Tensile properties of structural I clathrate hydrates: Role of guest–host hydrogen bonding ability

Yue Xin, Qiao Shi, Ke Xu, Zhi-Sen Zhang, Jian-Yang Wu

PDF(2816 KB)
PDF(2816 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (3) : 33504. DOI: 10.1007/s11467-020-1031-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Tensile properties of structural I clathrate hydrates: Role of guest–host hydrogen bonding ability

Author information +
History +

Abstract

Clathrate hydrates (CHs) are one of the most promising molecular structures in applications of gas capture and storage, and gas separations. Fundamental knowledge of mechanical characteristics of CHs is of crucial importance for assessing gas storage and separations at cold conditions, as well as understanding their stability and formation mechanisms. Here, the tensile mechanical properties of structural I CHs encapsulating a variety of guest species (CH4, NH3, H2S, CH2O, CH3OH, and CH3SH) that have different abilities to form hydrogen (H-) bonds with water molecule are explored by classical molecular dynamics (MD) simulations. All investigated CHs are structurally stable clathrate structures. Basic mechanical properties of CHs including tensile limit and Young’s modulus are dominated by the H-bonding ability of host–guest molecules and the guest molecular polarity. CHs containing small CH4, CH2O and H2S guest molecules that possess weak H-bonding ability are mechanically robust clathrate structures and mechanically destabilized via brittle failure on the (1 0 1) plane. However, those entrapping CH3SH, CH3OH, and NH3 that have strong H-bonding ability are mechanically weak molecular structures and mechanically destabilized through ductile failure as a result of gradual global dissociation of clathrate cages.

Keywords

mechanical properties / clathrate hydrates / hydrogen bonding

Cite this article

Download citation ▾
Yue Xin, Qiao Shi, Ke Xu, Zhi-Sen Zhang, Jian-Yang Wu. Tensile properties of structural I clathrate hydrates: Role of guest–host hydrogen bonding ability. Front. Phys., 2021, 16(3): 33504 https://doi.org/10.1007/s11467-020-1031-z

References

[1]
T. S. Collett, Energy resource potential of natural gas hydrates, AAPG Bull. 86(11), 1971 (2002)
CrossRef ADS Google scholar
[2]
E. D. Jr Sloan, Fundamental principles and applications of natural gas hydrates, Nature 426(6964), 353 (2003)
CrossRef ADS Google scholar
[3]
K. A. Kvenvolden, Gas hydrates-geological perspective and global change, Rev. Geophys. 31(2), 173 (1993)
CrossRef ADS Google scholar
[4]
G. R. Dickens, C. K. Paull, and P. Wallace, Direct mea surement of in situ methane quantities in a large gashydrate reservoir, Nature 385(6615), 426 (1997)
CrossRef ADS Google scholar
[5]
W. Y. Xu, R. P. Lowell, and E. T. Peltzer, Effect of seafloor temperature and pressure variations on methane flux from a gas hydrate layer: Comparison between current and late Paleocene climate conditions, J. Geophys. Res. Solid Earth 106(B11), 26413 (2001)
CrossRef ADS Google scholar
[6]
K. A. Kvenvolden, Natural gas hydrate occurrence and issues, Ann. N.Y. Acad. Sci. 715(1), 232 (1994)
CrossRef ADS Google scholar
[7]
L. E. Zerpa, J. L. Salager, C. A. Koh, E. D. Sloan, and A. K. Sum, Surface chemistry and gas hydrates in flow assurance, Ind. Eng. Chem. Res. 50(1), 188 (2011)
CrossRef ADS Google scholar
[8]
A. Kumar, O. S. Kushwaha, P. Rangsunvigit, P. Linga, and R. Kumar, Effect of additives on formation and decomposition kinetics of methane clathrate hydrates: Application in energy storage and transportation, Can. J. Chem. Eng. 94(11), 2160 (2016)
CrossRef ADS Google scholar
[9]
H. Mimachi, S. Takeya, A. Yoneyama, K. Hyodo, T. Takeda, Y. Gotoh, and T. Murayama, Natural gas storage and transportation within gas hydrate of smaller particle: Size dependence of self-preservation phenomenon of natural gas hydrate, Chem. Eng. Sci. 118, 208 (2014)
CrossRef ADS Google scholar
[10]
A. Kumar, H. P. Veluswamy, R. Kumar, and P. Linga, Direct use of seawater for rapid methane storage via clathrate (sII) hydrates, Appl. Energy 235, 21 (2019)
CrossRef ADS Google scholar
[11]
H. Komatsu, K. Maruyama, K. Yamagiwa, and H. Tajima, Separation processes for carbon dioxide capture with semiclathrate hydrate slurry based on phase equilibria of CO2++ N2+ tetra-n-butylammonium bromide+ water systems, Chem. Eng. Res. Des. 150, 289 (2019)
CrossRef ADS Google scholar
[12]
D. W. Davidson, Y. P. Handa, C. I. Ratcliffe, J. S. Tse, and B. M. Powell, The ability of small molecules to form clathrate hydrates of structure II, Nature 311(5982), 142 (1984)
CrossRef ADS Google scholar
[13]
R. L. Christiansen and E. D. Sloan, Mechanisms and kinetics of hydrate formation, Ann. N.Y. Acad. Sci. 715(1), 283 (1994)
CrossRef ADS Google scholar
[14]
M. Arjmandi, A. Chapoy, and B. Tohidi, Equilibrium data of hydrogen, methane, nitrogen, carbon dioxide, and natural gas in semi-clathrate hydrates of tetrabutyl ammonium bromide, J. Chem. Eng. Data 52(6), 2153 (2007)
CrossRef ADS Google scholar
[15]
B. Kvamme and O. K. Forrisdahl, Polar guest-molecules in natural gas hydrates. Effects of polarity and guest-guestinteractions on the Langmuir-constants, Fluid Phase Equilib. 83, 427 (1993)
CrossRef ADS Google scholar
[16]
B. Kvamme, A. Lund, and T. Hertzberg, The influence of gas–gas interactions on the Langmuir constants for some natural gas hydrates, Fluid Phase Equilib. 90(1), 15 (1993)
CrossRef ADS Google scholar
[17]
D. W. Davidson, Y. P. Handa, C. I. Ratcliffe, J. A. Ripmeester, J. S. Tse, J. R. Dahn, F. Lee, and L. D. Calvert, Crystallographic studies of clathrate hydrates (Part I), Mol. Cryst. Liq. Cryst. 141(1–2), 141 (1986)
CrossRef ADS Google scholar
[18]
H. Tanaka, Y. Tamai, and K. Koga, Large Thermal Expansivity of Clathrate Hydrates, J. Phys. Chem. B 101(33), 6560 (1997)
CrossRef ADS Google scholar
[19]
J. A. Ripmeester and C. I. Ratcliffe, Xenon-129 NMR studies of clathrate hydrates: New guests for structure II and structure H, J. Phys. Chem. 94(25), 8773 (1990)
CrossRef ADS Google scholar
[20]
J. X. Liu, Y. J. Yan, J. F. Xu, S. J. Li, G. Chen, and J. Zhang, Replacement micro-mechanism of CH4 hydrate by N2/CO2 mixture revealed byab initio studies, Comput. Mater. Sci. 123, 106 (2016)
CrossRef ADS Google scholar
[21]
R. Susilo, S. Alavi, I. L. Moudrakovski, P. Englezos, and J. A. Ripmeester, Guest–host hydrogen bonding in structure H clathrate hydrates, ChemPhysChem 10(5), 824 (2009)
CrossRef ADS Google scholar
[22]
S. Alavi, K. Shin, and J. A. Ripmeester, Molecular dynamics simulations of hydrogen bonding in clathrate hydrates with ammonia and methanol guest molecules, J. Chem. Eng. Data 60(2), 389 (2015)
CrossRef ADS Google scholar
[23]
L. A. Stern, S. H. Kirby, and W. B. Durham, Peculiarities of methane clathrate hydrate formation and solid-state deformation, including possible superheating of water ice, Science 273(5283), 1843 (1996)
CrossRef ADS Google scholar
[24]
L. A. Stern, S. H. Kirby, and W. B. Durham, Polycrystalline methane hydrate: Synthesis from superheated ice, and low-temperature mechanical properties, Energy Fuels 12(2), 201 (1998)
CrossRef ADS Google scholar
[25]
T. M. Vlasic, P. D. Servio, and A. D. Rey, Effect of guest size on the mechanical properties and molecular structure of gas hydrates from first-principles, Cryst. Growth Des. 17(12), 6407 (2017)
CrossRef ADS Google scholar
[26]
J. H. Jia, Y. F. Liang, T. Tsuji, S. Murata, and T. Matsuoka, Elasticity and stability of clathrate hydrate: Role of guest molecule motions, Sci. Rep. 7(1), 1290 (2017)
CrossRef ADS Google scholar
[27]
Q. Shi, P. Q. Cao, Z. D. Han, F. L. Ning, H. Gong, Y. Xin, Z. S. Zhang, and J. Y. Wu, Role of guest molecules in the mechanical properties of clathrate hydrates, Cryst. Growth Des. 18(11), 6729 (2018)
CrossRef ADS Google scholar
[28]
R. K. McMullan and G. A. Jeffrey, Polyhedral clathrate hydrates (IX): Structure of ethylene oxide hydrate, J. Chem. Phys. 42(8), 2725 (1965)
CrossRef ADS Google scholar
[29]
F. Takeuchi, M. Hiratsuka, R. Ohmura, S. Alavi, A. K. Sum, and K. Yasuoka, Water proton configurations in structures I, II, and H clathrate hydrate unit cells, J. Chem. Phys. 138(12), 124504 (2013)
CrossRef ADS Google scholar
[30]
J. J. Shieh and T. S. Chung, Gas permeability, diffusivity, and solubility of poly(4-vinylpyridine) film, J. Polym. Sci. B 37(20), 2851 (1999)
CrossRef ADS Google scholar
[31]
W. H. Lin and T. S. Chung, Gas permeability, diffusivity, solubility, and aging characteristics of 6FDA-durene polyimide membranes, J. Membr. Sci. 186(2), 183 (2001)
CrossRef ADS Google scholar
[32]
T. Yoshioka, M. Kanezashi, and T. Tsuru, Micropore size estimation on gas separation membranes: A study in experimental and molecular dynamics, AIChE J. 59(6), 2179 (2013)
CrossRef ADS Google scholar
[33]
T. Zhou, Y. Sang, X. Wang, C. Wu, D. Zeng, and C. Xie, Pore size dependent gas-sensing selectivity based on ZnO@ZIF nanorod arrays, Sens. Actuators B Chem. 258, 1099 (2018)
CrossRef ADS Google scholar
[34]
J. R. Li, R. J. Kuppler, and H. C. Zhou, Selective gas adsorption and separation in metal–organic frameworks, Chem. Soc. Rev. 38(5), 1477 (2009)
CrossRef ADS Google scholar
[35]
S. Goel, Z. Wu, S. I. Zones, and E. Iglesia, Synthesis and catalytic properties of metal clusters encapsulated within small-pore (SOD, GIS, ANA) zeolites, J. Am. Chem. Soc. 134(42), 17688 (2012)
CrossRef ADS Google scholar
[36]
C. Sun, B. Wen, and B. Bai, Application of nanoporous graphene membranes in natural gas processing: Molecular simulations of CH4/C2, CH4/H2S and CH4/N2 separation, Chem. Eng. Sci. 138, 616 (2015)
[37]
A. Koriakin, Y. H. Kim, and C. H. Lee, Adsorptive desulfurization of natural gas using lithium-modified mesoporous silica, Ind. Eng. Chem. Res. 51(44), 14489 (2012)
CrossRef ADS Google scholar
[38]
P. Maksymovych, D. C. Sorescu, D. Dougherty, and J. T. Yates, Surface bonding and dynamical behavior of the CH3SH molecule on Au(111), J. Phys. Chem. B 109(47), 22463 (2005)
CrossRef ADS Google scholar
[39]
A. T. Güntner, S. Abegg, K. Wegner, and S. E. Pratsinis, Zeolite membranes for highly selective formaldehyde sensors, Sens. Actuators B Chem. 257, 916 (2018)
CrossRef ADS Google scholar
[40]
L. C. Jacobson and V. Molinero, A methane water model for coarse-grained simulations of solutions and clathrate hydrates, J. Phys. Chem. B 114(21), 7302 (2010)
CrossRef ADS Google scholar
[41]
J. L. F. Abascal, E. Sanz, R. G. Fernández, and C. Vega, A potential model for the study of ices and amorphous water: TIP4P/Ice, J. Chem. Phys. 122(23), 234511 (2005)
CrossRef ADS Google scholar
[42]
W. L. Jorgensen, D. S. Maxwell, and J. TiradoRives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids, J. Am. Chem. Soc. 118(45), 11225 (1996)
CrossRef ADS Google scholar
[43]
B. FrantzDale, S. J. Plimpton and M. S. Shephard, Software components for parallel multiscale simulation: An example with lammps, Eng. Comput. 26(2), 205 (2010)
CrossRef ADS Google scholar
[44]
N. J. English and J. M. D. MacElroy, Structural and dynamical properties of methane clathrate hydrates, J. Comput. Chem. 24(13), 1569 (2003)
CrossRef ADS Google scholar
[45]
K. Shin, R. Kumar, K. A. Udachin, S. Alavi, and J. A. Ripmeester, Ammonia clathrate hydrates as new solid phases for Titan, Enceladus, and other planetary systems, Proc. Natl. Acad. Sci. USA 109(37), 14785 (2012)
CrossRef ADS Google scholar
[46]
W. L. Mao, H. Mao, A. F. Goncharov, V. V. Struzhkin, Q. Guo, J. Hu, J. Shu, R. J. Hemley, M. Somayazulu, and Y. Zhao, Hydrogen clusters in clathrate hydrate, Science 297(5590), 2247 (2002)
CrossRef ADS Google scholar
[47]
G. A. Jeffrey, Hydrogen-bonding in carbohydrates and hydrate inclusion compounds, Adv. Enzymol. Relat. Areas Mol. Biol. 65, 217 (1992)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(2816 KB)

Accesses

Citations

Detail

Sections
Recommended

/