowski, R. Yun, V. Averbukh, C. P. Koch, and E. Narevicius, Molecular hydrogen interacts more strongly when rotationally excited at low temperatures leading to faster reactions, Nat. Chem. 7(11), 921 (2015)
CrossRef
ADS
Google scholar
|
[223] |
N. Bibelnik, S. Gersten, A. B. Henson, E. Lavert-Ofir, Y. Shagam, W. Skomorowski, C. P. Koch, and E. Narevicius, Cold temperatures invert product ratios in Penning ionisation reactions with argon, Mol. Phys. 117(15–16), 2128 (2019)
CrossRef
ADS
Google scholar
|
[224] |
B. Bertsche, J. Jankunas, and A. Osterwalder, Lowtemperature collisions between neutral molecules in merged molecular beams, Chimia 68(4), 256 (2014)
CrossRef
ADS
Google scholar
|
[225] |
S. Y. van de Meerakker and G. Meijer, Collision experiments with Stark-decelerated beams, Faraday Discuss. 142, 113 (2009)
CrossRef
ADS
Google scholar
|
[226] |
A. P. P. van der Poel and H. L. Bethlem, A detailed account of the measurements of cold collisions in a molecular synchrotron, EPJ Tech. Instrum. 5(1), 6 (2018)
CrossRef
ADS
Google scholar
|
[227] |
A. P. van Der Poel, P. C. Zieger, S. Y. Van De Meerakker, J. Loreau, A. Van Der Avoird, and H. L. Bethlem, Cold collisions in a molecular synchrotron, Phys. Rev. Lett. 120(3), 033402 (2018)
CrossRef
ADS
Google scholar
|
[228] |
C. E. Heiner, D. Carty, G. Meijer, and H. L. Bethlem, A molecular synchrotron, Nat. Phys. 3(2), 115 (2007)
CrossRef
ADS
Google scholar
|
[229] |
C. E. Heiner, H. L. Bethlem, and G. Meijer, A synchrotron for neutral molecules, Chem. Phys. Lett. 473(1– 3), 1 (2009)
CrossRef
ADS
Google scholar
|
[230] |
F. M. Crompvoets, H. L. Bethlem, R. T. Jongma, and G. Meijer, A prototype storage ring for neutral molecules, Nature 411(6834), 174 (2001)
CrossRef
ADS
Google scholar
|
[231] |
F. M. Crompvoets, H. L. Bethlem, J. Küpper, A. J. van Roij, and G. Meijer, Dynamics of neutral molecules stored in a ring, Phys. Rev. A 69(6), 063406 (2004)
CrossRef
ADS
Google scholar
|
[232] |
P. C. Zieger, S. Y. van de Meerakker, C. E. Heiner, H. L. Bethlem, A. J. van Roij, and G. Meijer, Multiple packets of neutral molecules revolving for over a mile, Phys. Rev. Lett. 105(17), 173001 (2010)
CrossRef
ADS
Google scholar
|
[233] |
J. Loreau and A. Van der Avoird, Scattering of NH3 and ND3 with rare gas atoms at low collision energy, J. Chem. Phys. 143(18), 184303 (2015)
CrossRef
ADS
Google scholar
|
[234] |
H. Thorsheim, J. Weiner, and P. S. Julienne, Laserinduced photoassociation of ultracold sodium atoms, Phys. Rev. Lett. 58(23), 2420 (1987)
CrossRef
ADS
Google scholar
|
[235] |
J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange, O. Dulieu, R. Wester, and M. Weidemüller, Formation of ultracold polar molecules in the rovibrational ground state, Phys. Rev. Lett. 101(13), 133004 (2008)
CrossRef
ADS
Google scholar
|
[236] |
F. Lang, K. Winkler, C. Strauss, R. Grimm, and J. H. Denschlag, Ultracold triplet molecules in the rovibrational ground state, Phys. Rev. Lett. 101(13), 133005 (2008)
CrossRef
ADS
Google scholar
|
[237] |
K.-K. Ni, S. Ospelkaus, M. De Miranda, A. Pe’Er, B. Neyenhuis, J. Zirbel, S. Kotochigova, P. Julienne, D. Jin, and J. Ye, A high phase-space-density gas of polar molecules, Science 322(5899), 231 (2008)
CrossRef
ADS
Google scholar
|
[238] |
J. M. Hutson and P. Soldan, Molecule formation in ultracold atomic gases, Int. Rev. Phys. Chem. 25(4), 497 (2006)
CrossRef
ADS
Google scholar
|
[239] |
T. Köhler, K. Góral, and P. S. Julienne, Production of cold molecules via magnetically tunable Feshbach resonances, Rev. Mod. Phys. 78(4), 1311 (2006)
CrossRef
ADS
Google scholar
|
[240] |
E. A. Donley, N. R. Claussen, S. T. Thompson, and C. E. Wieman, Atom–molecule coherence in a Bose–Einstein condensate, Nature 417(6888), 529 (2002)
CrossRef
ADS
Google scholar
|
[241] |
C. Chin, A. J. Kerman, V. Vuletić, and S. Chu, Sensitive detection of cold cesium molecules formed on Feshbach resonances, Phys. Rev. Lett. 90(3), 033201 (2003)
CrossRef
ADS
Google scholar
|
[242] |
J. Herbig, T. Kraemer, M. Mark, T. Weber, C. Chin, H. C. Nägerl, and R. Grimm, Preparation of a pure molecular quantum gas, Science 301(5639), 1510 (2003)
CrossRef
ADS
Google scholar
|
[243] |
S. Dürr, T. Volz, A. Marte, and G. Rempe, Observation of molecules produced from a Bose–Einstein condensate, Phys. Rev. Lett. 92(2), 020406 (2004)
CrossRef
ADS
Google scholar
|
[244] |
C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin, Creation of ultracold molecules from a Fermi gas of atoms, Nature 424(6944), 47 (2003)
CrossRef
ADS
Google scholar
|
[245] |
K. E. Strecker, G. B. Partridge, and R. G. Hulet, Conversion of an atomic Fermi gas to a long-lived molecular Bose gas, Phys. Rev. Lett. 91(8), 080406 (2003)
CrossRef
ADS
Google scholar
|
[246] |
J. Cubizolles, T. Bourdel, S. Kokkelmans, G. Shlyapnikov, and C. Salomon, Production of long-lived ultracold Li2 molecules from a Fermi gas, Phys. Rev. Lett. 91(24), 240401 (2003)
CrossRef
ADS
Google scholar
|
[247] |
C. Regal, M. Greiner, and D. Jin, Lifetime of moleculeatom mixtures near a Feshbach resonance in 40K, Phys. Rev. Lett. 92(8), 083201 (2004)
CrossRef
ADS
Google scholar
|
[248] |
S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, C. Chin, J. H. Denschlag, and R. Grimm, Pure gas of optically trapped molecules created from fermionic atoms, Phys. Rev. Lett. 91(24), 240402 (2003)
CrossRef
ADS
Google scholar
|
[249] |
D. Petrov, C. Salomon, and G. V. Shlyapnikov, Weakly bound dimers of fermionic atoms, Phys. Rev. Lett. 93(9), 090404 (2004)
CrossRef
ADS
Google scholar
|
[250] |
M. Greiner, C. A. Regal, and D. S. Jin, Emergence of a molecular Bose–Einstein condensate from a Fermi gas, Nature 426(6966), 537 (2003)
CrossRef
ADS
Google scholar
|
[251] |
S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. H. Denschlag, and R. Grimm, Bose–Einstein condensation of molecules, Science 302(5653), 2101 (2003)
CrossRef
ADS
Google scholar
|
[252] |
M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. Raupach, S. Gupta, Z. Hadzibabic, and W. Ketterle, Observation of Bose–Einstein Condensation of Molecules, Phys. Rev. Lett. 91(25), 250401 (2003)
CrossRef
ADS
Google scholar
|
[253] |
T. T. Wang, M. S. Heo, T. M. Rvachov, D. A. Cotta, and W. Ketterle, Deviation from universality in collisions of ultracold 26Li molecules, Phys. Rev. Lett. 110(17), 173203 (2013)
CrossRef
ADS
Google scholar
|
[254] |
K. Xu, T. Mukaiyama, J. Abo-Shaeer, J. K. Chin, D. Miller, and W. Ketterle, Formation of quantumdegenerate sodium molecules, Phys. Rev. Lett. 91(21), 210402 (2003)
CrossRef
ADS
Google scholar
|
[255] |
R. Wynar, R. Freeland, D. Han, C. Ryu, and D. Heinzen, Molecules in a Bose–Einstein condensate, Science 287(5455), 1016 (2000)
CrossRef
ADS
Google scholar
|
[256] |
S. Knoop, F. Ferlaino, M. Mark, M. Berninger, H. Schübel, H. C. Nägerl, and R. Grimm, Observation of an Efimov-like trimer resonance in ultracold atom–dimer scattering, Nat. Phys. 5(3), 227 (2009)
CrossRef
ADS
Google scholar
|
[257] |
T. Mukaiyama, J. Abo-Shaeer, K. Xu, J. K. Chin, and W. Ketterle, Dissociation and decay of ultracold sodium molecules, Phys. Rev. Lett. 92(18), 180402 (2004)
CrossRef
ADS
Google scholar
|
[258] |
N. Zahzam, T. Vogt, M. Mudrich, D. Comparat, and P. Pillet, Atom–molecule collisions in an optically trapped gas, Phys. Rev. Lett. 96(2), 023202 (2006)
CrossRef
ADS
Google scholar
|
[259] |
P. Staanum, S. D. Kraft, J. Lange, R. Wester, and M. Weidemüller, Experimental investigation of ultracold atom–molecule collisions, Phys. Rev. Lett. 96(2), 023201 (2006)
CrossRef
ADS
Google scholar
|
[260] |
S. Knoop, F. Ferlaino, M. Berninger, M. Mark, H. C. Nägerl, R. Grimm, J. D’incao, and B. Esry, Magnetically controlled exchange process in an ultracold atom–dimer mixture, Phys. Rev. Lett. 104(5), 053201 (2010)
CrossRef
ADS
Google scholar
|
[261] |
A. Zenesini, B. Huang, M. Berninger, H. C. Nägerl, F. Ferlaino, and R. Grimm, Resonant atom–dimer collisions in cesium: Testing universality at positive scattering lengths, Phys. Rev. A 90(2), 022704 (2014)
CrossRef
ADS
Google scholar
|
[262] |
E. R. Hudson, N. B. Gilfoy, S. Kotochigova, J. M. Sage, and D. DeMille, Inelastic collisions of ultracold heteronuclear molecules in an optical trap, Phys. Rev. Lett. 100(20), 203201 (2008)
CrossRef
ADS
Google scholar
|
[263] |
J. Zirbel, K. K. Ni, S. Ospelkaus, J. D’Incao, C. Wieman, J. Ye, and D. Jin, Collisional stability of fermionic Feshbach molecules, Phys. Rev. Lett. 100(14), 143201 (2008)
CrossRef
ADS
Google scholar
|
[264] |
J. Deiglmayr, M. Repp, R. Wester, O. Dulieu, and M. Weidemüller, Inelastic collisions of ultracold polar LiCs molecules with caesium atoms in an optical dipole trap, Phys. Chem. Chem. Phys. 13(42), 19101 (2011)
CrossRef
ADS
Google scholar
|
[265] |
J. Rui, H. Yang, L. Liu, D. C. Zhang, Y. X. Liu, J. Nan, Y. A. Chen, B. Zhao, and J. W. Pan, Controlled state-tostate atom-exchange reaction in an ultracold atom–dimer mixture, Nat. Phys. 13(7), 699 (2017)
CrossRef
ADS
Google scholar
|
[266] |
C. Chin, T. Kraemer, M. Mark, J. Herbig, P. Waldburger, H. C. Nägerl, and R. Grimm, Observation of Feshbachlike resonances in collisions between ultracold molecules, Phys. Rev. Lett. 94(12), 123201 (2005)
CrossRef
ADS
Google scholar
|
[267] |
F. Ferlaino, S. Knoop, M. Mark, M. Berninger, H. Schöbel, H. C. Nägerl, and R. Grimm, Collisions between tunable halo dimers: Exploring an elementary four-body process with identical bosons, Phys. Rev. Lett. 101(2), 023201 (2008)
CrossRef
ADS
Google scholar
|
[268] |
F. Wang, X. Ye, M. Guo, D. Blume, and D. Wang, Observation of resonant scattering between ultracold heteronuclear Feshbach molecules, Phys. Rev. A 100(4), 042706 (2019)
CrossRef
ADS
Google scholar
|
[269] |
D. K. Hoffmann, T. Paintner, W. Limmer, D. S. Petrov, and J. H. Denschlag, Reaction kinetics of ultracold molecule-molecule collisions, Nat. Commun. 9(1), 5244 (2018)
CrossRef
ADS
Google scholar
|
[270] |
T. Takekoshi, L. Reichsöllner, A. Schindewolf, J. M. Hutson, C. R. Le Sueur, O. Dulieu, F. Ferlaino, R. Grimm, and H. C. Nägerl, Ultracold dense samples of dipolar RbCs molecules in the rovibrational and hyperfine ground state, Phys. Rev. Lett. 113(20), 205301 (2014)
CrossRef
ADS
Google scholar
|
[271] |
M. Guo, X. Ye, J. He, M. L. González-Martínez, R. Vexiau, G. Quéméner, and D. Wang, Dipolar collisions of ultracold ground-state bosonic molecules, Phys. Rev. X 8(4), 041044 (2018)
CrossRef
ADS
Google scholar
|
[272] |
H. Yang, D. C. Zhang, L. Liu, Y. X. Liu, J. Nan, B. Zhao, and J. W. Pan, Observation of magnetically tunable Feshbach resonances in ultracold 23Na40K+ 40K collisions, Science 363(6424), 261 (2019)
CrossRef
ADS
Google scholar
|
[273] |
M. de Miranda, A. Chotia, B. Neyenhuis, D. Wang, G. Quéméner, S. Ospelkaus, J. Bohn, J. Ye, and D. Jin, Controlling the quantum stereodynamics of ultracold bimolecular reactions, Nat. Phys. 7(6), 502 (2011)
CrossRef
ADS
Google scholar
|
[274] |
J. G. Danzl, M. J. Mark, E. Haller, M. Gustavsson, R. Hart, J. Aldegunde, J. M. Hutson, and H. C. Nägerl, An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice, Nat. Phys. 6(4), 265 (2010)
CrossRef
ADS
Google scholar
|
[275] |
A. Chotia, B. Neyenhuis, S. A. Moses, B. Yan, J. P. Covey, M. Foss-Feig, A. M. Rey, D. S. Jin, and J. Ye, Long-lived dipolar molecules and feshbach molecules in a 3D optical lattice, Phys. Rev. Lett. 108(8), 080405 (2012)
CrossRef
ADS
Google scholar
|
[276] |
B. Zhu, B. Gadway, M. Foss-Feig, J. Schachenmayer, M. Wall, K. R. Hazzard, B. Yan, S. A. Moses, J. P. Covey, D. S. Jin, J. Ye, M. Holland, and A. M. Rey, Suppressing the loss of ultracold molecules via the continuous quantum zeno effect, Phys. Rev. Lett. 112(7), 070404 (2014)
CrossRef
ADS
Google scholar
|
[277] |
M. Deiß, B. Drews, J. H. Denschlag, N. Bouloufa-Maafa, R. Vexiau, and O. Dulieu, Polarizability of ultracold Rb2 molecules in the rovibrational ground state of a3Σ+u , New J. Phys. 17(6), 065019 (2015)
CrossRef
ADS
Google scholar
|
[278] |
J. Barry, D. McCarron, E. Norrgard, M. Steinecker, and D. DeMille, Magneto–optical trapping of a diatomic molecule, Nature 512(7514), 286 (2014)
CrossRef
ADS
Google scholar
|
[279] |
E. Norrgard, D. McCarron, M. Steinecker, M. Tarbutt, and D. DeMille, Submillikelvin dipolar molecules in a radio-frequency magneto–optical trap, Phys. Rev. Lett. 116(6), 063004 (2016)
CrossRef
ADS
Google scholar
|
[280] |
D. McCarron, M. Steinecker, Y. Zhu, and D. DeMille, Magnetic trapping of an ultracold gas of polar molecules, Phys. Rev. Lett. 121(1), 013202 (2018)
CrossRef
ADS
Google scholar
|
[281] |
M. T. Hummon, M. Yeo, B. K. Stuhl, A. L. Collopy, Y. Xia, and J. Ye, 2D magneto–optical trapping of diatomic molecules, Phys. Rev. Lett. 110(14), 143001 (2013)
|
[282] |
M. Yeo, M. T. Hummon, A. L. Collopy, B. Yan, B. Hemmerling, E. Chae, J. M. Doyle, and J. Ye, Rotational state microwave mixing for laser cooling of complex diatomic molecules, Phys. Rev. Lett. 114(22), 223003 (2015)
CrossRef
ADS
Google scholar
|
[283] |
A. L. Collopy, S. Ding, Y. Wu, I. A. Finneran, L. Anderegg, B. L. Augenbraun, J. M. Doyle, and J. Ye, 3D magneto–optical trap of yttrium monoxide, Phys. Rev. Lett. 121(21), 213201 (2018)
CrossRef
ADS
Google scholar
|
[284] |
V. Zhelyazkova, A. Cournol, T. E. Wall, A. Matsushima, J. J. Hudson, E. Hinds, M. Tarbutt, and B. Sauer, Laser cooling and slowing of CaF molecules, Phys. Rev. A 89(5), 053416 (2014)
CrossRef
ADS
Google scholar
|
[285] |
H. Williams, L. Caldwell, N. Fitch, S. Truppe, J. Rodewald, E. Hinds, B. Sauer, and M. Tarbutt, Magnetic trapping and coherent control of laser-cooled molecules, Phys. Rev. Lett. 120(16), 163201 (2018)
CrossRef
ADS
Google scholar
|
[286] |
L. Anderegg, B. L. Augenbraun, Y. Bao, S. Burchesky, L. W. Cheuk, W. Ketterle, and J. M. Doyle, Laser cooling of optically trapped molecules, Nat. Phys. 14(9), 890 (2018)
CrossRef
ADS
Google scholar
|
[287] |
L. Caldwell, J. Devlin, H. Williams, N. Fitch, E. Hinds, B. Sauer, and M. Tarbutt, Deep laser cooling and efficient magnetic compression of molecules, Phys. Rev. Lett. 123(3), 033202 (2019)
CrossRef
ADS
Google scholar
|
[288] |
J. Lim, J. Almond, M. Trigatzis, J. Devlin, N. Fitch, B. Sauer, M. Tarbutt, and E. Hinds, Laser cooled YbF molecules for measuring the electron’s electric dipole moment, Phys. Rev. Lett. 120(12), 123201 (2018)
CrossRef
ADS
Google scholar
|
[289] |
T. Chen, W. Bu, and B. Yan, Radiative deflection of a BaF molecular beam via optical cycling, Phys. Rev. A 96(5), 053401 (2017)
CrossRef
ADS
Google scholar
|
[290] |
S. Xu, M. Xia, Y. Yin, R. Gu, Y. Xia, and J. Yin, Determination of the normal A 2Π state in MgF with application to direct laser cooling of molecules, J. Chem. Phys. 150(8), 084302 (2019)
CrossRef
ADS
Google scholar
|
[291] |
W. Ketterle and N. Van Druten, in: Advances in Atomic, Molecular, and Optical Physics, Vol. 37, Elsevier, 1996, pp 181–236
CrossRef
ADS
Google scholar
|
[292] |
L. M. Janssen, P. S. Żuchowski, A. van der Avoird, J. M. Hutson, and G. C. Groenenboom, Cold and ultracold NH–NH collisions: The field-free case, J. Chem. Phys. 134(12), 124309 (2011)
CrossRef
ADS
Google scholar
|
[293] |
Y. V. Suleimanov, T. Tscherbul, and R. Krems, Efficient method for quantum calculations of molecule–molecule scattering properties in a magnetic field, J. Chem. Phys. 137(2), 024103 (2012)
CrossRef
ADS
Google scholar
|
[294] |
L. M. Janssen, A. van der Avoird, and G. C. Groenenboom, Quantum reactive scattering of ultracold NH(X3Σ−) radicals in a magnetic trap, Phys. Rev. Lett. 110(6), 063201 (2013)
CrossRef
ADS
Google scholar
|
[295] |
L. P. Parazzoli, N. J. Fitch, P. S. Żuchowski, J. M. Hutson, and H. J. Lewandowski, Large effects of electric fields on atom–molecule collisions at millikelvin temperatures, Phys. Rev. Lett. 106(19), 193201 (2011)
CrossRef
ADS
Google scholar
|
[296] |
B. K. Stuhl, M. T. Hummon, M. Yeo, G. Quéméner, J. L. Bohn, and J. Ye, Evaporative cooling of the dipolar hydroxyl radical, Nature 492(7429), 396 (2012)
CrossRef
ADS
Google scholar
|
[297] |
D. J. Larson, J. C. Bergquist, J. J. Bollinger, W. M. Itano, and D. J. Wineland, Sympathetic cooling of trapped ions: A laser-cooled two-species nonneutral ion plasma, Phys. Rev. Lett. 57(1), 70 (1986)
CrossRef
ADS
Google scholar
|
[298] |
C. Myatt, E. Burt, R. Ghrist, E. A. Cornell, and C. Wieman, Production of two overlapping Bose–Einstein condensates by sympathetic cooling, Phys. Rev. Lett. 78(4), 586 (1997)
CrossRef
ADS
Google scholar
|
[299] |
F. Schreck, G. Ferrari, K. Corwin, J. Cubizolles, L. Khaykovich, M. O. Mewes, and C. Salomon, Sympathetic cooling of bosonic and fermionic lithium gases towards quantum degeneracy, Phys. Rev. A 64(1), 011402 (2001)
CrossRef
ADS
Google scholar
|
[300] |
P. S. Żuchowski and J. M. Hutson, Prospects for producing ultracold NH3 molecules by sympathetic cooling: A survey of interaction potentials,Phys. Rev. A 78(2), 022701 (2008)
CrossRef
ADS
Google scholar
|
[301] |
P. S. Żuchowski and J. M. Hutson, Low-energy collisions of NH3 and ND3 with ultracold Rb atoms, Phys. Rev. A 79(6), 062708 (2009)
CrossRef
ADS
Google scholar
|
[302] |
P. Barletta, J. Tennyson, and P. Barker, Creating ultracold molecules by collisions with ultracold rare-gas atoms in an optical trap, Phys. Rev. A 78(5), 052707 (2008)
CrossRef
ADS
Google scholar
|
[303] |
P. Barker, S. Purcell, P. Douglas, P. Barletta, N. Coppendale, C. Maher-McWilliams, and J. Tennyson, Sympathetic cooling by collisions with ultracold rare gas atoms, and recent progress in optical Stark deceleration, Faraday Discuss. 142, 175 (2009)
CrossRef
ADS
Google scholar
|
[304] |
P. Barletta, J. Tennyson, and P. Barker, Direct Monte Carlo simulation of the sympathetic cooling of trapped molecules by ultracold argon atoms, New J. Phys. 12(11), 113002 (2010)
CrossRef
ADS
Google scholar
|
[305] |
M. Lara, J. L. Bohn, D. Potter, P. Soldán, and J. M. Hutson, Ultracold Rb–OH collisions and prospects for sympathetic cooling, Phys. Rev. Lett. 97(18), 183201 (2006)
CrossRef
ADS
Google scholar
|
[306] |
M. Lara, J. L. Bohn, D. E. Potter, P. Soldán, and J. M. Hutson, Cold collisions between OH and Rb: The fieldfree case, Phys. Rev. A 75(1), 012704 (2007)
CrossRef
ADS
Google scholar
|
[307] |
M. Tacconi, L. Gonzalez-Sanchez, E. Bodo, and F. Gianturco, Collisions of NH(3Σ −) with Rb and Cs at ultralow energies: A quantum study of rotational cooling efficiency, Phys. Rev. A 76(3), 032702 (2007)
CrossRef
ADS
Google scholar
|
[308] |
P. Soldán, P. S. Żuchowski, and J. M. Hutson, Prospects for sympathetic cooling of polar molecules: NH with alkali-metal and alkaline-earth atoms — a new hope, Faraday Discuss. 142, 191 (2009)
CrossRef
ADS
Google scholar
|
[309] |
A. O. Wallis and J. M. Hutson, Production of ultracold NH molecules by sympathetic cooling with Mg, Phys. Rev. Lett. 103(18), 183201 (2009)
CrossRef
ADS
Google scholar
|
[310] |
M. L. González-Martínez, and J. M. Hutson, Effect of hyperfine interactions on ultracold molecular collisions: NH(3Σ−) with Mg(1S) in magnetic fields, Phys. Rev. A 84(5), 052706 (2011)
CrossRef
ADS
Google scholar
|
[311] |
A. O. Wallis, E. J. Longdon, P. S. Żuchowski, and J. M. Hutson, The prospects of sympathetic cooling of NH molecules with Li atoms, Eur. Phys. J. D 65(1–2), 151 (2011)
CrossRef
ADS
Google scholar
|
[312] |
P. S. Żuchowski and J. M. Hutson, Cold collisions of N(4S) atoms and NH(3Σ) molecules in magnetic fields, Phys. Chem. Chem. Phys. 13(9), 3669 (2011)
CrossRef
ADS
Google scholar
|
[313] |
M. L. González-Martínez and J. M. Hutson, Ultracold hydrogen atoms: A versatile coolant to produce ultracold molecules, Phys. Rev. Lett. 111(20), 203004 (2013)
CrossRef
ADS
Google scholar
|
[314] |
S. K. Tokunaga, W. Skomorowski, P. S. Żuchowski, R. Moszynski, J. M. Hutson, E. Hinds, and M. Tarbutt, Prospects for sympathetic cooling of molecules in electrostatic, ac and microwave traps, Eur. Phys. J. D 65(1–2), 141 (2011)
CrossRef
ADS
Google scholar
|
[315] |
T. Tscherbul, J. Kłos, and A. Buchachenko, Ultracold spin-polarized mixtures of 2Σ molecules with S-state atoms: Collisional stability and implications for sympathetic cooling, Phys. Rev. A 84(4), 040701 (2011)
CrossRef
ADS
Google scholar
|
[316] |
T. Tscherbul, J. Kłos, L. Rajchel, and R. Krems, Fine and hyperfine interactions in cold YbF–He collisions in electromagnetic fields, Phys. Rev. A 75(3), 033416 (2007)
CrossRef
ADS
Google scholar
|
[317] |
J. Lim, M. D. Frye, J. M. Hutson, and M. Tarbutt, Modeling sympathetic cooling of molecules by ultracold atoms, Phys. Rev. A 92(5), 053419 (2015)
CrossRef
ADS
Google scholar
|
[318] |
M. Morita, M. B. Kosicki, P. S. Żuchowski, and T. V. Tscherbul, Atom–molecule collisions, spin relaxation, and sympathetic cooling in an ultracold spin-polarized Rb(2S)–SrF(2Σ+) mixture, Phys. Rev. A 98(4), 042702 (2018)
CrossRef
ADS
Google scholar
|
[319] |
M. Morita, R. V. Krems, and T. V. Tscherbul, Universal probability distributions of scattering observables in ultracold molecular collisions, Phys. Rev. Lett. 123(1), 013401 (2019)
CrossRef
ADS
Google scholar
|
[320] |
M. Morita, J. Kłos, A. A. Buchachenko, and T. V. Tscherbul, Cold collisions of heavy 2Σ molecules with alkali-metal atoms in a magnetic field: Ab initioanalysis and prospects for sympathetic cooling of SrOH(2Σ+) by Li(2S), Phys. Rev. A 95(6), 063421 (2017)
CrossRef
ADS
Google scholar
|
[321] |
E. Lavert-Ofir, S. Gersten, A. B. Henson, I. Shani, L. David, J. Narevicius, and E. Narevicius, A moving magnetic trap decelerator: A new source of cold atoms and molecules, New J. Phys. 13(10), 103030 (2011)
CrossRef
ADS
Google scholar
|
[322] |
E. Lavert-Ofir, L. David, A. B. Henson, S. Gersten, J. Narevicius, and E. Narevicius, Stopping paramagnetic supersonic beams: The advantage of a co-moving magnetic trap decelerator, Phys. Chem. Chem. Phys. 13(42), 18948 (2011)
CrossRef
ADS
Google scholar
|
[323] |
A. Trimeche, M. N. Bera, J. P. Cromières, J. Robert, and N. Vanhaecke, Trapping of a supersonic beam in a traveling magnetic wave, Eur. Phys. J. D 65(1–2), 263 (2011)
CrossRef
ADS
Google scholar
|
[324] |
S. A. Meek, H. L. Bethlem, H. Conrad, and G. Meijer, Trapping molecules on a chip in traveling potential wells, Phys. Rev. Lett. 100(15), 153003 (2008)
CrossRef
ADS
Google scholar
|
[325] |
S. A. Meek, H. Conrad, and G. Meijer, Trapping molecules on a chip, Science 324(5935), 1699 (2009)
CrossRef
ADS
Google scholar
|
[326] |
S. A Meek, H. Conrad, and G. Meijer, A Stark decelerator on a chip, New J. Phys. 11(5), 055024 (2009)
CrossRef
ADS
Google scholar
|
[327] |
A. Osterwalder, S. A. Meek, G. Hammer, H. Haak, and G. Meijer, Deceleration of neutral molecules in macroscopic traveling traps, Phys. Rev. A 81(5), 051401 (2010)
CrossRef
ADS
Google scholar
|
[328] |
S. A. Meek, M. F. Parsons, G. Heyne, V. Platschkowski, H. Haak, G. Meijer, and A. Osterwalder, A traveling wave decelerator for neutral polar molecules, Rev. Sci. Instrum. 82(9), 093108 (2011)
CrossRef
ADS
Google scholar
|
[329] |
N. Akerman, M. Karpov, Y. Segev, N. Bibelnik, J. Narevicius, and E. Narevicius, Trapping of molecular oxygen together with lithium atoms, Phys. Rev. Lett. 119(7), 073204 (2017)
CrossRef
ADS
Google scholar
|
[330] |
Y. Segev, M. Pitzer, M. Karpov, N. Akerman, J. Narevicius, and E. Narevicius, Collisions between cold molecules in a superconducting magnetic trap, Nature 572(7768), 189 (2019)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |