Generic security analysis framework for quantum secure direct communication

Zhang-Dong Ye, Dong Pan, Zhen Sun, Chun-Guang Du, Liu-Guo Yin, Gui-Lu Long

PDF(1365 KB)
PDF(1365 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (2) : 21503. DOI: 10.1007/s11467-020-1025-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Generic security analysis framework for quantum secure direct communication

Author information +
History +

Abstract

Quantum secure direct communication provides a direct means of conveying secret information via quantum states among legitimate users. The past two decades have witnessed its great strides both theoretically and experimentally. However, the security analysis of it still stays in its infant. Some practical problems in this field to be solved urgently, such as detector efficiency mismatch, side-channel effect and source imperfection, are propelling the birth of a more impeccable solution. In this paper, we establish a new framework of the security analysis driven by numerics where all the practical problems may be taken into account naturally. We apply this framework to several variations of the DL04 protocol considering real-world experimental conditions. Also, we propose two optimizing methods to process the numerical part of the framework so as to meet different requirements in practice. With these properties considered, we predict the robust framework would open up a broad avenue of the development in the field.

Keywords

quantum secure direct communication (QSDC) / practical security analysis / secrecy capacity optimization / detector efficiency mismatch / convex optimization

Cite this article

Download citation ▾
Zhang-Dong Ye, Dong Pan, Zhen Sun, Chun-Guang Du, Liu-Guo Yin, Gui-Lu Long. Generic security analysis framework for quantum secure direct communication. Front. Phys., 2021, 16(2): 21503 https://doi.org/10.1007/s11467-020-1025-x

References

[1]
G.-L. Long and X.-S. Liu, Theoretically efficient highcapacity quantum-key-distribution scheme, Phys. Rev. A 65(3), 032302 (2002)
CrossRef ADS Google scholar
[2]
G. L. Long, F. G. Deng, C. Wang, X. H. Li, K. Wen, and W. Y. Wang, Quantum secure direct communication and deterministic secure quantum communication, Front. Phys. China 2(3), 251 (2007)
CrossRef ADS Google scholar
[3]
F. G. Deng, G. L. Long, and X. S. Liu, Two-step quantum direct communication protocol using the Einstein– Podolsky–Rosen pair block, Phys. Rev. A 68(5), 042317 (2003)
CrossRef ADS Google scholar
[4]
C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, Quantum secure direct communication with highdimension quantum superdense coding, Phys. Rev. A 71(4), 044305 (2005)
CrossRef ADS Google scholar
[5]
F. G. Deng and G. L. Long, Secure direct communication with a quantum one-time pad, Phys. Rev. A 69(5), 052319 (2004)
CrossRef ADS Google scholar
[6]
F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, Quantum secure direct communication network with Einstein–Podolsky–Rosen pairs, Phys. Lett. A 359(5), 359 (2006)
CrossRef ADS Google scholar
[7]
F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, Economical quantum secure direct communication network with single photons, Chin. Phys. 16(12), 3553 (2007)
CrossRef ADS Google scholar
[8]
Z. R. Zhou, Y. B. Sheng, P. H. Niu, L. G. Yin, G. L. Long, and L. Hanzo, Measurement-device-independent quantum secure direct communication, Sci. China Phys. Mech. Astron. 63(3), 230362 (2020)
CrossRef ADS Google scholar
[9]
P. H. Niu, Z. R. Zhou, Z. S. Lin, Y. B. Sheng, L. G. Yin, and G. L. Long, Measurement-device-independent quantum communication without encryption, Sci. Bull. 63(20), 1345 (2018)
CrossRef ADS Google scholar
[10]
Z. Gao, T. Li, and Z. Li, Long-distance measurementdevice- independent quantum secure direct communication, EPL 125(4), 40004 (2019)
CrossRef ADS Google scholar
[11]
Z. K. Zou, L. Zhou, W. Zhong, and Y. B. Sheng, Measurement-device-independent quantum secure direct communication of multiple degrees of freedom of a single photons, EPL 131(4), 40005 (2020)
CrossRef ADS Google scholar
[12]
X. D. Wu, L. Zhou, W. Zhong, and Y. B. Sheng, High-capacity measurement-device-independent quantum secure direct communication, Quantum Inform. Process. 19(4), 354 (2020)
CrossRef ADS Google scholar
[13]
L. Zhou, Y. B. Sheng, and G. L. Long, Device-independent quantum secure direct communication against collective attacks, Sci. Bull. 65(1), 12 (2020)
CrossRef ADS Google scholar
[14]
J. H. Shapiro, Z. Zhang, and F. N. Wong, Secure communication via quantum illumination, Quantum Inform. Process. 13(1), 2171 (2014)
CrossRef ADS Google scholar
[15]
D. J. Lum, J. C. Howell, M. S. Allman, T. Gerrits, V. B. Verma, S. W. Nam, C. Lupo, and S. Lloyd, Quantum enigma machine: Experimentally demonstrating quantum data locking, Phys. Rev. A 94(2), 022315 (2016)
CrossRef ADS Google scholar
[16]
J. H. Shapiro, D. M. Boroson, P. B. Dixon, M. E. Grein, and S. A. Hamilton, Quantum low probability of intercept, J. Opt. Soc. Am. B 36(3), B41 (2019)
CrossRef ADS Google scholar
[17]
J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, Experimental quantum secure direct communication with single photons, Light Sci. Appl. 5(9), e16144 (2016)
CrossRef ADS Google scholar
[18]
W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, Quantum secure direct communication with quantum memory, Phys. Rev. Lett. 118(22), 220501 (2017)
CrossRef ADS Google scholar
[19]
F. Zhu, W. Zhang, Y. Sheng, and Y. Huang, Experimental long-distance quantum secure direct communication, Sci. Bull. 62(22), 1519 (2017)
CrossRef ADS Google scholar
[20]
D. Pan, Z. Lin, J. Wu, H. Zhang, Z. Sun, D. Ruan, L. Yin, and G. Long, Experimental free-space quantum secure direct communication and its security analysis, Photon. Res. 8(9), 1522 (2020)
CrossRef ADS Google scholar
[21]
S. Pirandola, S. L. Braunstein, S. Lloyd, and S. Mancini, Confidential direct communications: A quantum approach using continuous variables, IEEE J. Sel. Top. Quantum Electron. 15(6), 1570 (2009)
CrossRef ADS Google scholar
[22]
C. Liu, K. Pang, Z. Zhao, P. Liao, R. Zhang, H. Song, Y. Cao, J. Du, L. Li, H. Song, Y. Ren, G. Xie, Y. Zhao, J. Zhao, S. M. H. Rafsanjani, A. N. Willner, J. H. Shapiro, R. W. Boyd, M. Tur, and A. E. Willner, Single-end adaptive optics compensation for emulated turbulence in a bidirectional 10-Mbit/s per channel free-space quantum communication link using orbital-angular-momentum encoding, Research 2019, 8326701 (2019)
