Full counting statistics of phonon transport in disordered systems
Chao Zhang, Fuming Xu, Jian Wang
Full counting statistics of phonon transport in disordered systems
The coherent potential approximation (CPA) within full counting statistics (FCS) formalism is shown to be a suitable method to investigate average electric conductance, shot noise as well as higher order cumulants in disordered systems. We develop a similar FCS-CPA formalism for phonon transport through disordered systems. As a byproduct, we derive relations among coefficients of different phonon current cumulants. We apply the FCS-CPA method to investigate phonon transport properties of graphene systems in the presence of disorders. For binary disorders as well as Anderson disorders, we calculate up to the 8-th phonon transmission moments and demonstrate that the numerical results of the FCS-CPA method agree very well with that of the brute force method. The benchmark shows that the FCS-CPA method achieves 20 times more speedup ratio. Collective features of phonon current cumulants are also revealed.
phonon transport / disordered systems / coherent potential approximation / full counting statistics
[1] |
Z. Liu, X. Yu, and K. Chen, Thermal transport associated with ballistic phonons in asymmetric quantum structures, Front. Phys. China 4(3), 420 (2009)
CrossRef
ADS
Google scholar
|
[2] |
R. Su, Z. Yuan, J. Wang, and Z. G. Zheng, Interfacefacilitated energy transport in coupled Frenkel–Kontorova chains, Front. Phys. 11(2), 114401 (2016)
CrossRef
ADS
Google scholar
|
[3] |
T. Yamamoto, S. Watanabe, and K. Watanabe, Universal features of quantized thermal conductance of carbon nanotubes, Phys. Rev. Lett. 92(7), 075502 (2004)
CrossRef
ADS
Google scholar
|
[4] |
C. Chang, D. Okawa, H. Garcia, A. Majumdar, and A. Zettl, Breakdown of Fourier’s law in nanotube thermal conductors, Phys. Rev. Lett. 101(7), 075903 (2008)
CrossRef
ADS
Google scholar
|
[5] |
X. Chen, Y. Xu, J. Wang, and H. Guo, Valley filtering effect of phonons in graphene with a grain boundary, Phys. Rev. B 99(6), 064302 (2019)
CrossRef
ADS
Google scholar
|
[6] |
P. Wang, L. Lu, and K. Bertoldi, Topological phononic crystals with one-way elastic edge waves, Phys. Rev. Lett. 115(10), 104302 (2015)
CrossRef
ADS
Google scholar
|
[7] |
S. H. Mousavi, A. B. Khanikaev, and Z. Wang, Topologically protected elastic waves in phononic metamaterials, Nat. Commun. 6(1), 8682 (2015)
CrossRef
ADS
Google scholar
|
[8] |
R. Süsstrunk and S. D. Huber, Observation of phononic helical edge states in a mechanical topological insulator,Science 349(6243), 47 (2015)
CrossRef
ADS
Google scholar
|
[9] |
Z. Y. Ong and C. H. Lee, Transport and localization in a topological phononic lattice with correlated disorder, Phys. Rev. B 94(13), 134203 (2016)
CrossRef
ADS
Google scholar
|
[10] |
H. B. Zhou, G. Zhang, J. S. Wang, and Y. W. Zhang, Phonon transport in a one-dimensional harmonic chain with long-range interaction and mass disorder, Phys. Rev. E 94(5), 052123 (2016)
CrossRef
ADS
Google scholar
|
[11] |
Y. Q. Ke, K. Xia, and H. Guo, Disorder scattering in magnetic tunnel junctions: Theory of nonequilibrium vertex correction, Phys. Rev. Lett. 100(16), 166805 (2008)
CrossRef
ADS
Google scholar
|
[12] |
Y. Q. Ke, K. Xia, and H. Guo, Oxygen-vacancy-induced diffusive scattering in Fe/MgO/Fe magnetic tunnel junctions, Phys. Rev. Lett. 105(23), 236801 (2010)
CrossRef
ADS
Google scholar
|
[13] |
P. Soven, Coherent-potential model of substitutional disordered alloys,Phys. Rev. 156(3), 809 (1967)
CrossRef
ADS
Google scholar
|
[14] |
