Tensile properties of structural I clathrate hydrates: Role of guest–host hydrogen bonding ability
Yue Xin, Qiao Shi, Ke Xu, Zhi-Sen Zhang, Jian-Yang Wu
Tensile properties of structural I clathrate hydrates: Role of guest–host hydrogen bonding ability
Clathrate hydrates (CHs) are one of the most promising molecular structures in applications of gas capture and storage, and gas separations. Fundamental knowledge of mechanical characteristics of CHs is of crucial importance for assessing gas storage and separations at cold conditions, as well as understanding their stability and formation mechanisms. Here, the tensile mechanical properties of structural I CHs encapsulating a variety of guest species (CH4, NH3, H2S, CH2O, CH3OH, and CH3SH) that have different abilities to form hydrogen (H-) bonds with water molecule are explored by classical molecular dynamics (MD) simulations. All investigated CHs are structurally stable clathrate structures. Basic mechanical properties of CHs including tensile limit and Young’s modulus are dominated by the H-bonding ability of host–guest molecules and the guest molecular polarity. CHs containing small CH4, CH2O and H2S guest molecules that possess weak H-bonding ability are mechanically robust clathrate structures and mechanically destabilized via brittle failure on the (1 0 1) plane. However, those entrapping CH3SH, CH3OH, and NH3 that have strong H-bonding ability are mechanically weak molecular structures and mechanically destabilized through ductile failure as a result of gradual global dissociation of clathrate cages.
mechanical properties / clathrate hydrates / hydrogen bonding
[1] |
T. S. Collett, Energy resource potential of natural gas hydrates, AAPG Bull. 86(11), 1971 (2002)
CrossRef
ADS
Google scholar
|
[2] |
E. D. Jr Sloan, Fundamental principles and applications of natural gas hydrates, Nature 426(6964), 353 (2003)
CrossRef
ADS
Google scholar
|
[3] |
K. A. Kvenvolden, Gas hydrates-geological perspective and global change, Rev. Geophys. 31(2), 173 (1993)
CrossRef
ADS
Google scholar
|
[4] |
G. R. Dickens, C. K. Paull, and P. Wallace, Direct mea surement of in situ methane quantities in a large gashydrate reservoir, Nature 385(6615), 426 (1997)
CrossRef
ADS
Google scholar
|
[5] |
W. Y. Xu, R. P. Lowell, and E. T. Peltzer, Effect of seafloor temperature and pressure variations on methane flux from a gas hydrate layer: Comparison between current and late Paleocene climate conditions, J. Geophys. Res. Solid Earth 106(B11), 26413 (2001)
CrossRef
ADS
Google scholar
|
[6] |
K. A. Kvenvolden, Natural gas hydrate occurrence and issues, Ann. N.Y. Acad. Sci. 715(1), 232 (1994)
CrossRef
ADS
Google scholar
|
[7] |
L. E. Zerpa, J. L. Salager, C. A. Koh, E. D. Sloan, and A. K. Sum, Surface chemistry and gas hydrates in flow assurance, Ind. Eng. Chem. Res. 50(1), 188 (2011)
CrossRef
ADS
Google scholar
|
[8] |
A. Kumar, O. S. Kushwaha, P. Rangsunvigit, P. Linga, and R. Kumar, Effect of additives on formation and decomposition kinetics of methane clathrate hydrates: Application in energy storage and transportation, Can. J. Chem. Eng. 94(11), 2160 (2016)
CrossRef
ADS
Google scholar
|
[9] |
H. Mimachi, S. Takeya, A. Yoneyama, K. Hyodo, T. Takeda, Y. Gotoh, and T. Murayama, Natural gas storage and transportation within gas hydrate of smaller particle: Size dependence of self-preservation phenomenon of natural gas hydrate, Chem. Eng. Sci. 118, 208 (2014)
CrossRef
ADS
Google scholar
|
[10] |
A. Kumar, H. P. Veluswamy, R. Kumar, and P. Linga, Direct use of seawater for rapid methane storage via clathrate (sII) hydrates, Appl. Energy 235, 21 (2019)
CrossRef
ADS
Google scholar
|
[11] |
H. Komatsu, K. Maruyama, K. Yamagiwa, and H. Tajima, Separation processes for carbon dioxide capture with semiclathrate hydrate slurry based on phase equilibria of CO2++ N2+ tetra-n-butylammonium bromide+ water systems, Chem. Eng. Res. Des. 150, 289 (2019)