CrossRef ADS Google scholar
[23]
N. Killoran, T. R. Bromley, J. M. Arrazola, M. Schuld, N. Quesada, and S. Lloyd, Continuous-variable quantum neural networks, Phys. Rev. Research 1(3), 033063 (2019)
CrossRef ADS Google scholar
[24]
C. Q. Hu, J. Gao, L. F. Qiao, R. J. Ren, Z. Cao, Z. Q. Yan, Z. Q. Jiao, H. Tang, Z. H. Ma, and X. M. Jin, Experimental test of tracking the king problem, Research 2019, 3474305 (2019)
CrossRef ADS Google scholar
[25]
R. Qi, Z. Sun, Z. Lin, P. Niu, W. Hao, L. Song, Q. Huang, J. Gao, L. Yin, and G. L. Long, Implementation and security analysis of practical quantum secure direct communication, Light Sci. Appl. 8(1), 22 (2019)
CrossRef ADS Google scholar
[26]
H. Lu, C. H. F. Fung, X. Ma, and Q. Y. Cai, Unconditional security proof of a deterministic quantum key distribution with a two-way quantum channel, Phys. Rev. A 84(4), 042344 (2011)
CrossRef ADS Google scholar
[27]
C. I. Henao and R. M. Serra, Practical security analysis of two-way quantum-key-distribution protocols based on nonorthogonal states, Phys. Rev. A 92(5), 052317 (2015)
CrossRef ADS Google scholar
[28]
J. Wu, Z. Lin, L. Yin, and G. L. Long, Security of quantum secure direct communication based on Wyner’s wiretap channel theory, Quantum Engineering 1(4), e26 (2019)
CrossRef ADS Google scholar
[29]
P. J. Coles, E. M. Metodiev, and N. Lütkenhaus, Numerical approach for unstructured quantum key distribution, Nat. Commun. 7(1), 11712 (2016)
CrossRef ADS Google scholar
[30]
A. Winick, N. Lütkenhaus, and P. J. Coles, Reliable numerical key rates for quantum key distribution, Quantum 2, 77 (2018)
CrossRef ADS Google scholar
[31]
L. M. Liang, S. H. Sun, M. S. Jiang, and C. Y. Li, Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices, Front. Phys. 9(5), 613 (2014)
CrossRef ADS Google scholar
[32]
Z. Cao, Z. Zhang, H. K. Lo, and X. Ma, Discretephaserandomized coherent state source and its application in quantum key distribution, New J. Phys. 17(5), 053014 (2015)
CrossRef ADS Google scholar
[33]
C. H. Bennett, G. Brassard, and N. D. Mermin, Quantum cryptography without Bell’s theorem, Phys. Rev. Lett. 68(5), 557 (1992)
CrossRef ADS Google scholar
[34]
A. D. Wyner, The wire-tap channel, Bell Sys. Tech. J. 54(8), 1355 (1975)
CrossRef ADS Google scholar
[35]
G. Ribordy, J. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, Automated “plug & play” quantum key distribution, Electron. Lett. 34(22), 2116 (1998)
CrossRef ADS Google scholar
[36]
P. J. Coles, L. Yu, V. Gheorghiu, and R. B. Griffiths, Information-theoretic treatment of tripartite systems and quantum channels, Phys. Rev. A 83(6), 062338 (2011)
CrossRef ADS Google scholar
[37]
P. J. Coles, Unification of different views of decoherence and discord, Phys. Rev. A 85(4), 042103 (2012)
CrossRef ADS Google scholar
[38]
S. Watanabe, R. Matsumoto, and T. Uyematsu, Tomography increases key rates of quantum-key-distribution protocols, Phys. Rev. A 78(4), 042316 (2008)
CrossRef ADS Google scholar
[39]
E. Bolduc, G. C. Knee, E. M. Gauger, and J. Leach, Projected gradient descent algorithms for quantum state tomography, npj Quantum Inf. 3(1), 1 (2017)
CrossRef ADS Google scholar
[40]
I. Sutskever, J. Martens, G. Dahl, and G. Hinton, On the importance of initialization and momentum in deep learning, in: International conference on machine learning, 2013, p. 1139
[41]
M. Jaggi, Revisiting Frank-Wolfe: Projection-free sparse convex optimization, in: Proceedings of the 30th international conference on machine learning, CONF, 2013, p. 427
[42]
L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, Hacking commercial quantum cryptography systems by tailored bright illumination, Nat. Photonics 4(10), 686 (2010)
CrossRef ADS Google scholar
[43]
S. Sajeed, P. Chaiwongkhot, J. P. Bourgoin, T. Jennewein, N. Lütkenhaus, and V. Makarov, Security loophole in free-space quantum key distribution due to spatial-mode detector-efficiency mismatch, Phys. Rev. A 91(6), 062301 (2015)
CrossRef ADS Google scholar
[44]
J. Lin, T. Upadhyaya, and N. Lütkenhaus, Asymptotic security analysis of discrete-modulated continuous variable quantum key distribution, Phys. Rev. X 9(4), 041064 (2019)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(1365 KB)

Accesses

Citations

Detail

Sections
Recommended

/