D. W. Taylor, Vibrational properties of imperfect crystals with large defect concentrations, Phys. Rev. 156(3), 1017 (1967)
CrossRef
ADS
Google scholar
|
[15] |
X. X. Ni, M. L. Leek, J. S. Wang, Y. P. Feng, and B. W. Li, Anomalous thermal transport in disordered harmonic chains and carbon nanotubes, Phys. Rev. B 83(4), 045408 (2011)
CrossRef
ADS
Google scholar
|
[16] |
J. X. Zhai, Q. Y. Zhang, Z. H. Cheng, J. Ren, Y. Q. Ke, and B. W. Li, Anomalous transparency induced by cooperative disorders in phonon transport, Phys. Rev. B 99(19), 195429 (2019)
CrossRef
ADS
Google scholar
|
[17] |
Z. H. Cheng, J. X. Zhai, Q. Y. Zhang, and Y. Q. Ke, Auxiliary coherent medium theory for lattice vibrations in random binary alloys with mass and force-constant disorders, Phys. Rev. B 99(13), 134202 (2019)
CrossRef
ADS
Google scholar
|
[18] |
W. R. Mondal, T. Berlijn, M. Jarrell, and N. S. Vidhyadhiraja, Phonon localization in binary alloys with diagonal and off-diagonal disorder: A cluster Green’s function approach, Phys. Rev. B 99(13), 134203 (2019)
CrossRef
ADS
Google scholar
|
[19] |
B. Fu, L. Zhang, Y. Wei, and J. Wang, Full counting statistics of conductance for disordered systems, Phys. Rev. B 96(11), 115410 (2017)
CrossRef
ADS
Google scholar
|
[20] |
J. A. Young and J. U. Koppel, Phonon spectrum of graphite, J. Chem. Phys. 42(1), 357 (1965)
CrossRef
ADS
Google scholar
|
[21] |
R. A. Jishi, L. Venkataraman, M. S. Dresselhaus, and G. Dresselhaus, Phonon modes in carbon nanotubules, Chem. Phys. Lett. 209(1–2), 77 (1993)
CrossRef
ADS
Google scholar
|
[22] |
L. G. C. Rego and G. Kirczenow, Quantized thermal conductance of dielectric quantum wires, Phys. Rev. Lett. 81(1), 232 (1998)
CrossRef
ADS
Google scholar
|
[23] |
M. P. Blencowe, Quantum energy flow in mesoscopic dielectric structures, Phys. Rev. B 59(7), 4992 (1999)
CrossRef
ADS
Google scholar
|
[24] |
J. S. Wang, J. Wang, and J. T. Lü, Quantum thermal transport in nanostructures, Eur. Phys. J. B 62(4), 381 (2008)
CrossRef
ADS
Google scholar
|
[25] |
X. Chen, Y. Liu, and W. Duan, Thermal engineering in low-dimensional quantum devices: A tutorial review of nonequilibrium Green’s function methods, Small Methods 2(6), 1700343 (2018)
CrossRef
ADS
Google scholar
|
[26] |
M. P. Lopez Sancho, J. M. Lopez Sancho, J. M. L. Sancho, and J Rubio, Highly convergent schemes for the calculation of bulk and surface Green functions, J. Phys. F: Met. Phys. 15, 851 (1985)
CrossRef
ADS
Google scholar
|
[27] |
Z. Yu, G. M. Tang, and J. Wang, Full-counting statistics of transient energy current in mesoscopic systems, Phys. Rev. B 93(19), 195419 (2016)
CrossRef
ADS
Google scholar
|
[28] |
G. M. Tang, Z. Yu, and J. Wang, Full-counting statistics of energy transport of molecular junctions in the polaronic regime, New J. Phys. 19(8), 083007 (2017)
CrossRef
ADS
Google scholar
|
[29] |
G. M. Tang and J. Wang, Full-counting statistics of charge and spin transport in the transient regime: A nonequilibrium Green’s function approach, Phys. Rev. B 90(19), 195422 (2014)
CrossRef
ADS
Google scholar
|
[30] |
G. M. Tang, Y. Xing, and J. Wang, Short-time dynamics of molecular junctions after projective measurement, Phys. Rev. B 96(7), 075417 (2017)
CrossRef
ADS
Google scholar
|
[31] |
J. S. Wang, B. K. Agarwalla, H. Li, and J. Thingna, Nonequilibrium Green’s function method for quantum thermal transport, Front. Phys. 9(6), 673 (2014)
CrossRef
ADS
Google scholar
|
[32] |
L. Zhang, B. Fu, B. Wang, Y. Wei, and J. Wang, Frequency-dependent transport properties in disordered systems: A generalized coherent potential approximation approach, Phys. Rev. B 99(15), 155406 (2019)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |