Measuring orbital angular momentum of vortex beams in optomechanics

Zhucheng Zhang, Jiancheng Pei, Yi-Ping Wang, Xiaoguang Wang

PDF(1861 KB)
PDF(1861 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (3) : 32503. DOI: 10.1007/s11467-020-1030-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Measuring orbital angular momentum of vortex beams in optomechanics

Author information +
History +

Abstract

Measuring the orbital angular momentum (OAM) of vortex beams, including the magnitude and the sign, has great application prospects due to its theoretically unbounded and orthogonal modes. Here, the sign-distinguishable OAM measurement in optomechanics is proposed, which is achieved by monitoring the shift of the transmission spectrum of the probe field in a double Laguerre–Gaussian (LG) rotational-cavity system. Compared with the traditional single LG rotational cavity, an asymmetric optomechanically induced transparency window can occur in our system. Meanwhile, the position of the resonance valley has a strong correlation with the magnitude and sign of OAM. This originally comes from the fact that the effective detuning of the cavity mode from the driving field can vary with the magnitude and sign of OAM, which causes the spectral shift to be directional for different signs of OAM. Our scheme solves the shortcoming of the inability to distinguish the sign of OAM in optomechanics, and works well for high-order vortex beams with topological charge value±45, which is a significant improvement for measuring OAM based on the cavity optomechanical system.

Keywords

orbital angular momentum / optomechanically induced transparency / Laguerre–Gaussian rotational-cavity system / optomechanics

Cite this article

Download citation ▾
Zhucheng Zhang, Jiancheng Pei, Yi-Ping Wang, Xiaoguang Wang. Measuring orbital angular momentum of vortex beams in optomechanics. Front. Phys., 2021, 16(3): 32503 https://doi.org/10.1007/s11467-020-1030-0

References

[1]
J. F. Nye and M. V. Berry, Dislocations in wave trains, Proc. R. Soc. Lond. A 336(1605), 165 (1974)
CrossRef ADS Google scholar
[2]
L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes, Phys. Rev. A 45(11), 8185 (1992)
CrossRef ADS Google scholar
[3]
M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, Helical-wavefront laser beams produced with a spiral phaseplate, Opt. Commun. 112(5–6), 321 (1994)
CrossRef ADS Google scholar
[4]
S. S. R. Oemrawsingh, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, and G. W. T. Hooft, Half-integral spiral phase plates for optical wave-lengths, J. Opt. A 6(5), S288 (2004)
CrossRef ADS Google scholar
[5]
V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, Screw dislocations in light wavefronts, J. Mod. Opt. 39(5), 985 (1992)
CrossRef ADS Google scholar
[6]
I. V. Basistiy, V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, Optics of light beams with screw dislocations, Opt. Commun. 103(5–6), 422 (1993)
CrossRef ADS Google scholar
[7]
Z. Zhang, X. Qiao, B. Midya, K. Liu, J. Sun, T. Wu, W. Liu, R. Agarwal, J. M. Jornet, S. Longhi, N. M. Litchinitser, and L. Feng, Tunable topological charge vortex microlaser, Science 368(6492), 760 (2020)
CrossRef ADS Google scholar
[8]
Z. Ji, W. Liu, S. Krylyuk, X. Fan, Z. Zhang, A. Pan, L. Feng, A. Davydov, and R. Agarwal, Photocurrent detection of the orbital angular momentum of light, Science 368(6492), 763 (2020)
CrossRef ADS Google scholar
[9]
D. S. Ding, W. Zhang, Z. Y. Zhou, S. Shi, G. Y. Xiang, X. S. Wang, Y. K. Jiang, B. S. Shi, and G. C. Guo, Quantum storage of orbital angular momentum entanglement in an atomic ensemble, Phys. Rev. Lett. 114(5), 050502 (2015)
CrossRef ADS Google scholar
[10]
J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, Terabit free-space data transmission employing orbital angular momentum multiplexing, Nat. Photonics 6(7), 488 (2012)
CrossRef ADS Google scholar
[11]
N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, Terabit-scale orbital angular momentum mode division multiplexing in fibers, Science 340(6140), 1545 (2013)
CrossRef ADS Google scholar
[12]
M. Chen, M. Mazilu, Y. Arita, E. M. Wright, and K. Dholakia, Dynamics of microparticles trapped in a perfect vortex beam, Opt. Lett. 38(22), 4919 (2013)
CrossRef ADS Google scholar
[13]
M. J. Padgett and R. Bowman, Tweezers with a twist, Nat. Photonics 5(6), 343 (2011)
CrossRef ADS Google scholar
[14]
M. Gecevičius, R. Drevinskas, M. Beresna, and P. G. Kazansky, Single beam optical vortex tweezers with tunable orbital angular momentum, Appl. Phys. Lett. 104(23), 231110 (2014)
CrossRef ADS Google scholar
[15]
M. Harris, C. A. Hill, and J. M. Vaughan, Optical helices and spiral interference fringes, Opt. Commun. 106(4–6), 161 (1994)
CrossRef ADS Google scholar
[16]
M. Harris, C. A. Hill, P. R. Tapster, and J. M. Vaughan, Laser modes with helical wave fronts, Phys. Rev. A 49(4), 3119 (1994)
CrossRef ADS Google scholar
[17]
J. M. Hickmann, E. J. S. Fonseca, W. C. Soares, and S. Chavez-Cerda, Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum, Phys. Rev. Lett. 105(5), 053904 (2010)
CrossRef ADS Google scholar
[18]
C. S. Guo, L. L. Lu, and H. T. Wang, Characterizing topological charge of optical vortices by using an annular aperture, Opt. Lett. 34(23), 3686 (2009)
CrossRef ADS Google scholar
[19]
P. Vaity, J. Banerji, and R. P. Singh, Measuring the topological charge of an optical vortex by using a tilted convex lens, Phys. Lett. A 377(15), 1154 (2013)
CrossRef ADS Google scholar
[20]
S. Zheng and J. Wang, Measuring orbital angular momentum (OAM) states of vortex beams with annular gratings, Sci. Rep. 7(1), 40781 (2017)
CrossRef ADS Google scholar
[21]
S. E. Harris, Electromagnetically induced transparency, Phys. Today 50(7), 36 (1997)
CrossRef ADS Google scholar
[22]
G. S. Agarwal and S. Huang, Electromagnetically induced transparency in mechanical effects of light, Phys. Rev. A81, 041803(R) (2010)
CrossRef ADS Google scholar
[23]
S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, Optomechanically induced transparency, Science 330(6010), 1520 (2010)
CrossRef ADS Google scholar
[24]
J. X. Peng, Z. Chen, Q. Z. Yuan, and X. L. Feng, Optomechanically induced transparency in a Laguerre–Gaussian rotational-cavity system and its application to the detection of orbital angular momentum of light fields, Phys. Rev. A 99(4), 043817 (2019)
CrossRef ADS Google scholar
[25]
M. Bhattacharya and P. Meystre, Using a laguerregaussian beam to trap and cool the rotational motion of a mirror, Phys. Rev. Lett. 99(15), 153603 (2007)
CrossRef ADS Google scholar
[26]
M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Rev. Mod. Phys. 86(4), 1391 (2014)
CrossRef ADS Google scholar
[27]
C. K. Law, Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation, Phys. Rev. A 51(3), 2537 (1995)
CrossRef ADS Google scholar
[28]
M. Bhattacharya, H. Uys, and P. Meystre, Optomechanical trapping and cooling of partially reflective mirrors, Phys. Rev. A 77(3), 033819 (2008)
CrossRef ADS Google scholar
[29]
Y. Xiao, Y. F. Yu, and Z. M. Zhang, Controllable optomechanically induced transparency and ponderomotive squeezing in an optomechanical system assisted by an atomic ensemble, Opt. Express 22(15), 17979 (2014)
CrossRef ADS Google scholar
[30]
Z. Zhang and X. Wang, Photon-assisted entanglement and squeezing generation and decoherence suppression via a quadratic optomechanical coupling, Opt. Express 28(3), 2732 (2020)
CrossRef ADS Google scholar
[31]
M. Bhattacharya, P. L. Giscard, and P. Meystre, Entanglement of a Laguerre–Gaussian cavity mode with a rotating mirror, Phys. Rev. A 77(1), 013827 (2008)
CrossRef ADS Google scholar
[32]
M. Bhattacharya, P. L. Giscard, and P. Meystre, Entangling the rovibrational modes of a macroscopic mirror using radiation pressure, Phys. Rev. A77, 030303(R) (2008)
CrossRef ADS Google scholar
[33]
Z. Chen, J. X. Peng, J. J. Fu, and X. L. Feng, Entanglement of two rotating mirrors coupled to a single Laguerre– Gaussian cavity mode, Opt. Express 27(21), 29479 (2019)
CrossRef ADS Google scholar
[34]
Y. M. Liu, C. H. Bai, D. Y. Wang, T. Wang, M. H. Zheng, H. F. Wang, A. D. Zhu, and S. Zhang, Ground-state cooling of rotating mirror in double-Laguerre–Gaussian-cavity with atomic ensemble, Opt. Express 26(5), 6143 (2018)
CrossRef ADS Google scholar
[35]
J. X. Peng, Z. Chen, Q. Z. Yuan, and X. L. Feng, Double optomechanically induced transparency in a Laguerre– Gaussian rovibrational cavity, Phys. Lett. A 384(7), 126153 (2020)
CrossRef ADS Google scholar
[36]
C. Sanavio, J. Z. Bernad, and A. Xuereb, Fisher information based estimation of optomechanical coupling strengths, Phys. Rev. A 102(1), 013508 (2020)
CrossRef ADS Google scholar
[37]
S. Huang and G. S. Agarwal, Normal-mode splitting and antibunching in Stokes and anti-Stokes processes in cavity optomechanics: Radiation-pressure-induced four-wavemixing cavity optomechanics, Phys. Rev. A 81(3), 033830 (2010)
CrossRef ADS Google scholar
[38]
C. W. Gardiner and P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics, Springer-Verlag, 2004
[39]
J. D. McCullen, P. Meystre, and E. M. Wright, Mirror confinement and control through radiation pressure, Opt. Lett. 9(6), 193 (1984)
CrossRef ADS Google scholar
[40]
A. Baas, J. P. Karr, H. Eleuch, and E. Giacobino, Optical bistability in semiconductor microcavities, Phys. Rev. A 69(2), 023809 (2004)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(1861 KB)

Accesses

Citations

Detail

Sections
Recommended

/