Molecular collisions: From near-cold to ultra-cold

Yang Liu, Le Luo

PDF(3413 KB)
PDF(3413 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (4) : 42300. DOI: 10.1007/s11467-020-1037-6
REVIEW ARTICLE
REVIEW ARTICLE

Molecular collisions: From near-cold to ultra-cold

Author information +
History +

Abstract

In the past two decades, the revolutionary technologies of creating cold and ultracold molecules have provided cutting-edge experiments for studying the fundamental phenomena of collision physics. To a large degree, the recent explosion of interest in the molecular collisions has been sparked by dramatic progress of experimental capabilities and theoretical methods, which permit molecular collisions to be explored deep in the quantum mechanical limit. Tremendous experimental advances in the field have already been achieved, and the authors, from an experimental perspective, provide a review of these studies for exploring the nature of molecular collisions occurring at temperatures ranging from the Kelvin to the nanoKelvin regime, as well as for applications of producing ultracold molecules.

Keywords

molecular collision / near cold collisions / cold collisions / ultracold collisions

Cite this article

Download citation ▾
Yang Liu, Le Luo. Molecular collisions: From near-cold to ultra-cold. Front. Phys., 2021, 16(4): 42300 https://doi.org/10.1007/s11467-020-1037-6

References

[1]
Y. T. Lee, J. McDonald, P. LeBreton, and D. Herschbach, Molecular beam reactive scattering apparatus with electron bombardment detector, Rev. Sci. Instrum. 40(11), 1402 (1969)
CrossRef ADS Google scholar
[2]
D. R. Herschbach, Molecular dynamics of elementary chemical reactions, Angew. Chem. Int. Ed. Engl. 26(12), 1221 (1987)
CrossRef ADS Google scholar
[3]
J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, Experiments and theory in cold and ultracold collisions, Rev. Mod. Phys. 71(1), 1 (1999)
CrossRef ADS Google scholar
[4]
https://www.nobelprize.org/prizes/chemistry/1986/
[5]
https://www.nobelprize.org/prizes/physics/1997/
[6]
E. R. Hudson, H. Lewandowski, B. C. Sawyer, and J. Ye, Cold molecule spectroscopy for constraining the evolution of the fine structure constant, Phys. Rev. Lett. 96(14), 143004 (2006)
CrossRef ADS Google scholar
[7]
T. Zelevinsky, S. Kotochigova, and J. Ye, Precision test of mass-ratio variations with lattice-confined ultracold molecules, Phys. Rev. Lett. 100(4), 043201 (2008)
CrossRef ADS Google scholar
[8]
C. Chin, V. Flambaum, and M. Kozlov, Ultracold molecules: New probes on the variation of fundamental constants, New J. Phys. 11(5), 055048 (2009)
CrossRef ADS Google scholar
[9]
J. Baron, W. C. Campbell, D. DeMille, J. M. Doyle, G. Gabrielse, Y. V. Gurevich, P. W. Hess, N. R. Hutzler, E. Kirilov, I. Kozyryev, B. R. O’Leary, C. D. Panda, M. F. Parsons, E. S. Petrik, B. Spaun, A. C. Vutha, and A. D. West, Order of magnitude smaller limit on the electric dipole moment of the electron, Science 343(6168), 269 (2014)
CrossRef ADS Google scholar
[10]
J. Kobayashi, A. Ogino, and S. Inouye, Measurement of the variation of electron-to-proton mass ratio using ultracold molecules produced from laser-cooled atoms, Nat. commun. 10, 3771 (2019)
CrossRef ADS Google scholar
[11]
M. A. Baranov, Theoretical progress in many-body physics with ultracold dipolar gases, Phys. Rep. 464(3), 71 (2008)
CrossRef ADS Google scholar
[12]
J. Eisert, M. Friesdorf, and C. Gogolin, Quantum manybody systems out of equilibrium, Nat. Phys. 11(2), 124 (2015)
CrossRef ADS Google scholar
[13]
D. DeMille, Quantum computation with trapped polar molecules, Phys. Rev. Lett. 88(6), 067901 (2002)
CrossRef ADS Google scholar
[14]
P. Rabl, D. DeMille, J. M. Doyle, M. D. Lukin, R. Schoelkopf, and P. Zoller, Hybrid quantum processors: Molecular ensembles as quantum memory for solid state circuits, Phys. Rev. Lett. 97(3), 033003 (2006)
CrossRef ADS Google scholar
[15]
A. Micheli, G. Brennen, and P. Zoller, A toolbox for lattice-spin models with polar molecules, Nat. Phys. 2(5), 341 (2006)
CrossRef ADS Google scholar
[16]
A. V. Gorshkov, S. R. Manmana, G. Chen, J. Ye, E. Demler, M. D. Lukin, and A. M. Rey, Tunable superfluidity and quantum magnetism with ultracold polar molecules, Phys. Rev. Lett. 107(11), 115301 (2011)
CrossRef ADS Google scholar
[17]
B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R. Hazzard, A. M. Rey, D. S. Jin, and J. Ye, Observation of dipolar spin-exchange interactions with lattice-confined polar molecules, Nature 501(7468), 521 (2013)
CrossRef ADS Google scholar
[18]
N. Balakrishnan and A. Dalgarno, Chemistry at ultracold temperatures, Chem. Phys. Lett. 341(5–6), 652 (2001)
CrossRef ADS Google scholar
[19]
R. V. Krems, Cold controlled chemistry, Phys. Chem. Chem. Phys. 10(28), 4079 (2008)
CrossRef ADS Google scholar
[20]
M. T. Bell and T. P. Softley, Ultracold molecules and ultracold chemistry, Mol. Phys. 107(2), 99 (2009)
CrossRef ADS Google scholar
[21]
K. K. Ni, S. Ospelkaus, D. Wang, G. Quéméner, B. Neyenhuis, M. De Miranda, J. Bohn, J. Ye, and D. Jin, Dipolar collisions of polar molecules in the quantum regime, Nature 464(7293), 1324 (2010)
CrossRef ADS Google scholar
[22]
S. Ospelkaus, K. K. Ni, D. Wang, M. De Miranda, B. Neyenhuis, G. Quéméner, P. Julienne, J. Bohn, D. Jin, and J. Ye, Quantum-state controlled chemical reactions of ultracold potassium–rubidium molecules, Science 327(5967), 853 (2010)
CrossRef ADS Google scholar
[23]
B. K. Stuhl, M. T. Hummon, and J. Ye, Cold stateselected molecular collisions and reactions, Annu. Rev. Phys. Chem. 65(1), 501 (2014)
CrossRef ADS Google scholar
[24]
O. Dulieu and A. Osterwalder, Cold Chemistry: Molecular Scattering and Reactivity Near Absolute Zero, Vol. 11, Royal Society of Chemistry, 2017
CrossRef ADS Google scholar
[25]
C. Naulin and M. Costes, Experimental search for scattering resonances in near cold molecular collisions, Int. Rev. Phys. Chem. 33(4), 427 (2014)
CrossRef ADS Google scholar
[26]
L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, Cold and ultracold molecules: Science, technology and applications, New J. Phys. 11(5), 055049 (2009)
CrossRef ADS Google scholar
[27]
S. A. Harich, D. Dai, C. C. Wang, X. Yang, S. Der Chao, and R. T. Skodje, Forward scattering due to slow-down of the intermediate in the H+ HD → D+ H2 reaction, Nature 419(6904), 281 (2002)
CrossRef ADS Google scholar
[28]
X. Yang and D. H. Zhang, Dynamical resonances in the fluorine atom reaction with the hydrogen molecule, Acc. Chem. Res. 41(8), 981 (2008)
CrossRef ADS Google scholar
[29]
C. Berteloite, M. Lara, A. Bergeat, S. D. Le Picard, F. Dayou, K. M. Hickson, A. Canosa, C. Naulin, J. M. Launay, I. R. Sims, and M. Costes, Kinetics and dynamics of the S(2D1) + H2 → SH+ H reaction at very low temperatures and collision energies, Phys. Rev. Lett. 105(20), 203201 (2010)
CrossRef ADS Google scholar
[30]
A. Bergeat, J. Onvlee, C. Naulin, A. Van Der Avoird, and M. Costes, Quantum dynamical resonances in low-energy CO(j= 0) + He inelastic collisions, Nat. Chem. 7(4), 349 (2015)
CrossRef ADS Google scholar
[31]
J. J. Gilijamse, S. Hoekstra, S. Y. van de Meerakker, G. C. Groenenboom, and G. Meijer, Near-threshold inelastic collisions using molecular beams with a tunable velocity, Science 313(5793), 1617 (2006)
CrossRef ADS Google scholar
[32]
H. L. Bethlem, G. Berden, and G. Meijer, Decelerating neutral dipolar molecules, Phys. Rev. Lett. 83(8), 1558 (1999)
CrossRef ADS Google scholar
[33]
M. Kirste, X. Wang, H. C. Schewe, G. Meijer, K. Liu, A. van der Avoird, L. M. Janssen, K. B. Gubbels, G. C. Groenenboom, and S. Y. van de Meerakker, Quantumstate resolved bimolecular collisions of velocity-controlled OH with NO radicals, Science 338(6110), 1060 (2012)
CrossRef ADS Google scholar
[34]
S. N. Vogels, J. Onvlee, S. Chefdeville, A. van der Avoird, G. C. Groenenboom, and S. Y. van de Meerakker, Imaging resonances in low-energy NO–He inelastic collisions, Science 350(6262), 787 (2015)
CrossRef ADS Google scholar
[35]
K. Liu, Crossed-beam studies of neutral reactions: Statespecific differential cross sections, Annu. Rev. Phys. Chem. 52(1), 139 (2001)
CrossRef ADS Google scholar
[36]
K. Liu, Vibrational control of bimolecular reactions with methane by mode, bond, and stereo selectivity, Annu. Rev. Phys. Chem. 67(1), 91 (2016)
CrossRef ADS Google scholar
[37]
R. Liu, F. Wang, B. Jiang, G. Czakó, M. Yang, K. Liu, and H. Guo, Rotational mode specificity in the Cl+ CHD3 → HCl+ CD3 reaction, J. Chem. Phys. 141(7), 074310 (2014)
CrossRef ADS Google scholar
[38]
Y. Shagam, A. Klein, W. Skomorowski, R. Yun, V. Averbukh, C. P. Koch, and E. Narevicius, Molecular hydrogen interacts more strongly when rotationally excited at low temperatures leading to faster reactions, Nat. Chem. 7(11), 921 (2015)
CrossRef ADS Google scholar
[39]
Ian W. M. Smith, Low Temperatures and Cold Molecules, World Scientific, 2008
[40]
R. Krems, B. Friedrich, and W. C. Stwalley, Cold Molecules: Theory, Experiment, Applications, CRC Press, 2009
CrossRef ADS Google scholar
[41]
X. Yang, State-to-state dynamics of elementary bimolecular reactions, Annu. Rev. Phys. Chem. 58(1), 433 (2007)
CrossRef ADS Google scholar
[42]
R. B. Bernstein, Atom–Molecule Collision Theory, Plenum Press, 1979
CrossRef ADS Google scholar
[43]
M. S. Child, Molecular Collision Theory, Courier Corporation, 1996
[44]
R. D. Levine, Molecular Reaction Dynamics, Cambridge University Press, 2009
[45]
G. Chalasinski and M. M. Szczesniak, Origins of structure and energetics of van der Waals clusters from ab initiocalculations, Chem. Rev. 94(7), 1723 (1994)
CrossRef ADS Google scholar
[46]
G. Chałasiński and M. M. Szcześniak, State of the art and challenges of the ab initio theory of intermolecular interactions, Chem. Rev. 100(11), 4227 (2000)
CrossRef ADS Google scholar
[47]
K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, A fifth-order perturbation comparison of electron correlation theories, Chem. Phys. Lett. 157(6), 479 (1989)
CrossRef ADS Google scholar
[48]
B. O. Roos, The complete active space self-consistent field method and its applications in electronic structure calculations, Adv. Chem. Phys. 69, 399 (1987)
[49]
H. J. Werner and P. J. Knowles, A second order multiconfiguration SCF procedure with optimum convergence, J. Chem. Phys. 82(11), 5053 (1985)
CrossRef ADS Google scholar
[50]
Jr Dunning, Gaussian basis sets for use in correlated molecular calculations (I): The atoms boron through neon and hydrogen, J. Chem. Phys. 90(2), 1007 (1989)
CrossRef ADS Google scholar
[51]
E. S. Sachs, J. Hinze, and N. H. Sabelli, Frozen core approximation, a pseudopotential method tested on six states of NaH, J. Chem. Phys. 62(9), 3393 (1975)
CrossRef ADS Google scholar
[52]
H. J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, and M. Schütz, Molpro: A general-purpose quantum chemistry program package, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2(2), 242 (2012)
CrossRef ADS Google scholar
[53]
G. C. Schatz, The analytical representation of electronic potential-energy surfaces, Rev. Mod. Phys. 61(3), 669 (1989)
CrossRef ADS Google scholar
[54]
T. Hollebeek, T. S. Ho, and H. Rabitz, Constructing multidimensional molecular potential energy surfaces from ab initiodata, Annu. Rev. Phys. Chem. 50(1), 537 (1999)
CrossRef ADS Google scholar
[55]
P. Kuntz and A. Roach, Ion-molecule reactions of the rare gases with hydrogen (Part 1): Diatomics-in-molecules potential energy surface for ArH+2, Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics 68, 259 (1972)
CrossRef ADS Google scholar
[56]
T. S. Ho and H. Rabitz, Proper construction of ab initio global potential surfaces with accurate long-range interactions, J. Chem. Phys. 113(10), 3960 (2000)
CrossRef ADS Google scholar
[57]
A. Frishman, D. K. Hoffman, and D. J. Kouri, Distributed approximating functional fit of the H3ab initiopotentialenergy data of Liu and Siegbahn, J. Chem. Phys. 107(3), 804 (1997)
CrossRef ADS Google scholar
[58]
E. Garcia and A. Lagana’, A fit of the potential energy surface of the LiHF system, Mol. Phys. 52(5), 1115 (1984)
CrossRef ADS Google scholar
[59]
J. N. Murrell, Molecular Potential Energy Functions, John Wiley, 1984
[60]
G. S. Dhont, J. H. van Lenthe, G. C. Groenenboom, and A. van der Avoird, Ab initiocalculation of the NH(3Σ)–NH(3Σ) interaction potentials in the quintet, triplet,and singlet states, J. Chem. Phys. 123(18), 184302 (2005)
CrossRef ADS Google scholar
[61]
L. M. Janssen, G. C. Groenenboom, A. van der Avoird, P. S. Żuchowski, and R. Podeszwa, Ab initio potential energy surfaces for NH(3Σ)–NH(3Σ) with analytical long range, J. Chem. Phys. 131(22), 224314 (2009)
CrossRef ADS Google scholar
[62]
Z. Li, V. Apkarian, and L. B. Harding, A theoretical study of solid hydrogens doped with atomic oxygen, J. Chem. Phys. 106(3), 942 (1997)
CrossRef ADS Google scholar
[63]
M. H. Alexander, Theoretical investigation of weaklybound complexes of O(3P) with H2, J. Chem. Phys. 108(11), 4467 (1998)
CrossRef ADS Google scholar
[64]
S. Rogers, D. Wang, A. Kuppermann, and S. Walch, Chemically accurate ab initiopotential energy surfaces for the lowest 3A′ and 3A′′ electronically adiabatic states of O(3P) + H2, J. Phys. Chem. A 104(11), 2308 (2000)
CrossRef ADS Google scholar
[65]
J. Brandão, C. Mogo, and B. C. Silva, Potential energy surface for H2O(3A′′) from accurate ab initio data with inclusion of long-range interactions, J. Chem. Phys. 121(18), 8861 (2004)
CrossRef ADS Google scholar
[66]
S. Atahan, J. Kłos, P. S. Żuchowski, and M. H. Alexander, An ab initio investigation of the O(3P)–H2(1Σ+g) van der Waals well, Phys. Chem. Chem. Phys. 8(38), 4420 (2006)
CrossRef ADS Google scholar
[67]
P. J. Knowles and H. J. Werner, An efficient method for the evaluation of coupling coefficients in configuration interaction calculations, Chem. Phys. Lett. 145(6), 514 (1988)
CrossRef ADS Google scholar
[68]
H. J. Werner and P. J. Knowles, An efficient internally contracted multiconfiguration–reference configuration interaction method, J. Chem. Phys. 89(9), 5803 (1988)
CrossRef ADS Google scholar
[69]
B. Jeziorski, R. Moszynski, and K. Szalewicz, Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes, Chem. Rev. 94(7), 1887 (1994)
CrossRef ADS Google scholar
[70]
A. S. Zyubin, A. M. Mebel, S. Der Chao, and R. T. Skodje, Reaction dynamics of S(1D)+H2/D2 on a new ab initiopotential surface, J. Chem. Phys. 114(1), 320 (2001)
CrossRef ADS Google scholar
[71]
T. S. Ho, T. Hollebeek, H. Rabitz, S. Der Chao, R. T. Skodje, A. S. Zyubin, and A. M. Mebel, A globally smooth ab initiopotential surface of the 1A state for the reaction S(1D)+H2, J. Chem. Phys. 116(10), 4124 (2002)
CrossRef ADS Google scholar
[72]
R. T. Pack and G. A. Parker, Quantum reactive scattering in three dimensions using hyperspherical (APH) coordinates: Theory, J. Chem. Phys. 87(7), 3888 (1987)
CrossRef ADS Google scholar
[73]
C. Makrides, J. Hazra, G. Pradhan, A. Petrov, B. K. Kendrick, T. González-Lezana, N. Balakrishnan, and S. Kotochigova, Ultracold chemistry with alkali-metal–rareearth molecules, Phys. Rev. A 91(1), 012708 (2015)
CrossRef ADS Google scholar
[74]
J. Croft, C. Makrides, M. Li, A. Petrov, B. Kendrick, N. Balakrishnan, and S. Kotochigova, Universality and chaoticity in ultracold K+KRb chemical reactions, Nat. Commun. 8(1), 15897 (2017)
CrossRef ADS Google scholar
[75]
B. J. Braams and J. M. Bowman, Permutationally invariant potential energy surfaces in high dimensionality, Int. Rev. Phys. Chem. 28(4), 577 (2009)
CrossRef ADS Google scholar
[76]
J. M. Bowman, G. Czako, and B. Fu, High-dimensional ab initio potential energy surfaces for reaction dynamics calculations, Phys. Chem. Chem. Phys. 13(18), 8094 (2011)
CrossRef ADS Google scholar
[77]
G. Czakó and J. M. Bowman, Dynamics of the reaction of methane with chlorine atom on an accurate potential energy surface, Science 334(6054), 343 (2011)
CrossRef ADS Google scholar
[78]
S. C. Althorpe and D. C. Clary, Quantum scattering calculations on chemical reactions, Annu. Rev. Phys. Chem. 54(1), 493 (2003)
CrossRef ADS Google scholar
[79]
M. Brouard and C. Vallance, Tutorials in Molecular Reaction Dynamics, Royal Society of Chemistry, 2015
[80]
A. Klein, Y. Shagam, W. Skomorowski, P. S. Żuchowski, M. Pawlak, L. M. Janssen, N. Moiseyev, S. Y. van de Meerakker, A. van der Avoird, C. P. Koch, and E. Narevicius, Directly probing anisotropy in atom–molecule collisions through quantum scattering resonances, Nat. Phys. 13(1), 35 (2017)
CrossRef ADS Google scholar
[81]
A. Arthurs and A. Dalgarno, The theory of scattering by a rigid rotator, Proc. R. Soc. Lond. A 256(1287), 540 (1960)
CrossRef ADS Google scholar
[82]
M. Quack and J. Troe, Specific rate constants of unimolecular processes (II): Adiabatic channel model, Ber. Bunsenges. Phys. Chem 78(3), 240 (1974)
CrossRef ADS Google scholar
[83]
D. Clary, Calculations of rate constants for ion–molecule reactions using a combined capture and centrifugal sudden approximation, Mol. Phys. 54(3), 605 (1985)
CrossRef ADS Google scholar
[84]
D. C. Clary, Journal of the Chemical Society, Faraday Transactions2, Molecular and Chemical Physics 83, 139 (1987)
CrossRef ADS Google scholar
[85]
M. Ramillon and R. McCarroll, Adiabatic capture models for fast chemical reactions, J. Chem. Phys. 101(10), 8697 (1994)
CrossRef ADS Google scholar
[86]
D. Clary, Fast chemical reactions: Theory challenges experiment, Annu. Rev. Phys. Chem. 41(1), 61 (1990)
CrossRef ADS Google scholar
[87]
T. J. Frankcombe and G. Nyman, Adiabatic capture theory applied to N+ NH → N2+ H at low temperature, J. Phys. Chem. A 111(50), 13163 (2007)
CrossRef ADS Google scholar
[88]
T. V. Tscherbul and A. A. Buchachenko, Adiabatic channel capture theory applied to cold atom–molecule reactions: Li+ CaH → LiH+ Ca at 1 K, New J. Phys. 17(3), 035010 (2015)
CrossRef ADS Google scholar
[89]
V. Singh, K. S. Hardman, N. Tariq, M. J. Lu, A. Ellis, M. J. Morrison, and J. D. Weinstein, Chemical reactions of atomic lithium and molecular calcium monohydride at 1 K, Phys. Rev. Lett. 108(20), 203201 (2012)
CrossRef ADS Google scholar
[90]
M. Pawlak, Y. Shagam, E. Narevicius, and N. Moiseyev, Adiabatic theory for anisotropic cold molecule collisions, J. Chem. Phys. 143(7), 074114 (2015)
CrossRef ADS Google scholar
[91]
M. Pawlak, Y. Shagam, A. Klein, E. Narevicius, and N. Moiseyev, Adiabatic variational theory for cold atom– molecule collisions: Application to a metastable helium atom colliding with ortho- and para-hydrogen molecules, J. Phys. Chem. A 121(10), 2194 (2017)
CrossRef ADS Google scholar
[92]
D. Bhattacharya, A. Ben-Asher, I. Haritan, M. Pawlak, A. Landau, and N. Moiseyev, Polyatomic ab initio complex potential energy surfaces: Illustration of ultracold collisions, J. Chem. Theory Comput. 13(4), 1682 (2017)
CrossRef ADS Google scholar
[93]
D. Bhattacharya, M. Pawlak, A. Ben-Asher, A. Landau, I. Haritan, E. Narevicius, and N. Moiseyev, Quantum effects in cold molecular collisions from spatial polarization of electronic wave function,J. Phys. Chem. Lett. 10(4), 855 (2019)
CrossRef ADS Google scholar
[94]
M. Pawlak, P. S. Żuchowski, N. Moiseyev, and P. Jankowski, Nonrigidity effects — a missing puzzle piece in the description of low-energy anisotropic molecular collisions, J. Chem. Theory Comput. 16, 2450 (2020)
CrossRef ADS Google scholar
[95]
R. Krems and A. Dalgarno, Quantum-mechanical theory of atom–molecule and molecular collisions in a magnetic field: Spin depolarization, J. Chem. Phys. 120(5), 2296 (2004)
CrossRef ADS Google scholar
[96]
T. Tscherbul, Y. V. Suleimanov, V. Aquilanti, and R. Krems, Magnetic field modification of ultracold molecule– molecule collisions, New J. Phys. 11(5), 055021 (2009)
CrossRef ADS Google scholar
[97]
T. V. Tscherbul and A. Dalgarno, Quantum theory of molecular collisions in a magnetic field: Efficient calculations based on the total angular momentum representation, J. Chem. Phys. 133(18), 184104 (2010)
CrossRef ADS Google scholar
[98]
T. Tscherbul, Total-angular-momentum representation for atom–molecule collisions in electric fields, Phys. Rev. A 85(5), 052710 (2012)
CrossRef ADS Google scholar
[99]
L. M. Janssen, P. S. Żuchowski, A. van der Avoird, G. C. Groenenboom, and J. M. Hutson, Cold and ultracold NH–NH collisions in magnetic fields, Phys. Rev. A 83(2), 022713 (2011)
CrossRef ADS Google scholar
[100]
R. V. Krems, Molecules near absolute zero and external field control of atomic and molecular dynamics, Int. Rev. Phys. Chem. 24(1), 99 (2005)
CrossRef ADS Google scholar
[101]
R. V. Krems, Molecules in Electromagnetic Fields: From Ultracold Physics to Controlled Chemistry, John Wiley & Sons, 2018
CrossRef ADS Google scholar
[102]
J. L. Bohn, Inelastic collisions of ultracold polar molecules, Phys. Rev. A 63(5), 052714 (2001)
CrossRef ADS Google scholar
[103]
A. V. Avdeenkov and J. L. Bohn, Collisional dynamics of ultracold OH molecules in an electrostatic field, Phys. Rev. A 66(5), 052718 (2002)
CrossRef ADS Google scholar
[104]
C. Ticknor and J. L. Bohn, Influence of magnetic fields on cold collisions of polar molecules, Phys. Rev. A 71(2), 022709 (2005)
CrossRef ADS Google scholar
[105]
A. V. Avdeenkov and J. L. Bohn, Ultracold collisions of oxygen molecules, Phys. Rev. A 64(5), 052703 (2001)
CrossRef ADS Google scholar
[106]
M. Hapka, G. Chałasiński, J. Kłos, and P. S. Żuchowski, First-principle interaction potentials for metastable He(3S) and Ne(3P) with closed-shell molecules: Application to Penning-ionizing systems, J. Chem. Phys. 139(1), 014307 (2013)
CrossRef ADS Google scholar
[107]
A. B. Henson, S. Gersten, Y. Shagam, J. Narevicius, and E. Narevicius, Observation of resonances in penning ionization reactions at sub-Kelvin temperatures in merged beams, Science 338(6104), 234 (2012)
CrossRef ADS Google scholar
[108]
N. Balakrishnan, G. C. Groenenboom, R. Krems, and A. Dalgarno, The He–CaH(2Σ+) interaction (II): Collisions at cold and ultracold temperatures, J. Chem. Phys. 118(16), 7386 (2003)
CrossRef ADS Google scholar
[109]
R. Krems, A. Dalgarno, N. Balakrishnan, and G. Groenenboom, Spin-flipping transitions in 2Σ molecules induced by collisions with structureless atoms, Phys. Rev. A 67(6), 060703 (2003)
CrossRef ADS Google scholar
[110]
R. Krems, H. Sadeghpour, A. Dalgarno, D. Zgid, J. Kłos, and G. Chałasiński, Low-temperature collisions of NH (X3Σ ) molecules with He atoms in a magnetic field: An ab initio study, Phys. Rev. A 68(5), 051401 (2003)
CrossRef ADS Google scholar
[111]
H. Cybulski, R. Krems, H. Sadeghpour, A. Dalgarno, J. Kłos, G. Groenenboom, A. van der Avoird, D. Zgid, and G. Chałasiński, Interaction of NH(X3Σ ) with He: Potential energy surface, bound states, and collisional Zeeman relaxation, J. Chem. Phys. 122(9), 094307 (2005)
CrossRef ADS Google scholar
[112]
W. C. Campbell, T. V. Tscherbul, H. I. Lu, E. Tsikata, R. V. Krems, and J. M. Doyle, Mechanism of collisional spin relaxation in 3Σ molecules, Phys. Rev. Lett. 102(1), 013003 (2009)
CrossRef ADS Google scholar
[113]
H. A. Bethe, Theory of disintegration of nuclei by neutrons, Phys. Rev. 47(10), 747 (1935)
CrossRef ADS Google scholar
[114]
E. P. Wigner, On the behavior of cross sections near thresholds, Phys. Rev. 73(9), 1002 (1948)
CrossRef ADS Google scholar
[115]
M. Langevin, in: Annales de chimie et de physique, Series, Vol. 5, 1905, pp 245–288
[116]
P. Soldán, M. T. Cvitaš, J. M. Hutson, P. Honvault, and J. M. Launay, Quantum dynamics of ultracold Na+ Na2 collisions, Phys. Rev. Lett. 89(15), 153201 (2002)
CrossRef ADS Google scholar
[117]
G. Quéméner, P. Honvault, and J. M. Launay, Sensitivity of the dynamics of Na+ Na2 collisions on the three-body interaction at ultralow energies, Europ. Phys. J. D 30, 201 (2004)
CrossRef ADS Google scholar
[118]
M. T. Cvitaš, P. Soldán, J. M. Hutson, P. Honvault, and J. M. Launay, Ultracold collisions involving heteronuclear alkali metal dimers, Phys. Rev. Lett. 94(20), 200402 (2005)
CrossRef ADS Google scholar
[119]
M. T. Cvitaš, P. Soldán, J. M. Hutson, P. Honvault, and J. M. Launay, Ultracold Li+ Li2 collisions: Bosonic and fermionic cases, Phys. Rev. Lett. 94(3), 033201 (2005)
CrossRef ADS Google scholar
[120]
M. T. Cvitaš, P. Soldán, J. M. Hutson, P. Honvault, and J. M. Launay, Interactions and dynamics in Li+Li2 ultracold collisions, J. Chem. Phys. 127(7), 074302 (2007)
CrossRef ADS Google scholar
[121]
G. Quéméner, J. M. Launay, and P. Honvault, Ultracold collisions between Li atoms and Li2 diatoms in high vibrational states, Phys. Rev. A 75(5), 050701 (2007)
CrossRef ADS Google scholar
[122]
G. Quéméner and J. L. Bohn, Strong dependence of ultracold chemical rates on electric dipole moments, Phys. Rev. A 81(2), 022702 (2010)
CrossRef ADS Google scholar
[123]
G. Quéméner, J. L. Bohn, A. Petrov, and S. Kotochigova, Universalities in ultracold reactions of alkali-metal polar molecules, Phys. Rev. A 84(6), 062703 (2011)
CrossRef ADS Google scholar
[124]
P. S. Julienne, T. M. Hanna, and Z. Idziaszek, Universal ultracold collision rates for polar molecules of two alkalimetal atoms, Phys. Chem. Chem. Phys. 13(42), 19114 (2011)
CrossRef ADS Google scholar
[125]
P. S. Julienne and F. H. Mies, Collisions of ultracoldtrapped atoms, J. Opt. Soc. Am. B 6(11), 2257 (1989)
CrossRef ADS Google scholar
[126]
C. H. Burke, Greene, and J. L. Bohn, Multichannel cold collisions: Simple dependences on energy and magnetic field, Phys. Rev. Lett. 81(16), 3355 (1998)
CrossRef ADS Google scholar
[127]
B. Gao, E. Tiesinga, C. J. Williams, and P. S. Julienne, Multichannel quantum-defect theory for slow atomic collisions, Phys. Rev. A 72(4), 042719 (2005)
CrossRef ADS Google scholar
[128]
Z. Idziaszek and P. S. Julienne, Universal rate constants for reactive collisions of ultracold molecules, Phys. Rev. Lett. 104(11), 113202 (2010)
CrossRef ADS Google scholar
[129]
K. Jachymski, M. Krych, P. S. Julienne, and Z. Idziaszek, Quantum theory of reactive collisions for 1/rnpotentials, Phys. Rev. Lett. 110(21), 213202 (2013)
CrossRef ADS Google scholar
[130]
P. S. Julienne, Ultracold molecules from ultracold atoms: A case study with the KRb molecule, Faraday Discuss. 142, 361 (2009)
CrossRef ADS Google scholar
[131]
B. Gao, Universal model for exoergic bimolecular reactions and inelastic processes, Phys. Rev. Lett. 105(26), 263203 (2010)
CrossRef ADS Google scholar
[132]
P. S. Żuchowski and J. M. Hutson, Reactions of ultracold alkali-metal dimers, Phys. Rev. A 81(6), 060703 (2010)
CrossRef ADS Google scholar
[133]
L. De Marco, G. Valtolina, K. Matsuda, W. G. Tobias, J. P. Covey, and J. Ye, A degenerate Fermi gas of polar molecules, Science 363(6429), 853 (2019)
CrossRef ADS Google scholar
[134]
T. M. Rvachov, H. Son, A. T. Sommer, S. Ebadi, J. J. Park, M. W. Zwierlein, W. Ketterle, and A. O. Jamison, Long-lived ultracold molecules with electric and magnetic dipole moments, Phys. Rev. Lett. 119(14), 143001 (2017)
CrossRef ADS Google scholar
[135]
B. Drews, M. Deiß, K. Jachymski, Z. Idziaszek, and J. H. Denschlag, Inelastic collisions of ultracold triplet Rb2 molecules in the rovibrational ground state, Nat. Commun. 8(1), 14854 (2017)
CrossRef ADS Google scholar
[136]
X. Ye, M. Guo, M. L. González-Martínez, G. Quéméner, and D. Wang, Collisions of ultracold 23Na87Rb molecules with controlled chemical reactivities, Sci. Adv. 4(1), eaaq0083 (2018)
CrossRef ADS Google scholar
[137]
P. D. Gregory, M. D. Frye, J. A. Blackmore, E. M. Bridge, R. Sawant, J. M. Hutson, and S. L. Cornish, Sticky collisions of ultracold RbCs molecules, Nat. Commun. 10(1), 1 (2019)
CrossRef ADS Google scholar
[138]
M. Mayle, B. P. Ruzic, and J. L. Bohn, Statistical aspects of ultracold resonant scattering, Phys. Rev. A 85(6), 062712 (2012)
CrossRef ADS Google scholar
[139]
M. Mayle, G. Quéméner, B. P. Ruzic, and J. L. Bohn, Scattering of ultracold molecules in the highly resonant regime, Phys. Rev. A 87(1), 012709 (2013)
CrossRef ADS Google scholar
[140]
Z. Idziaszek, G. Quéméner, J. L. Bohn, and P. S. Julienne, Simple quantum model of ultracold polar molecule collisions, Phys. Rev. A 82(2), 020703 (2010)
CrossRef ADS Google scholar
[141]
F. H. Mies, A multichannel quantum defect analysis of diatomic predissociation and inelastic atomic scattering, J. Chem. Phys. 80(6), 2514 (1984)
CrossRef ADS Google scholar
[142]
F. H. Mies and P. S. Julienne, A multichannel quantum defect analysis of two-state couplings in diatomic molecules, J. Chem. Phys. 80(6), 2526 (1984)
CrossRef ADS Google scholar
[143]
J. Jankunas, B. Bertsche, K. Jachymski, M. Hapka, and A. Osterwalder, Dynamics of gas phase Ne + NH3 and Ne + ND3 Penning ionisation at low temperatures, J. Chem. Phys. 140(24), 244302 (2014)
CrossRef ADS Google scholar
[144]
J. Jankunas, K. Jachymski, M. Hapka, and A. Osterwalder, Observation of orbiting resonances in He(3S1) + NH3 Penning ionization, J. Chem. Phys. 142(16), 164305 (2015)
CrossRef ADS Google scholar
[145]
J. Jankunas, K. Jachymski, M. Hapka, and A. Osterwalder, Communication: Importance of rotationally inelastic processes in low-energy penning ionization of CHF3, J. Chem. Phys. 144, 221102 (2016)
CrossRef ADS Google scholar
[146]
E. Herbst and J. T. Yates Jr, Introduction: Astrochemistry, Chem. Rev. 113(12), 8707 (2013)
CrossRef ADS Google scholar
[147]
R. Sahai and L. Å. Nyman, The boomerang nebula: The coldest region of the universe? Astrophys. J. 487(2), L155 (1997)
CrossRef ADS Google scholar
[148]
D. Herschbach, Molecular collisions, from warm to ultracold, Faraday Discuss. 142, 9 (2009)
CrossRef ADS Google scholar
[149]
S. Chefdeville, T. Stoecklin, A. Bergeat, K. M. Hickson, C. Naulin, and M. Costes, Appearance of low energy resonances in CO–para-H2 inelastic collisions, Phys. Rev. Lett. 109(2), 023201 (2012)
CrossRef ADS Google scholar
[150]
S. Chefdeville, Y. Kalugina, S. Y. van de Meerakker, C. Naulin, F. Lique, and M. Costes, Observation of partial wave resonances in low-energy O2–H2 inelastic collisions, Science 341(6150), 1094 (2013)
CrossRef ADS Google scholar
[151]
C. Xiao, X. Xu, S. Liu, T. Wang, W. Dong, T. Yang, Z. Sun, D. Dai, D. H. Zhang, and X. Yang, Experimental and theoretical differential cross sections for a four-atom reaction: HD+ OH → H2O+ D, Science 333(6041), 440 (2011)
CrossRef ADS Google scholar
[152]
D. R. Willey, R. L. Crownover, D. Bittner, and F. C. De Lucia, Very low temperature spectroscopy: The pressure broadening coefficients for CO–He between 4.3 and 1.7 K, J. Chem. Phys. 89(4), 1923 (1988)
CrossRef ADS Google scholar
[153]
S. Nandi, S. J. Blanksby, X. Zhang, M. R. Nimlos, D. C. Dayton, and G. B. Ellison, Polarized infrared absorption spectrum of matrix-isolated methylperoxyl radicals, CH3OOX̃2A′′, J. Phys. Chem. A 106(33), 7547 (2002)
CrossRef ADS Google scholar
[154]
A. M. Morrison, J. Agarwal, H. F. Schaefer, and G. E. Douberly, Infrared laser spectroscopy of the CH3OO radical formed from the reaction of CH3 and O2 within a helium nanodroplet, J. Phys. Chem. A 116(22), 5299 (2012)
CrossRef ADS Google scholar
[155]
L. Schnieder, K. Seekamp-Rahn, J. Borkowski, E. Wrede, K. Welge, F. J. Aoiz, L. Bañiares, M. D’Mello, V. J. Herrero, V. S. Rabanos, and R. E. Wyatt, Experimental studies and theoretical predictions for the H+ D2 → HD+ D Reaction, Science 269(5221), 207 (1995)
CrossRef ADS Google scholar
[156]
R. T. Skodje, D. Skouteris, D. E. Manolopoulos, S. H. Lee, F. Dong, and K. Liu, Resonance-mediated chemical reaction: F+ HD → HF+ D, Phys. Rev. Lett. 85(6), 1206 (2000)
CrossRef ADS Google scholar
[157]
W. Dong, C. Xiao, T. Wang, D. Dai, X. Yang, and D. H. Zhang, Transition-state spectroscopy of partial wave resonances in the F+ HD reaction, Science 327(5972), 1501 (2010)
CrossRef ADS Google scholar
[158]
T. Wang, J. Chen, T. Yang, C. Xiao, Z. Sun, L. Huang, D. Dai, X. Yang, and D. H. Zhang, Dynamical resonances accessible only by reagent vibrational excitation in the F+ HD → HF+ D reaction, Science 342(6165), 1499 (2013)
CrossRef ADS Google scholar
[159]
M. Qiu, Z. Ren, L. Che, D. Dai, S. A. Harich, X. Wang, X. Yang, C. Xu, D. Xie, M. Gustafsson, R. T. Skodje, Z. Sun, and D. H. Zhang, Observation of Feshbach resonances in the F+ H2 → HF+ H reaction, Science 311(5766), 1440 (2006)
CrossRef ADS Google scholar
[160]
J. B. Kim, M. L. Weichman, T. F. Sjolander, D. M. Neumark, J. Kłos, M. H. Alexander, and D. E. Manolopoulos, Spectroscopic observation of resonances in the F+ H2 reaction, Science 349(6247), 510 (2015)
CrossRef ADS Google scholar
[161]
F. Wang, J. S. Lin, and K. Liu, Steric control of the reaction of CH stretch-excited CHD3 with chlorine atom, Science 331(6019), 900 (2011)
CrossRef ADS Google scholar
[162]
S. N. Vogels, T. Karman, J. Kłos, M. Besemer, J. Onvlee, A. van der Avoird, G. C. Groenenboom, and S. Y. van de Meerakker, Scattering resonances in bimolecularcollisions between NO radicals and H2 challenge the theoretical gold standard, Nat. Chem. 10(4), 435 (2018)
CrossRef ADS Google scholar
[163]
A. von Zastrow, J. Onvlee, S. N. Vogels, G. C. Groenenboom, A. Van Der Avoird, and S. Y. Van De Meerakker, State-resolved diffraction oscillations imaged for inelastic collisions of NO radicals with He, Ne and Ar, Nat. Chem. 6(3), 216 (2014)
CrossRef ADS Google scholar
[164]
J. Onvlee, S. D. Gordon, S. N. Vogels, T. Auth, T. Karman, B. Nichols, A. van der Avoird, G. C. Groenenboom, M. Brouard, and S. Y. van de Meerakker, Imaging quantum stereodynamics through Fraunhofer scattering of NO radicals with rare-gas atoms, Nat. Chem. 9(3), 226 (2017)
CrossRef ADS Google scholar
[165]
M. Lara, F. Dayou, J. M. Launay, A. Bergeat, K. M. Hickson, C. Naulin, and M. Costes, Observation of partial wave structures in the integral cross section of the S(1D2) + H2(j= 0) reaction, Phys. Chem. Chem. Phys. 13(18), 8127 (2011)
CrossRef ADS Google scholar
[166]
M. Lara, S. Chefdeville, K. M. Hickson, A. Bergeat, C. Naulin, J. M. Launay, and M. Costes, Dynamics of the S(2D1) + HD (j= 0 ) reaction at collision energies approaching the cold regime: A stringent test for theory, Phys. Rev. Lett. 109(13), 133201 (2012)
CrossRef ADS Google scholar
[167]
S. Y. van de Meerakker, H. L. Bethlem, N. Vanhaecke, and G. Meijer, Manipulation and control of molecular beams, Chem. Rev. 112(9), 4828 (2012)
CrossRef ADS Google scholar
[168]
L. Scharfenberg, J. Kłos, P. J. Dagdigian, M. H. Alexander, G. Meijer, and S. Y. van de Meerakker, State-to-state inelastic scattering of Stark-decelerated OH radicals with Ar atoms, Phys. Chem. Chem. Phys. 12(36), 10660 (2010)
CrossRef ADS Google scholar
[169]
L. Scharfenberg, K. B. Gubbels, M. Kirste, G. C. Groenenboom, A. van der Avoird, G. Meijer, and S. Y. van de Meerakker, Scattering of Stark-decelerated OH radicals with rare-gas atoms, Eur. Phys. J. D 65(1–2), 189 (2011)
CrossRef ADS Google scholar
[170]
M. Kirste, L. Scharfenberg, J. Kłos, F. Lique, M. H. Alexander, G. Meijer, and S. Y. van de Meerakker, Lowenergy inelastic collisions of OH radicals with He atoms and D2 molecules, Phys. Rev. A 82(4), 042717 (2010)
CrossRef ADS Google scholar
[171]
B. Rowe, G. Dupeyrat, J. Marquette, and P. Gaucherel, Study of the reactions N+2+2N2 → N+4+N2 and O+2+2O2 → O+4+O2 from 20 to 160 K by the CRESU technique, J. Chem. Phys. 80(10), 4915 (1984)
CrossRef ADS Google scholar
[172]
G. Dupeyrat, J. Marquette, and B. Rowe, Design and testing of axisymmetric nozzles for ion–molecule reaction studies between 20 °K and 160 °K, Phys. Fluids 28(5), 1273 (1985)
CrossRef ADS Google scholar
[173]
I. R. Sims and I. W. Smith, Gas–phase reactions and energy transfer at very low temperatures, Annu. Rev. Phys. Chem. 46(1), 109 (1995)
CrossRef ADS Google scholar
[174]
I. W. Smith and B. R. Rowe, Reaction kinetics at very low temperatures: Laboratory studies and interstellar chemistry, Acc. Chem. Res. 33(5), 261 (2000)
CrossRef ADS Google scholar
[175]
I. W. Smith, Reactions at very low temperatures: Gas kinetics at a new frontier, Angew. Chem. Int. Ed. 45(18), 2842 (2006)
CrossRef ADS Google scholar
[176]
P. L. James, I. R. Sims, I. W. Smith, M. H. Alexander, and M. Yang, A combined experimental and theoretical study of rotational energy transfer in collisions between NO(X2Π1/2, v=3,J) and He, Ar and N2 at temperatures down to 7 K, J. Chem. Phys. 109(10), 3882 (1998)
CrossRef ADS Google scholar
[177]
D. Chastaing, P. L. James, I. R. Sims, and I. W. Smith, Neutral–neutral reactions at the temperatures of interstellar clouds: Rate coefficients for reactions of atomic carbon, C(3P), with O2, C2H2, C2H4 and C3H6 down to 15 K, Phys. Chem. Chem. Phys. 1(9), 2247 (1999)
CrossRef ADS Google scholar
[178]
W. E. Perreault, N. Mukherjee, and R. N. Zare, Quantum control of molecular collisions at 1 kelvin, Science 358(6361), 356 (2017)
CrossRef ADS Google scholar
[179]
W. E. Perreault, N. Mukherjee, and R. N. Zare, Cold quantum-controlled rotationally inelastic scattering of HD with H2 and D2 reveals collisional partner reorientation, Nat. Chem. 10(5), 561 (2018)
CrossRef ADS Google scholar
[180]
W. E. Perreault, N. Mukherjee, and R. N. Zare, HD (v= 1, j= 2, m) orientation controls HD–He rotationally inelastic scattering near 1 K, J. Chem. Phys. 150(17), 174301 (2019)
CrossRef ADS Google scholar
[181]
J. D. Barnwell, J. G. Loeser, and D. R. Herschbach, Angular correlations in chemical reactions: Statistical theory for four-vector correlations,J. Phys. Chem. 87(15), 2781 (1983)
CrossRef ADS Google scholar
[182]
X. Wu, T. Gantner, M. Koller, M. Zeppenfeld, S. Chervenkov, and G. Rempe, A cryofuge for cold-collision experiments with slow polar molecules, Science 358(6363), 645 (2017)
CrossRef ADS Google scholar
[183]
M. Cavagnero and C. Newell, Inelastic semiclassical collisions in cold dipolar gases, New J. Phys. 11(5), 055040 (2009)
CrossRef ADS Google scholar
[184]
D. R. Willey, R. L. Crownover, D. Bittner, and F. C. De Lucia, Very low temperature spectroscopy: The pressure broadening coefficients for CH3F between 4.2 and 1.9 K, J. Chem. Phys. 89(10), 6147 (1988)
CrossRef ADS Google scholar
[185]
C. D. Ball and F. C. De Lucia, Direct measurement of rotationally inelastic cross sections at astrophysical and quantum collisional temperatures, Phys. Rev. Lett. 81(2), 305 (1998)
CrossRef ADS Google scholar
[186]
C. D. Ball and F. C. De Lucia, Direct observation of Λ- doublet and hyperfine branching ratios for rotationally inelastic collisions of NO–He at 4.2 K, Chem. Phys. Lett. 300(1–2), 227 (1999)
CrossRef ADS Google scholar
[187]
G. K. Drayna, C. Hallas, K. Wang, S. R. Domingos, S. Eibenberger, J. M. Doyle, and D. Patterson, Direct timedomain observation of conformational relaxation in gasphase cold collisions, Angew. Chem. Int. Ed. 55(16), 4957 (2016)
CrossRef ADS Google scholar
[188]
B. C. Sawyer, B. L. Lev, E. R. Hudson, B. K. Stuhl, M. Lara, J. L. Bohn, and J. Ye, Magnetoelectrostatic trapping of ground state OH molecules, Phys. Rev. Lett. 98(25), 253002 (2007)
CrossRef ADS Google scholar
[189]
Y. Liu, M. Vashishta, P. Djuricanin, S. Zhou, W. Zhong, T. Mittertreiner, D. Carty, and T. Momose, Magnetic trapping of cold methyl radicals, Phys. Rev. Lett. 118(9), 093201 (2017)
CrossRef ADS Google scholar
[190]
B. C. Sawyer, B. K. Stuhl, M. Yeo, T. V. Tscherbul, M. T. Hummon, Y. Xia, J. Kłos, D. Patterson, J. M. Doyle, and J. Ye, Cold heteromolecular dipolar collisions, Phys. Chem. Chem. Phys. 13(42), 19059 (2011)
CrossRef ADS Google scholar
[191]
B. C. Sawyer, B. K. Stuhl, D. Wang, M. Yeo, and J. Ye, Molecular beam collisions with a magnetically trapped target, Phys. Rev. Lett. 101(20), 203203 (2008)
CrossRef ADS Google scholar
[192]
M. Strebel, T. O. Müller, B. Ruff, F. Stienkemeier, and M. Mudrich, Quantum rainbow scattering at tunable velocities, Phys. Rev. A 86(6), 062711 (2012)
CrossRef ADS Google scholar
[193]
M. Gupta and D. Herschbach, Slowing and speeding molecular beams by means of a rapidly rotating source, J. Phys. Chem. A 105(9), 1626 (2001)
CrossRef ADS Google scholar
[194]
M. Strebel, F. Stienkemeier, and M. Mudrich, Improved setup for producing slow beams of cold molecules using a rotating nozzle, Phys. Rev. A 81(3), 033409 (2010)
CrossRef ADS Google scholar
[195]
N. R. Thomas, N. Kjærgaard, P. S. Julienne, and A. C. Wilson, Imaging of s and d partial-wave interference in quantum scattering of identical bosonic atoms, Phys. Rev. Lett. 93(17), 173201 (2004)
CrossRef ADS Google scholar
[196]
J. D. Weinstein, R. DeCarvalho, T. Guillet, B. Friedrich, and J. M. Doyle, Magnetic trapping of calcium monohydride molecules at millikelvin temperatures, Nature 395(6698), 148 (1998)
CrossRef ADS Google scholar
[197]
K. Maussang, D. Egorov, J. S. Helton, S. V. Nguyen, and J. M. Doyle, Zeeman relaxation of CaF in lowtemperature collisions with helium, Phys. Rev. Lett. 94(12), 123002 (2005)
CrossRef ADS Google scholar
[198]
W. C. Campbell, E. Tsikata, H. I. Lu, L. D. van Buuren, and J. M. Doyle, Magnetic trapping and Zeeman relaxation of NH(X3Σ ), Phys. Rev. Lett. 98(21), 213001 (2007)
CrossRef ADS Google scholar
[199]
E. Tsikata, W. Campbell, M. Hummon, H. I. Lu, and J. M. Doyle, Magnetic trapping of NH molecules with 20 s lifetimes, New J. Phys. 12(6), 065028 (2010)
CrossRef ADS Google scholar
[200]
D. Egorov, W. Campbell, B. Friedrich, S. Maxwell, E. Tsikata, L. Van Buuren, and J. Doyle, Buffer-gas cooling of NH via the beam loaded buffer-gas method, Europ. Phys. J. D 31, 307 (2004)
CrossRef ADS Google scholar
[201]
M. T. Hummon, T. V. Tscherbul, J. Kłos, H. I. Lu, E. Tsikata, W. C. Campbell, A. Dalgarno, and J. M. Doyle, Cold N+ NH collisions in a magnetic trap, Phys. Rev. Lett. 106(5), 053201 (2011)
CrossRef ADS Google scholar
[202]
N. Brahms, T. V. Tscherbul, P. Zhang, J. Kłos, R. C. Forrey, Y. S. Au, H. R. Sadeghpour, A. Dalgarno, J. M. Doyle, and T. G. Walker, Formation and dynamics of van der Waals molecules in buffer-gas traps, Phys. Chem. Chem. Phys. 13(42), 19125 (2011)
CrossRef ADS Google scholar
[203]
N. Brahms, T. V. Tscherbul, P. Zhang, J. Kłos, H. R. Sadeghpour, A. Dalgarno, J. M. Doyle, and T. G. Walker, Formation of van der Waals molecules in buffer-gascooled magnetic traps, Phys. Rev. Lett. 105(3), 033001 (2010)
CrossRef ADS Google scholar
[204]
N. Tariq, N. A. Taisan, V. Singh, and J. D. Weinstein, Spectroscopic detection of the LiHe molecule, Phys. Rev. Lett. 110(15), 153201 (2013)
CrossRef ADS Google scholar
[205]
N. Quiros, N. Tariq, T. V. Tscherbul, J. Kłos, and J. D. Weinstein, Cold anisotropically interacting van der Waals molecule: TiHe, Phys. Rev. Lett. 118(21), 213401 (2017)
CrossRef ADS Google scholar
[206]
M. I. Fabrikant, T. Li, N. J. Fitch, N. Farrow, J. D. Weinstein, and H. J. Lewandowski, Method for travelingwave deceleration of buffer-gas beams of CH, Phys. Rev. A 90(3), 033418 (2014)
CrossRef ADS Google scholar
[207]
M. Petzold, P. Kaebert, P. Gersema, M. Siercke, and S. Ospelkaus, A Zeeman slower for diatomic molecules, New J. Phys. 20(4), 042001 (2018)
CrossRef ADS Google scholar
[208]
E. Shuman, J. Barry, D. Glenn, and D. DeMille, Radiative force from optical cycling on a diatomic molecule, Phys. Rev. Lett. 103(22), 223001 (2009)
CrossRef ADS Google scholar
[209]
E. S. Shuman, J. F. Barry, and D. DeMille, Laser cooling of a diatomic molecule, Nature 467(7317), 820 (2010)
CrossRef ADS Google scholar
[210]
M. Zeppenfeld, B. G. Englert, R. Glöckner, A. Prehn, M. Mielenz, C. Sommer, L. D. van Buuren, M. Motsch, and G. Rempe, Sisyphus cooling of electrically trapped polyatomic molecules, Nature 491(7425), 570 (2012)
CrossRef ADS Google scholar
[211]
A. Prehn, M. Ibrügger, R. Glöckner, G. Rempe, and M. Zeppenfeld, Optoelectrical cooling of polar molecules to submillikelvin temperatures, Phys. Rev. Lett. 116(6), 063005 (2016)
CrossRef ADS Google scholar
[212]
D. Patterson, M. Schnell, and J. M. Doyle, Enantiomerspecific detection of chiral molecules via microwave spectroscopy, Nature 497(7450), 475 (2013)
CrossRef ADS Google scholar
[213]
S. Eibenberger, J. Doyle, and D. Patterson, Enantiomerspecific state transfer of chiral molecules, Phys. Rev. Lett. 118(12), 123002 (2017)
CrossRef ADS Google scholar
[214]
B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, Continuous probing of cold complex molecules with infrared frequency comb spectroscopy, Nature 533(7604), 517 (2016)
CrossRef ADS Google scholar
[215]
P. B. Changala, M. L. Weichman, K. F. Lee, M. E. Fermann, and J. Ye, Rovibrational quantum state resolution of the C60 fullerene, Science 363(6422), 49 (2019)
CrossRef ADS Google scholar
[216]
J. Baron, W. C. Campbell, D. DeMille, J. M. Doyle, G. Gabrielse, Y. V. Gurevich, P. W. Hess, N. R. Hutzler, E. Kirilov, I. Kozyryev, B. R. O’Leary, C. D. Panda, M. F. Parsons, E. S. Petrik, B. Spaun, A. C. Vutha, and A. D. West, Order of magnitude smaller limit on the electric dipole moment of the electron, Science 343(6168), 269 (2014)
CrossRef ADS Google scholar
[217]
ACME Collaboration, V. Andreev, et al., Improved limit on the electric dipole moment of the electron, Nature 562, 355 (2018)
CrossRef ADS Google scholar
[218]
G. Chen, A New Tool for Col Ion–Molecule Chemistry, Ph.D. Thesis, UCLA, 2019
[219]
J. Greenberg, Cold, Controlled, Ion–molecule Reactions, Ph.D. Thesis, University of Colorado at Boulder, 2020
[220]
Q. Wei, I. Lyuksyutov, and D. Herschbach, Mergedbeams for slow molecular collision experiments, J. Chem. Phys. 137(5), 054202 (2012)
CrossRef ADS Google scholar
[221]
E. Lavert-Ofir, Y. Shagam, A. B. Henson, S. Gersten, J. Kłos, P. S. Żuchowski, J. Narevicius, and E. Narevicius, Observation of the isotope effect in sub-Kelvin reactions, Nat. Chem. 6(4), 332 (2014)
CrossRef ADS Google scholar
[222]
Y. Shagam, A. Klein, W. Skomorowski, R. Yun, V. Averbukh, C. P. Koch, and E. Narevicius, Molecular hydrogen interacts more strongly when rotationally excited at low temperatures leading to faster reactions, Nat. Chem. 7(11), 921 (2015)
CrossRef ADS Google scholar
[223]
N. Bibelnik, S. Gersten, A. B. Henson, E. Lavert-Ofir, Y. Shagam, W. Skomorowski, C. P. Koch, and E. Narevicius, Cold temperatures invert product ratios in Penning ionisation reactions with argon, Mol. Phys. 117(15–16), 2128 (2019)
CrossRef ADS Google scholar
[224]
B. Bertsche, J. Jankunas, and A. Osterwalder, Lowtemperature collisions between neutral molecules in merged molecular beams, Chimia 68(4), 256 (2014)
CrossRef ADS Google scholar
[225]
S. Y. van de Meerakker and G. Meijer, Collision experiments with Stark-decelerated beams, Faraday Discuss. 142, 113 (2009)
CrossRef ADS Google scholar
[226]
A. P. P. van der Poel and H. L. Bethlem, A detailed account of the measurements of cold collisions in a molecular synchrotron, EPJ Tech. Instrum. 5(1), 6 (2018)
CrossRef ADS Google scholar
[227]
A. P. van Der Poel, P. C. Zieger, S. Y. Van De Meerakker, J. Loreau, A. Van Der Avoird, and H. L. Bethlem, Cold collisions in a molecular synchrotron, Phys. Rev. Lett. 120(3), 033402 (2018)
CrossRef ADS Google scholar
[228]
C. E. Heiner, D. Carty, G. Meijer, and H. L. Bethlem, A molecular synchrotron, Nat. Phys. 3(2), 115 (2007)
CrossRef ADS Google scholar
[229]
C. E. Heiner, H. L. Bethlem, and G. Meijer, A synchrotron for neutral molecules, Chem. Phys. Lett. 473(1– 3), 1 (2009)
CrossRef ADS Google scholar
[230]
F. M. Crompvoets, H. L. Bethlem, R. T. Jongma, and G. Meijer, A prototype storage ring for neutral molecules, Nature 411(6834), 174 (2001)
CrossRef ADS Google scholar
[231]
F. M. Crompvoets, H. L. Bethlem, J. Küpper, A. J. van Roij, and G. Meijer, Dynamics of neutral molecules stored in a ring, Phys. Rev. A 69(6), 063406 (2004)
CrossRef ADS Google scholar
[232]
P. C. Zieger, S. Y. van de Meerakker, C. E. Heiner, H. L. Bethlem, A. J. van Roij, and G. Meijer, Multiple packets of neutral molecules revolving for over a mile, Phys. Rev. Lett. 105(17), 173001 (2010)
CrossRef ADS Google scholar
[233]
J. Loreau and A. Van der Avoird, Scattering of NH3 and ND3 with rare gas atoms at low collision energy, J. Chem. Phys. 143(18), 184303 (2015)
CrossRef ADS Google scholar
[234]
H. Thorsheim, J. Weiner, and P. S. Julienne, Laserinduced photoassociation of ultracold sodium atoms, Phys. Rev. Lett. 58(23), 2420 (1987)
CrossRef ADS Google scholar
[235]
J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange, O. Dulieu, R. Wester, and M. Weidemüller, Formation of ultracold polar molecules in the rovibrational ground state, Phys. Rev. Lett. 101(13), 133004 (2008)
CrossRef ADS Google scholar
[236]
F. Lang, K. Winkler, C. Strauss, R. Grimm, and J. H. Denschlag, Ultracold triplet molecules in the rovibrational ground state, Phys. Rev. Lett. 101(13), 133005 (2008)
CrossRef ADS Google scholar
[237]
K.-K. Ni, S. Ospelkaus, M. De Miranda, A. Pe’Er, B. Neyenhuis, J. Zirbel, S. Kotochigova, P. Julienne, D. Jin, and J. Ye, A high phase-space-density gas of polar molecules, Science 322(5899), 231 (2008)
CrossRef ADS Google scholar
[238]
J. M. Hutson and P. Soldan, Molecule formation in ultracold atomic gases, Int. Rev. Phys. Chem. 25(4), 497 (2006)
CrossRef ADS Google scholar
[239]
T. Köhler, K. Góral, and P. S. Julienne, Production of cold molecules via magnetically tunable Feshbach resonances, Rev. Mod. Phys. 78(4), 1311 (2006)
CrossRef ADS Google scholar
[240]
E. A. Donley, N. R. Claussen, S. T. Thompson, and C. E. Wieman, Atom–molecule coherence in a Bose–Einstein condensate, Nature 417(6888), 529 (2002)
CrossRef ADS Google scholar
[241]
C. Chin, A. J. Kerman, V. Vuletić, and S. Chu, Sensitive detection of cold cesium molecules formed on Feshbach resonances, Phys. Rev. Lett. 90(3), 033201 (2003)
CrossRef ADS Google scholar
[242]
J. Herbig, T. Kraemer, M. Mark, T. Weber, C. Chin, H. C. Nägerl, and R. Grimm, Preparation of a pure molecular quantum gas, Science 301(5639), 1510 (2003)
CrossRef ADS Google scholar
[243]
S. Dürr, T. Volz, A. Marte, and G. Rempe, Observation of molecules produced from a Bose–Einstein condensate, Phys. Rev. Lett. 92(2), 020406 (2004)
CrossRef ADS Google scholar
[244]
C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin, Creation of ultracold molecules from a Fermi gas of atoms, Nature 424(6944), 47 (2003)
CrossRef ADS Google scholar
[245]
K. E. Strecker, G. B. Partridge, and R. G. Hulet, Conversion of an atomic Fermi gas to a long-lived molecular Bose gas, Phys. Rev. Lett. 91(8), 080406 (2003)
CrossRef ADS Google scholar
[246]
J. Cubizolles, T. Bourdel, S. Kokkelmans, G. Shlyapnikov, and C. Salomon, Production of long-lived ultracold Li2 molecules from a Fermi gas, Phys. Rev. Lett. 91(24), 240401 (2003)
CrossRef ADS Google scholar
[247]
C. Regal, M. Greiner, and D. Jin, Lifetime of moleculeatom mixtures near a Feshbach resonance in 40K, Phys. Rev. Lett. 92(8), 083201 (2004)
CrossRef ADS Google scholar
[248]
S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, C. Chin, J. H. Denschlag, and R. Grimm, Pure gas of optically trapped molecules created from fermionic atoms, Phys. Rev. Lett. 91(24), 240402 (2003)
CrossRef ADS Google scholar
[249]
D. Petrov, C. Salomon, and G. V. Shlyapnikov, Weakly bound dimers of fermionic atoms, Phys. Rev. Lett. 93(9), 090404 (2004)
CrossRef ADS Google scholar
[250]
M. Greiner, C. A. Regal, and D. S. Jin, Emergence of a molecular Bose–Einstein condensate from a Fermi gas, Nature 426(6966), 537 (2003)
CrossRef ADS Google scholar
[251]
S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. H. Denschlag, and R. Grimm, Bose–Einstein condensation of molecules, Science 302(5653), 2101 (2003)
CrossRef ADS Google scholar
[252]
M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. Raupach, S. Gupta, Z. Hadzibabic, and W. Ketterle, Observation of Bose–Einstein Condensation of Molecules, Phys. Rev. Lett. 91(25), 250401 (2003)
CrossRef ADS Google scholar
[253]
T. T. Wang, M. S. Heo, T. M. Rvachov, D. A. Cotta, and W. Ketterle, Deviation from universality in collisions of ultracold 26Li molecules, Phys. Rev. Lett. 110(17), 173203 (2013)
CrossRef ADS Google scholar
[254]
K. Xu, T. Mukaiyama, J. Abo-Shaeer, J. K. Chin, D. Miller, and W. Ketterle, Formation of quantumdegenerate sodium molecules, Phys. Rev. Lett. 91(21), 210402 (2003)
CrossRef ADS Google scholar
[255]
R. Wynar, R. Freeland, D. Han, C. Ryu, and D. Heinzen, Molecules in a Bose–Einstein condensate, Science 287(5455), 1016 (2000)
CrossRef ADS Google scholar
[256]
S. Knoop, F. Ferlaino, M. Mark, M. Berninger, H. Schübel, H. C. Nägerl, and R. Grimm, Observation of an Efimov-like trimer resonance in ultracold atom–dimer scattering, Nat. Phys. 5(3), 227 (2009)
CrossRef ADS Google scholar
[257]
T. Mukaiyama, J. Abo-Shaeer, K. Xu, J. K. Chin, and W. Ketterle, Dissociation and decay of ultracold sodium molecules, Phys. Rev. Lett. 92(18), 180402 (2004)
CrossRef ADS Google scholar
[258]
N. Zahzam, T. Vogt, M. Mudrich, D. Comparat, and P. Pillet, Atom–molecule collisions in an optically trapped gas, Phys. Rev. Lett. 96(2), 023202 (2006)
CrossRef ADS Google scholar
[259]
P. Staanum, S. D. Kraft, J. Lange, R. Wester, and M. Weidemüller, Experimental investigation of ultracold atom–molecule collisions, Phys. Rev. Lett. 96(2), 023201 (2006)
CrossRef ADS Google scholar
[260]
S. Knoop, F. Ferlaino, M. Berninger, M. Mark, H. C. Nägerl, R. Grimm, J. D’incao, and B. Esry, Magnetically controlled exchange process in an ultracold atom–dimer mixture, Phys. Rev. Lett. 104(5), 053201 (2010)
CrossRef ADS Google scholar
[261]
A. Zenesini, B. Huang, M. Berninger, H. C. Nägerl, F. Ferlaino, and R. Grimm, Resonant atom–dimer collisions in cesium: Testing universality at positive scattering lengths, Phys. Rev. A 90(2), 022704 (2014)
CrossRef ADS Google scholar
[262]
E. R. Hudson, N. B. Gilfoy, S. Kotochigova, J. M. Sage, and D. DeMille, Inelastic collisions of ultracold heteronuclear molecules in an optical trap, Phys. Rev. Lett. 100(20), 203201 (2008)
CrossRef ADS Google scholar
[263]
J. Zirbel, K. K. Ni, S. Ospelkaus, J. D’Incao, C. Wieman, J. Ye, and D. Jin, Collisional stability of fermionic Feshbach molecules, Phys. Rev. Lett. 100(14), 143201 (2008)
CrossRef ADS Google scholar
[264]
J. Deiglmayr, M. Repp, R. Wester, O. Dulieu, and M. Weidemüller, Inelastic collisions of ultracold polar LiCs molecules with caesium atoms in an optical dipole trap, Phys. Chem. Chem. Phys. 13(42), 19101 (2011)
CrossRef ADS Google scholar
[265]
J. Rui, H. Yang, L. Liu, D. C. Zhang, Y. X. Liu, J. Nan, Y. A. Chen, B. Zhao, and J. W. Pan, Controlled state-tostate atom-exchange reaction in an ultracold atom–dimer mixture, Nat. Phys. 13(7), 699 (2017)
CrossRef ADS Google scholar
[266]
C. Chin, T. Kraemer, M. Mark, J. Herbig, P. Waldburger, H. C. Nägerl, and R. Grimm, Observation of Feshbachlike resonances in collisions between ultracold molecules, Phys. Rev. Lett. 94(12), 123201 (2005)
CrossRef ADS Google scholar
[267]
F. Ferlaino, S. Knoop, M. Mark, M. Berninger, H. Schöbel, H. C. Nägerl, and R. Grimm, Collisions between tunable halo dimers: Exploring an elementary four-body process with identical bosons, Phys. Rev. Lett. 101(2), 023201 (2008)
CrossRef ADS Google scholar
[268]
F. Wang, X. Ye, M. Guo, D. Blume, and D. Wang, Observation of resonant scattering between ultracold heteronuclear Feshbach molecules, Phys. Rev. A 100(4), 042706 (2019)
CrossRef ADS Google scholar
[269]
D. K. Hoffmann, T. Paintner, W. Limmer, D. S. Petrov, and J. H. Denschlag, Reaction kinetics of ultracold molecule-molecule collisions, Nat. Commun. 9(1), 5244 (2018)
CrossRef ADS Google scholar
[270]
T. Takekoshi, L. Reichsöllner, A. Schindewolf, J. M. Hutson, C. R. Le Sueur, O. Dulieu, F. Ferlaino, R. Grimm, and H. C. Nägerl, Ultracold dense samples of dipolar RbCs molecules in the rovibrational and hyperfine ground state, Phys. Rev. Lett. 113(20), 205301 (2014)
CrossRef ADS Google scholar
[271]
M. Guo, X. Ye, J. He, M. L. González-Martínez, R. Vexiau, G. Quéméner, and D. Wang, Dipolar collisions of ultracold ground-state bosonic molecules, Phys. Rev. X 8(4), 041044 (2018)
CrossRef ADS Google scholar
[272]
H. Yang, D. C. Zhang, L. Liu, Y. X. Liu, J. Nan, B. Zhao, and J. W. Pan, Observation of magnetically tunable Feshbach resonances in ultracold 23Na40K+ 40K collisions, Science 363(6424), 261 (2019)
CrossRef ADS Google scholar
[273]
M. de Miranda, A. Chotia, B. Neyenhuis, D. Wang, G. Quéméner, S. Ospelkaus, J. Bohn, J. Ye, and D. Jin, Controlling the quantum stereodynamics of ultracold bimolecular reactions, Nat. Phys. 7(6), 502 (2011)
CrossRef ADS Google scholar
[274]
J. G. Danzl, M. J. Mark, E. Haller, M. Gustavsson, R. Hart, J. Aldegunde, J. M. Hutson, and H. C. Nägerl, An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice, Nat. Phys. 6(4), 265 (2010)
CrossRef ADS Google scholar
[275]
A. Chotia, B. Neyenhuis, S. A. Moses, B. Yan, J. P. Covey, M. Foss-Feig, A. M. Rey, D. S. Jin, and J. Ye, Long-lived dipolar molecules and feshbach molecules in a 3D optical lattice, Phys. Rev. Lett. 108(8), 080405 (2012)
CrossRef ADS Google scholar
[276]
B. Zhu, B. Gadway, M. Foss-Feig, J. Schachenmayer, M. Wall, K. R. Hazzard, B. Yan, S. A. Moses, J. P. Covey, D. S. Jin, J. Ye, M. Holland, and A. M. Rey, Suppressing the loss of ultracold molecules via the continuous quantum zeno effect, Phys. Rev. Lett. 112(7), 070404 (2014)
CrossRef ADS Google scholar
[277]
M. Deiß, B. Drews, J. H. Denschlag, N. Bouloufa-Maafa, R. Vexiau, and O. Dulieu, Polarizability of ultracold Rb2 molecules in the rovibrational ground state of a3Σ+u , New J. Phys. 17(6), 065019 (2015)
CrossRef ADS Google scholar
[278]
J. Barry, D. McCarron, E. Norrgard, M. Steinecker, and D. DeMille, Magneto–optical trapping of a diatomic molecule, Nature 512(7514), 286 (2014)
CrossRef ADS Google scholar
[279]
E. Norrgard, D. McCarron, M. Steinecker, M. Tarbutt, and D. DeMille, Submillikelvin dipolar molecules in a radio-frequency magneto–optical trap, Phys. Rev. Lett. 116(6), 063004 (2016)
CrossRef ADS Google scholar
[280]
D. McCarron, M. Steinecker, Y. Zhu, and D. DeMille, Magnetic trapping of an ultracold gas of polar molecules, Phys. Rev. Lett. 121(1), 013202 (2018)
CrossRef ADS Google scholar
[281]
M. T. Hummon, M. Yeo, B. K. Stuhl, A. L. Collopy, Y. Xia, and J. Ye, 2D magneto–optical trapping of diatomic molecules, Phys. Rev. Lett. 110(14), 143001 (2013)
[282]
M. Yeo, M. T. Hummon, A. L. Collopy, B. Yan, B. Hemmerling, E. Chae, J. M. Doyle, and J. Ye, Rotational state microwave mixing for laser cooling of complex diatomic molecules, Phys. Rev. Lett. 114(22), 223003 (2015)
CrossRef ADS Google scholar
[283]
A. L. Collopy, S. Ding, Y. Wu, I. A. Finneran, L. Anderegg, B. L. Augenbraun, J. M. Doyle, and J. Ye, 3D magneto–optical trap of yttrium monoxide, Phys. Rev. Lett. 121(21), 213201 (2018)
CrossRef ADS Google scholar
[284]
V. Zhelyazkova, A. Cournol, T. E. Wall, A. Matsushima, J. J. Hudson, E. Hinds, M. Tarbutt, and B. Sauer, Laser cooling and slowing of CaF molecules, Phys. Rev. A 89(5), 053416 (2014)
CrossRef ADS Google scholar
[285]
H. Williams, L. Caldwell, N. Fitch, S. Truppe, J. Rodewald, E. Hinds, B. Sauer, and M. Tarbutt, Magnetic trapping and coherent control of laser-cooled molecules, Phys. Rev. Lett. 120(16), 163201 (2018)
CrossRef ADS Google scholar
[286]
L. Anderegg, B. L. Augenbraun, Y. Bao, S. Burchesky, L. W. Cheuk, W. Ketterle, and J. M. Doyle, Laser cooling of optically trapped molecules, Nat. Phys. 14(9), 890 (2018)
CrossRef ADS Google scholar
[287]
L. Caldwell, J. Devlin, H. Williams, N. Fitch, E. Hinds, B. Sauer, and M. Tarbutt, Deep laser cooling and efficient magnetic compression of molecules, Phys. Rev. Lett. 123(3), 033202 (2019)
CrossRef ADS Google scholar
[288]
J. Lim, J. Almond, M. Trigatzis, J. Devlin, N. Fitch, B. Sauer, M. Tarbutt, and E. Hinds, Laser cooled YbF molecules for measuring the electron’s electric dipole moment, Phys. Rev. Lett. 120(12), 123201 (2018)
CrossRef ADS Google scholar
[289]
T. Chen, W. Bu, and B. Yan, Radiative deflection of a BaF molecular beam via optical cycling, Phys. Rev. A 96(5), 053401 (2017)
CrossRef ADS Google scholar
[290]
S. Xu, M. Xia, Y. Yin, R. Gu, Y. Xia, and J. Yin, Determination of the normal A 2Π state in MgF with application to direct laser cooling of molecules, J. Chem. Phys. 150(8), 084302 (2019)
CrossRef ADS Google scholar
[291]
W. Ketterle and N. Van Druten, in: Advances in Atomic, Molecular, and Optical Physics, Vol. 37, Elsevier, 1996, pp 181–236
CrossRef ADS Google scholar
[292]
L. M. Janssen, P. S. Żuchowski, A. van der Avoird, J. M. Hutson, and G. C. Groenenboom, Cold and ultracold NH–NH collisions: The field-free case, J. Chem. Phys. 134(12), 124309 (2011)
CrossRef ADS Google scholar
[293]
Y. V. Suleimanov, T. Tscherbul, and R. Krems, Efficient method for quantum calculations of molecule–molecule scattering properties in a magnetic field, J. Chem. Phys. 137(2), 024103 (2012)
CrossRef ADS Google scholar
[294]
L. M. Janssen, A. van der Avoird, and G. C. Groenenboom, Quantum reactive scattering of ultracold NH(X3Σ) radicals in a magnetic trap, Phys. Rev. Lett. 110(6), 063201 (2013)
CrossRef ADS Google scholar
[295]
L. P. Parazzoli, N. J. Fitch, P. S. Żuchowski, J. M. Hutson, and H. J. Lewandowski, Large effects of electric fields on atom–molecule collisions at millikelvin temperatures, Phys. Rev. Lett. 106(19), 193201 (2011)
CrossRef ADS Google scholar
[296]
B. K. Stuhl, M. T. Hummon, M. Yeo, G. Quéméner, J. L. Bohn, and J. Ye, Evaporative cooling of the dipolar hydroxyl radical, Nature 492(7429), 396 (2012)
CrossRef ADS Google scholar
[297]
D. J. Larson, J. C. Bergquist, J. J. Bollinger, W. M. Itano, and D. J. Wineland, Sympathetic cooling of trapped ions: A laser-cooled two-species nonneutral ion plasma, Phys. Rev. Lett. 57(1), 70 (1986)
CrossRef ADS Google scholar
[298]
C. Myatt, E. Burt, R. Ghrist, E. A. Cornell, and C. Wieman, Production of two overlapping Bose–Einstein condensates by sympathetic cooling, Phys. Rev. Lett. 78(4), 586 (1997)
CrossRef ADS Google scholar
[299]
F. Schreck, G. Ferrari, K. Corwin, J. Cubizolles, L. Khaykovich, M. O. Mewes, and C. Salomon, Sympathetic cooling of bosonic and fermionic lithium gases towards quantum degeneracy, Phys. Rev. A 64(1), 011402 (2001)
CrossRef ADS Google scholar
[300]
P. S. Żuchowski and J. M. Hutson, Prospects for producing ultracold NH3 molecules by sympathetic cooling: A survey of interaction potentials,Phys. Rev. A 78(2), 022701 (2008)
CrossRef ADS Google scholar
[301]
P. S. Żuchowski and J. M. Hutson, Low-energy collisions of NH3 and ND3 with ultracold Rb atoms, Phys. Rev. A 79(6), 062708 (2009)
CrossRef ADS Google scholar
[302]
P. Barletta, J. Tennyson, and P. Barker, Creating ultracold molecules by collisions with ultracold rare-gas atoms in an optical trap, Phys. Rev. A 78(5), 052707 (2008)
CrossRef ADS Google scholar
[303]
P. Barker, S. Purcell, P. Douglas, P. Barletta, N. Coppendale, C. Maher-McWilliams, and J. Tennyson, Sympathetic cooling by collisions with ultracold rare gas atoms, and recent progress in optical Stark deceleration, Faraday Discuss. 142, 175 (2009)
CrossRef ADS Google scholar
[304]
P. Barletta, J. Tennyson, and P. Barker, Direct Monte Carlo simulation of the sympathetic cooling of trapped molecules by ultracold argon atoms, New J. Phys. 12(11), 113002 (2010)
CrossRef ADS Google scholar
[305]
M. Lara, J. L. Bohn, D. Potter, P. Soldán, and J. M. Hutson, Ultracold Rb–OH collisions and prospects for sympathetic cooling, Phys. Rev. Lett. 97(18), 183201 (2006)
CrossRef ADS Google scholar
[306]
M. Lara, J. L. Bohn, D. E. Potter, P. Soldán, and J. M. Hutson, Cold collisions between OH and Rb: The fieldfree case, Phys. Rev. A 75(1), 012704 (2007)
CrossRef ADS Google scholar
[307]
M. Tacconi, L. Gonzalez-Sanchez, E. Bodo, and F. Gianturco, Collisions of NH(3Σ ) with Rb and Cs at ultralow energies: A quantum study of rotational cooling efficiency, Phys. Rev. A 76(3), 032702 (2007)
CrossRef ADS Google scholar
[308]
P. Soldán, P. S. Żuchowski, and J. M. Hutson, Prospects for sympathetic cooling of polar molecules: NH with alkali-metal and alkaline-earth atoms — a new hope, Faraday Discuss. 142, 191 (2009)
CrossRef ADS Google scholar
[309]
A. O. Wallis and J. M. Hutson, Production of ultracold NH molecules by sympathetic cooling with Mg, Phys. Rev. Lett. 103(18), 183201 (2009)
CrossRef ADS Google scholar
[310]
M. L. González-Martínez, and J. M. Hutson, Effect of hyperfine interactions on ultracold molecular collisions: NH(3Σ) with Mg(1S) in magnetic fields, Phys. Rev. A 84(5), 052706 (2011)
CrossRef ADS Google scholar
[311]
A. O. Wallis, E. J. Longdon, P. S. Żuchowski, and J. M. Hutson, The prospects of sympathetic cooling of NH molecules with Li atoms, Eur. Phys. J. D 65(1–2), 151 (2011)
CrossRef ADS Google scholar
[312]
P. S. Żuchowski and J. M. Hutson, Cold collisions of N(4S) atoms and NH(3Σ) molecules in magnetic fields, Phys. Chem. Chem. Phys. 13(9), 3669 (2011)
CrossRef ADS Google scholar
[313]
M. L. González-Martínez and J. M. Hutson, Ultracold hydrogen atoms: A versatile coolant to produce ultracold molecules, Phys. Rev. Lett. 111(20), 203004 (2013)
CrossRef ADS Google scholar
[314]
S. K. Tokunaga, W. Skomorowski, P. S. Żuchowski, R. Moszynski, J. M. Hutson, E. Hinds, and M. Tarbutt, Prospects for sympathetic cooling of molecules in electrostatic, ac and microwave traps, Eur. Phys. J. D 65(1–2), 141 (2011)
CrossRef ADS Google scholar
[315]
T. Tscherbul, J. Kłos, and A. Buchachenko, Ultracold spin-polarized mixtures of 2Σ molecules with S-state atoms: Collisional stability and implications for sympathetic cooling, Phys. Rev. A 84(4), 040701 (2011)
CrossRef ADS Google scholar
[316]
T. Tscherbul, J. Kłos, L. Rajchel, and R. Krems, Fine and hyperfine interactions in cold YbF–He collisions in electromagnetic fields, Phys. Rev. A 75(3), 033416 (2007)
CrossRef ADS Google scholar
[317]
J. Lim, M. D. Frye, J. M. Hutson, and M. Tarbutt, Modeling sympathetic cooling of molecules by ultracold atoms, Phys. Rev. A 92(5), 053419 (2015)
CrossRef ADS Google scholar
[318]
M. Morita, M. B. Kosicki, P. S. Żuchowski, and T. V. Tscherbul, Atom–molecule collisions, spin relaxation, and sympathetic cooling in an ultracold spin-polarized Rb(2S)–SrF(2Σ+) mixture, Phys. Rev. A 98(4), 042702 (2018)
CrossRef ADS Google scholar
[319]
M. Morita, R. V. Krems, and T. V. Tscherbul, Universal probability distributions of scattering observables in ultracold molecular collisions, Phys. Rev. Lett. 123(1), 013401 (2019)
CrossRef ADS Google scholar
[320]
M. Morita, J. Kłos, A. A. Buchachenko, and T. V. Tscherbul, Cold collisions of heavy 2Σ molecules with alkali-metal atoms in a magnetic field: Ab initioanalysis and prospects for sympathetic cooling of SrOH(2Σ+) by Li(2S), Phys. Rev. A 95(6), 063421 (2017)
CrossRef ADS Google scholar
[321]
E. Lavert-Ofir, S. Gersten, A. B. Henson, I. Shani, L. David, J. Narevicius, and E. Narevicius, A moving magnetic trap decelerator: A new source of cold atoms and molecules, New J. Phys. 13(10), 103030 (2011)
CrossRef ADS Google scholar
[322]
E. Lavert-Ofir, L. David, A. B. Henson, S. Gersten, J. Narevicius, and E. Narevicius, Stopping paramagnetic supersonic beams: The advantage of a co-moving magnetic trap decelerator, Phys. Chem. Chem. Phys. 13(42), 18948 (2011)
CrossRef ADS Google scholar
[323]
A. Trimeche, M. N. Bera, J. P. Cromières, J. Robert, and N. Vanhaecke, Trapping of a supersonic beam in a traveling magnetic wave, Eur. Phys. J. D 65(1–2), 263 (2011)
CrossRef ADS Google scholar
[324]
S. A. Meek, H. L. Bethlem, H. Conrad, and G. Meijer, Trapping molecules on a chip in traveling potential wells, Phys. Rev. Lett. 100(15), 153003 (2008)
CrossRef ADS Google scholar
[325]
S. A. Meek, H. Conrad, and G. Meijer, Trapping molecules on a chip, Science 324(5935), 1699 (2009)
CrossRef ADS Google scholar
[326]
S. A Meek, H. Conrad, and G. Meijer, A Stark decelerator on a chip, New J. Phys. 11(5), 055024 (2009)
CrossRef ADS Google scholar
[327]
A. Osterwalder, S. A. Meek, G. Hammer, H. Haak, and G. Meijer, Deceleration of neutral molecules in macroscopic traveling traps, Phys. Rev. A 81(5), 051401 (2010)
CrossRef ADS Google scholar
[328]
S. A. Meek, M. F. Parsons, G. Heyne, V. Platschkowski, H. Haak, G. Meijer, and A. Osterwalder, A traveling wave decelerator for neutral polar molecules, Rev. Sci. Instrum. 82(9), 093108 (2011)
CrossRef ADS Google scholar
[329]
N. Akerman, M. Karpov, Y. Segev, N. Bibelnik, J. Narevicius, and E. Narevicius, Trapping of molecular oxygen together with lithium atoms, Phys. Rev. Lett. 119(7), 073204 (2017)
CrossRef ADS Google scholar
[330]
Y. Segev, M. Pitzer, M. Karpov, N. Akerman, J. Narevicius, and E. Narevicius, Collisions between cold molecules in a superconducting magnetic trap, Nature 572(7768), 189 (2019)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(3413 KB)

Accesses

Citations

Detail

Sections
Recommended

/