Tuning the magnetic and electronic properties of strontium titanate by carbon doping

Hui Zeng, Meng Wu, Hui-Qiong Wang, Jin-Cheng Zheng, Junyong Kang

PDF(5776 KB)
PDF(5776 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (4) : 43501. DOI: 10.1007/s11467-020-1034-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Tuning the magnetic and electronic properties of strontium titanate by carbon doping

Author information +
History +

Abstract

The magnetic and electronic properties of strontium titanate with different carbon dopant configurations are explored using first-principles calculations with a generalized gradient approximation (GGA) and the GGA+U approach. Our results show that the structural stability, electronic properties and magnetic properties of C-doped SrTiO3 strongly depend on the distance between carbon dopants. In both GGA and GGA+U calculations, the doping structure is mostly stable with a nonmagnetic feature when the carbon dopants are nearest neighbors, which can be ascribed to the formation of a C–C dimer pair accompanied by stronger C–C and weaker C–Ti hybridizations as the C–C distance becomes smaller. As the C–C distance increases, C-doped SrTiO3 changes from an n-type nonmagnetic metal to ferromagnetic/antiferromagnetic half-metal and to an antiferromagnetic/ferromagnetic semiconductor in GGA calculations, while it changes from a nonmagnetic semiconductor to ferromagnetic half-metal and to an antiferromagnetic semiconductor using the GGA+U method. Our work demonstrates the possibility of tailoring the magnetic and electronic properties of C-doped SrTiO3, which might provide some guidance to extend the applications of strontium titanate as a magnetic or optoelectronic material.

Keywords

strontium titanate / carbon doping / magnetic and electronic states / carbon coupling / C–C dimer pair / GGA+U

Cite this article

Download citation ▾
Hui Zeng, Meng Wu, Hui-Qiong Wang, Jin-Cheng Zheng, Junyong Kang. Tuning the magnetic and electronic properties of strontium titanate by carbon doping. Front. Phys., 2021, 16(4): 43501 https://doi.org/10.1007/s11467-020-1034-9

References

[1]
E. Breckenfeld, R. Wilson, J. Karthik, A. R. Damodaran, D. G. Cahill, and L. W. Martin, Effect of growth induced (non)stoichiometry on the structure, dielectric response, and thermal conductivity of SrTiO3 thin films, Chem. Mater. 24(2), 331 (2012)
CrossRef ADS Google scholar
[2]
B. Luo, X. Wang, E. Tian, G. Li, and L. Li, Electronic structure, optical and dielectric proper-ties of BaTiO3/SrTiO3/CaTiO3 ferroelectric superlattices from first-principles calculations, J. Mater. Chem. C 3(33), 8625 (2015)
CrossRef ADS Google scholar
[3]
S. Ohta, T. Nomura, H. Ohta, and K. Koumoto, Hightemperature carrier transport and thermoelectric properties of heavily La- or Nb-doped SrTiO3 single crystals, J. Appl. Phys. 97(3), 034106 (2005)
CrossRef ADS Google scholar
[4]
K. L. Zhao, D. Chen, and D. X. Li, Effects of N adsorption on the structural and electronic properties of SrTiO3(001) surface, Appl. Surf. Sci. 256(21), 6262 (2010)
CrossRef ADS Google scholar
[5]
B. Modak and S. K. Ghosh, Enhancement of visible light photocatalytic activity of SrTiO3: A hybrid density functional study, J. Phys. Chem. C 119(41), 23503 (2015)
CrossRef ADS Google scholar
[6]
F. Yang, Y. Liang, L. X. Liu, Q. Zhu, W. H. Wang, X. T. Zhu, and J. D. Guo, Controlled growth of complex polar oxide films with atomically precise molecular beam epitaxy, Front. Phys. 13(5), 136802 (2018)
CrossRef ADS Google scholar
[7]
E. Guo, H. Lü, K. Jin, and G. Yang, Ultrafast photoelectric effects and high-sensitive photo-voltages in perovskite oxides and heterojunctions, Front. Phys. China 5(2), 176 (2010)
CrossRef ADS Google scholar
[8]
B. Modak, and S. K. Ghosh, Exploring the role of La codoping beyond charge compensation for enhanced hydrogen evolution by Rh-SrTiO3, J. Phys. Chem. B 119(34), 11089 (2015)
CrossRef ADS Google scholar
[9]
B. Modak, K. Srinivasu, and S. K. Ghosh, A hybrid DFT based investigation of the photocat-alytic activity of cation-anion codoped SrTiO3 for water splitting under visible light, Phys. Chem. Chem. Phys. 16(44), 24527 (2014)
CrossRef ADS Google scholar
[10]
W. Wei, Y. Dai, M. Guo, L. Yu, H. Jin, S. Han, and B. Huang, Codoping synergistic effects in N-doped SrTiO3 for higher energy conversion efficiency, Phys. Chem. Chem. Phys. 12(27), 7612 (2010)
CrossRef ADS Google scholar
[11]
T. Takata, J. Jiang, Y. Sakata, M. Nakabayashi, N. Shibata, V. Nandal, K. Seki, T. Hisatomi, and K. Domen, Photocatalytic water splitting with a quantum efficiency of almost unity, Nature 581(7809), 411 (2020)
CrossRef ADS Google scholar
[12]
W. Zhang, A. R. Mohamed, and W. J. Ong, Z-scheme photocatalytic systems for carbon dioxide reduction: Where are we now? Angew. Chem. Int. Ed. 10, 1002 (2020)
CrossRef ADS Google scholar
[13]
M. Humayun, L. Xu, L. Zhou, Z. Zheng, Q. Fu, and W. Luo, Exceptional co-catalyst free ph-otocatalytic activities of B and Fe co-doped SrTiO3 for CO2 conversion and H2 evolution, Nano Res. 11(12), 6391 (2018)
CrossRef ADS Google scholar
[14]
W. Luo, W. Duan, S. G. Louie, and M. L. Cohen, Structural and electronic properties of n-doped and p-doped Sr- TiO3, Phys. Rev. B 70(21), 214109 (2004)
CrossRef ADS Google scholar
[15]
J. Carrasco, F. Illas, N. Lopez, E. A. Kotomin, Y. F. Zhukovskii, R. A. Evarestov, Y. A. Mastrikov, S. Piskunov, and J. Maier, First-principles calculations of the atomic and electronic structure of F centers in the bulk and on the (001) surface of SrTiO3, Phys. Rev. B 73(6), 064106 (2006)
CrossRef ADS Google scholar
[16]
M. Rizwan, A. Ali, Z. Usman, N. R. Khalid, H. B. Jin, and C. B. Cao, Structural, electronic and optical properties of copper-doped SrTiO3 perovskite: A DFT study, Physica B 552, 52 (2019)
CrossRef ADS Google scholar
[17]
K. Yang, Y. Dai, and B. Huang, First-principles characterization of ferromagnetism in N-doped SrTiO3 and BaTiO3, Appl. Phys. Lett. 100(6), 062409 (2012)
CrossRef ADS Google scholar
[18]
X. L. Dong, K. H. Zhang, and M. X. Xue, First-principles study of electronic structure and magnetic properties of SrTi1−xMxO3 (M= Cr, Mn, Fe, Co, or Ni), Front. Phys. 13(5), 137106 (2018)
CrossRef ADS Google scholar
[19]
H. F. Liu, Effect of nitrogen and carbon doping on electronic properties of SrTiO3, Solid State Commun. 152(22), 2063 (2012)
CrossRef ADS Google scholar
[20]
C. Zhang, Y. Jia, Y. Jing, Y. Yao, J. Ma, and J. Sun, Effect of non-metal elements (B,C,N,F,P,S) mono-doping as anions on electronic structure of SrTiO3, Comput. Mater. Sci. 79, 69 (2013)
CrossRef ADS Google scholar
[21]
A. Shkabko, M. H. Aguirre, A. Kumar, Y. Kim, S. Jesse, R. Waser, S. V. Kalinin, and A. Weidenkaff, Surface deformations as a necessary requirement for resistance switching at the surface of SrTiO3:N, Nanotechnology 24(47), 475701 (2013)
CrossRef ADS Google scholar
[22]
W. Akbar, T. Liaqat, I. Elahi, M. Zulfiqar, and S. Nazir, Modulated electronic and magnetic properties of 3d TMdoped SrTiO3: DFT+Ustudy, J. Magn. Magn. Mater. 500, 166325 (2020)
CrossRef ADS Google scholar
[23]
C. Adessi, S. Thébaud, R. Bouzerar, and G. Bouzerar, Ab initio investigation of the role of vanadium impurity states in SrTiO3 for thermoelectricity, J. Phys. Chem. Solids 138, 138 (2020)
CrossRef ADS Google scholar
[24]
W. J. Yin, H. Tang, S. H. Wei, M. M. Al-Jassim, J. Turner, and Y. Yan, Band structure engineering of semiconductors for enhanced photoelectrochemical water splitting: The case of TiO2, Phys. Rev. B 82(4), 045106 (2010)
CrossRef ADS Google scholar
[25]
Y. Gai, J. Li, S. S. Li, J. B. Xia, and S. H. Wei, Design of narrow-gap TiO2: A passivated codoping approachfor enhanced photoelectrochemical activity, Phys. Rev. Lett. 102(3), 036402 (2009)
CrossRef ADS Google scholar
[26]
W. Zhu, X. Qiu, V. Iancu, X. Q. Chen, H. Pan, W. Wang, N. M. Dimitrijevic, T. Rajh, M. P. Meyer, G. M. Paranthaman, H. H. Stocks, B. Weitering, G. Gu, Eres, and Z. Zhang, Band gap narrowing of titanium oxide semiconductors by noncompensated anion-cation codoping for enhanced visible-light photoactivity, Phys. Rev. Lett. 103(22), 226401 (2009)
CrossRef ADS Google scholar
[27]
J. Liu, L. Wang, J. Liu, T. Wang, W. Qu, and Z. Li, DFT study on electronic structures and optical absorption properties of C, S cation-doped SrTiO3, Cent. Eur. J. Phys. 7(4), 762 (2009)
CrossRef ADS Google scholar
[28]
T. Shen, C. Hu, H. L. Dai, W. L. Yang, H. C. Liu, C. L. Tan, and X. L. Wei, First principles calculations of magnetic, electronic and optical properties of (Mn–Fe) codoped SrTiO3, Optik (Stuttg.) 127(5), 3055 (2015)
CrossRef ADS Google scholar
[29]
C. W. Chang and C. Hu, Graphene oxide-derived carbondoped SrTiO3 for highly efficient photocatalytic degradation of organic pollutants under visible light irradiation, Chem. Eng. J. 383, 123116 (2020)
CrossRef ADS Google scholar
[30]
V. V. Bannikov, I. R. Shein, V. L. Kozhevnikov, and A. L. Ivanovskii, Magnetism without magnetic ions in non-magnetic perovskites SrTiO3, SrZrO3 and SrSnO3, J. Magn. Magn. Mater. 320(6), 936 (2008)
CrossRef ADS Google scholar
[31]
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 169 (1996)
CrossRef ADS Google scholar
[32]
G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
CrossRef ADS Google scholar
[33]
W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140(4A), A1133 (1965)
CrossRef ADS Google scholar
[34]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef ADS Google scholar
[35]
K. Yang, Y. Dai, B. Huang, and Y. P. Feng, Firstprinciples GGA+U study of the different conducting properties in pentavalent-ion-doped anatase and rutile TiO2, J. Phys. D Appl. Phys. 47(27), 275101 (2014)
CrossRef ADS Google scholar
[36]
S. Nazir, M. Behtash, and K. Yang, Enhancing interfacial conductivity and spatial charge confinement of LaAlO3/SrTiO3 heterostructures via strain engineering, Appl. Phys. Lett. 105(14), 141602 (2014)
CrossRef ADS Google scholar
[37]
S. Nazir, M. Behtash, and K. Yang, The role of uniaxial strain in tailoring the interfacial pro-perties of LaAlO3/SrTiO3 heterostructure, RSC Advances 5(20), 15682 (2015)
CrossRef ADS Google scholar
[38]
H. Guo, Y. Zhao, N. Lu, E. Kan, X. C. Zeng, X. Wu, and J. Yang, Tunable magnetism in a nonmetal-substituted ZnO monolayer: A first-principles study, J. Phys. Chem. C 116(20), 11336 (2012)
CrossRef ADS Google scholar
[39]
D. D. Cuong, B. Lee, K. M. Choi, H. S. Ahn, S. Han, and J. Lee, Oxygen vacancy clustering and electron localization in oxygen-deficient SrTiO3: LDA+U study, Phys. Rev. Lett. 98(11), 115503 (2007)
CrossRef ADS Google scholar
[40]
P. Sikam, P. Moontragoon, C. Sararat, A. Karaphun, E. Swatsitang, S. Pinitsoontorn, and P. Thongbai, DFT calculation and experimental study on structural, optical and magnetic properties of Co-doped SrTiO3, Appl. Surf. Sci. 446, 92 (2018)
CrossRef ADS Google scholar
[41]
X. X. Liao, H. Q. Wang, and J. C. Zheng, Tuning the structural, electronic, and magnetic properties of strontium titanate through atomic design: A comparison between oxygen vacancies and nitrogen doping, J. Am. Ceram. Soc. 96(2), 538 (2013)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(5776 KB)

Accesses

Citations

Detail

Sections
Recommended

/