CrossRef
ADS
Google scholar
|
[12] |
D. W. Davidson, Y. P. Handa, C. I. Ratcliffe, J. S. Tse, and B. M. Powell, The ability of small molecules to form clathrate hydrates of structure II, Nature 311(5982), 142 (1984)
CrossRef
ADS
Google scholar
|
[13] |
R. L. Christiansen and E. D. Sloan, Mechanisms and kinetics of hydrate formation, Ann. N.Y. Acad. Sci. 715(1), 283 (1994)
CrossRef
ADS
Google scholar
|
[14] |
M. Arjmandi, A. Chapoy, and B. Tohidi, Equilibrium data of hydrogen, methane, nitrogen, carbon dioxide, and natural gas in semi-clathrate hydrates of tetrabutyl ammonium bromide, J. Chem. Eng. Data 52(6), 2153 (2007)
CrossRef
ADS
Google scholar
|
[15] |
B. Kvamme and O. K. Forrisdahl, Polar guest-molecules in natural gas hydrates. Effects of polarity and guest-guestinteractions on the Langmuir-constants, Fluid Phase Equilib. 83, 427 (1993)
CrossRef
ADS
Google scholar
|
[16] |
B. Kvamme, A. Lund, and T. Hertzberg, The influence of gas–gas interactions on the Langmuir constants for some natural gas hydrates, Fluid Phase Equilib. 90(1), 15 (1993)
CrossRef
ADS
Google scholar
|
[17] |
D. W. Davidson, Y. P. Handa, C. I. Ratcliffe, J. A. Ripmeester, J. S. Tse, J. R. Dahn, F. Lee, and L. D. Calvert, Crystallographic studies of clathrate hydrates (Part I), Mol. Cryst. Liq. Cryst. 141(1–2), 141 (1986)
CrossRef
ADS
Google scholar
|
[18] |
H. Tanaka, Y. Tamai, and K. Koga, Large Thermal Expansivity of Clathrate Hydrates, J. Phys. Chem. B 101(33), 6560 (1997)
CrossRef
ADS
Google scholar
|
[19] |
J. A. Ripmeester and C. I. Ratcliffe, Xenon-129 NMR studies of clathrate hydrates: New guests for structure II and structure H, J. Phys. Chem. 94(25), 8773 (1990)
CrossRef
ADS
Google scholar
|
[20] |
J. X. Liu, Y. J. Yan, J. F. Xu, S. J. Li, G. Chen, and J. Zhang, Replacement micro-mechanism of CH4 hydrate by N2/CO2 mixture revealed byab initio studies, Comput. Mater. Sci. 123, 106 (2016)
CrossRef
ADS
Google scholar
|
[21] |
R. Susilo, S. Alavi, I. L. Moudrakovski, P. Englezos, and J. A. Ripmeester, Guest–host hydrogen bonding in structure H clathrate hydrates, ChemPhysChem 10(5), 824 (2009)
CrossRef
ADS
Google scholar
|
[22] |
S. Alavi, K. Shin, and J. A. Ripmeester, Molecular dynamics simulations of hydrogen bonding in clathrate hydrates with ammonia and methanol guest molecules, J. Chem. Eng. Data 60(2), 389 (2015)
CrossRef
ADS
Google scholar
|
[23] |
L. A. Stern, S. H. Kirby, and W. B. Durham, Peculiarities of methane clathrate hydrate formation and solid-state deformation, including possible superheating of water ice, Science 273(5283), 1843 (1996)
CrossRef
ADS
Google scholar
|
[24] |
L. A. Stern, S. H. Kirby, and W. B. Durham, Polycrystalline methane hydrate: Synthesis from superheated ice, and low-temperature mechanical properties, Energy Fuels 12(2), 201 (1998)
CrossRef
ADS
Google scholar
|
[25] |
T. M. Vlasic, P. D. Servio, and A. D. Rey, Effect of guest size on the mechanical properties and molecular structure of gas hydrates from first-principles, Cryst. Growth Des. 17(12), 6407 (2017)
CrossRef
ADS
Google scholar
|
[26] |
J. H. Jia, Y. F. Liang, T. Tsuji, S. Murata, and T. Matsuoka, Elasticity and stability of clathrate hydrate: Role of guest molecule motions, Sci. Rep. 7(1), 1290 (2017)
CrossRef
ADS
Google scholar
|
[27] |
Q. Shi, P. Q. Cao, Z. D. Han, F. L. Ning, H. Gong, Y. Xin, Z. S. Zhang, and J. Y. Wu, Role of guest molecules in the mechanical properties of clathrate hydrates, Cryst. Growth Des. 18(11), 6729 (2018)
CrossRef
ADS
Google scholar
|
[28] |
R. K. McMullan and G. A. Jeffrey, Polyhedral clathrate hydrates (IX): Structure of ethylene oxide hydrate, J. Chem. Phys. 42(8), 2725 (1965)
CrossRef
ADS
Google scholar
|
[29] |
F. Takeuchi, M. Hiratsuka, R. Ohmura, S. Alavi, A. K. Sum, and K. Yasuoka, Water proton configurations in structures I, II, and H clathrate hydrate unit cells, J. Chem. Phys. 138(12), 124504 (2013)
CrossRef
ADS
Google scholar
|
[30] |
J. J. Shieh and T. S. Chung, Gas permeability, diffusivity, and solubility of poly(4-vinylpyridine) film, J. Polym. Sci. B 37(20), 2851 (1999)
CrossRef
ADS
Google scholar
|
[31] |
W. H. Lin and T. S. Chung, Gas permeability, diffusivity, solubility, and aging characteristics of 6FDA-durene polyimide membranes, J. Membr. Sci. 186(2), 183 (2001)
CrossRef
ADS
Google scholar
|
[32] |
T. Yoshioka, M. Kanezashi, and T. Tsuru, Micropore size estimation on gas separation membranes: A study in experimental and molecular dynamics, AIChE J. 59(6), 2179 (2013)
CrossRef
ADS
Google scholar
|
[33] |
T. Zhou, Y. Sang, X. Wang, C. Wu, D. Zeng, and C. Xie, Pore size dependent gas-sensing selectivity based on ZnO@ZIF nanorod arrays, Sens. Actuators B Chem. 258, 1099 (2018)
CrossRef
ADS
Google scholar
|
[34] |
J. R. Li, R. J. Kuppler, and H. C. Zhou, Selective gas adsorption and separation in metal–organic frameworks, Chem. Soc. Rev. 38(5), 1477 (2009)
CrossRef
ADS
Google scholar
|
[35] |
S. Goel, Z. Wu, S. I. Zones, and E. Iglesia, Synthesis and catalytic properties of metal clusters encapsulated within small-pore (SOD, GIS, ANA) zeolites, J. Am. Chem. Soc. 134(42), 17688 (2012)
CrossRef
ADS
Google scholar
|
[36] |
C. Sun, B. Wen, and B. Bai, Application of nanoporous graphene membranes in natural gas processing: Molecular simulations of CH4/C2, CH4/H2S and CH4/N2 separation, Chem. Eng. Sci. 138, 616 (2015)
|
[37] |
A. Koriakin, Y. H. Kim, and C. H. Lee, Adsorptive desulfurization of natural gas using lithium-modified mesoporous silica, Ind. Eng. Chem. Res. 51(44), 14489 (2012)
CrossRef
ADS
Google scholar
|
[38] |
P. Maksymovych, D. C. Sorescu, D. Dougherty, and J. T. Yates, Surface bonding and dynamical behavior of the CH3SH molecule on Au(111), J. Phys. Chem. B 109(47), 22463 (2005)
CrossRef
ADS
Google scholar
|
[39] |
A. T. Güntner, S. Abegg, K. Wegner, and S. E. Pratsinis, Zeolite membranes for highly selective formaldehyde sensors, Sens. Actuators B Chem. 257, 916 (2018)
CrossRef
ADS
Google scholar
|
[40] |
L. C. Jacobson and V. Molinero, A methane water model for coarse-grained simulations of solutions and clathrate hydrates, J. Phys. Chem. B 114(21), 7302 (2010)
CrossRef
ADS
Google scholar
|
[41] |
J. L. F. Abascal, E. Sanz, R. G. Fernández, and C. Vega, A potential model for the study of ices and amorphous water: TIP4P/Ice, J. Chem. Phys. 122(23), 234511 (2005)
CrossRef
ADS
Google scholar
|
[42] |
W. L. Jorgensen, D. S. Maxwell, and J. TiradoRives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids, J. Am. Chem. Soc. 118(45), 11225 (1996)
CrossRef
ADS
Google scholar
|
[43] |
B. FrantzDale, S. J. Plimpton and M. S. Shephard, Software components for parallel multiscale simulation: An example with lammps, Eng. Comput. 26(2), 205 (2010)
CrossRef
ADS
Google scholar
|
[44] |
N. J. English and J. M. D. MacElroy, Structural and dynamical properties of methane clathrate hydrates, J. Comput. Chem. 24(13), 1569 (2003)
CrossRef
ADS
Google scholar
|
[45] |
K. Shin, R. Kumar, K. A. Udachin, S. Alavi, and J. A. Ripmeester, Ammonia clathrate hydrates as new solid phases for Titan, Enceladus, and other planetary systems, Proc. Natl. Acad. Sci. USA 109(37), 14785 (2012)
CrossRef
ADS
Google scholar
|
[46] |
W. L. Mao, H. Mao, A. F. Goncharov, V. V. Struzhkin, Q. Guo, J. Hu, J. Shu, R. J. Hemley, M. Somayazulu, and Y. Zhao, Hydrogen clusters in clathrate hydrate, Science 297(5590), 2247 (2002)
CrossRef
ADS
Google scholar
|
[47] |
G. A. Jeffrey, Hydrogen-bonding in carbohydrates and hydrate inclusion compounds, Adv. Enzymol. Relat. Areas Mol. Biol. 65, 217 (1992)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |