Non-Gaussian normal diffusion in low dimensional systems

Qingqing Yin, Yunyun Li, Fabio Marchesoni, Subhadip Nayak, Pulak K. Ghosh

PDF(1495 KB)
PDF(1495 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (3) : 33203. DOI: 10.1007/s11467-020-1022-0
TOPICAL REVIEW
TOPICAL REVIEW

Non-Gaussian normal diffusion in low dimensional systems

Author information +
History +

Abstract

Brownian particles suspended in disordered crowded environments often exhibit non-Gaussian normal diffusion (NGND), whereby their displacements grow with mean square proportional to the observation time and non-Gaussian statistics. Their distributions appear to decay almost exponentially according to “universal” laws largely insensitive to the observation time. This effect is generically attributed to slow environmental fluctuations, which perturb the local configuration of the suspension medium. To investigate the microscopic mechanisms responsible for the NGND phenomenon, we study Brownian diffusion in low dimensional systems, like the free diffusion of ellipsoidal and active particles, the diffusion of colloidal particles in fluctuating corrugated channels and Brownian motion in arrays of planar convective rolls. NGND appears to be a transient effect related to the time modulation of the instantaneous particle’s diffusivity, which can occur even under equilibrium conditions. Consequently, we propose to generalize the definition of NGND to include transient displacement distributions which vary continuously with the observation time. To this purpose, we provide a heuristic one-parameter function, which fits all time-dependent transient displacement distributions corresponding to the same diffusion constant. Moreover, we reveal the existence of low dimensional systems where the NGND distributions are not leptokurtic (fat exponential tails), as often reported in the literature, but platykurtic (thin sub-Gaussian tails), i.e., with negative excess kurtosis. The actual nature of the NGND transients is related to the specific microscopic dynamics of the diffusing particle.

Keywords

non-Gaussian normal diffusion / transport phenomena / stochastic process / active matter

Cite this article

Download citation ▾
Qingqing Yin, Yunyun Li, Fabio Marchesoni, Subhadip Nayak, Pulak K. Ghosh. Non-Gaussian normal diffusion in low dimensional systems. Front. Phys., 2021, 16(3): 33203 https://doi.org/10.1007/s11467-020-1022-0

References

[1]
B. Wang, S. M. Anthony, S. C. Bae, and S. Granick, Anomalous yet Brownian, Proc. Natl. Acad. Sci. USA 106(36), 15160 (2009)
CrossRef ADS Google scholar
[2]
B. Wang, J. Kuo, C. Bae, and S. Granick, When Brownian diffusion is not Gaussian, Nat. Mater. 11(6), 481 (2012)
CrossRef ADS Google scholar
[3]
S. Bhattacharya, D. K. Sharma, S. Saurabh, S. De, A. Sain, A. Nandi, and A. Chowdhury, Plasticization of poly(vinylpyrrolidone) thin films under ambient humidity: Insight from single-molecule tracer diffusion dynamics, J. Phys. Chem. B 117(25), 7771 (2013)
CrossRef ADS Google scholar
[4]
J. Kim, C. Kim, and B. J. Sung, Simulation study of seemingly Fickian but heterogeneous dynamics of two dimensional colloids, Phys. Rev. Lett. 110(4), 047801 (2013)
CrossRef ADS Google scholar
[5]
G. Kwon, B. J. Sung, and A. Yethiraj, Dynamics in crowded environments: Is non-Gaussian Brownian diffusion normal? J. Phys. Chem. B 118(28), 8128 (2014)
CrossRef ADS Google scholar
[6]
J. Guan, B. Wang, and S. Granick, Even hard-sphere colloidal suspensions display Fickian yet non-Gaussian diffusion, ACS Nano 8(4), 3331 (2014)
CrossRef ADS Google scholar
[7]
C. Gardiner, Stochastic Methods: A Handbook for the Natural and Social Sciences, Berlin: Springer, 2009
[8]
E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Weitz, Three-dimensional direct imaging of structural relaxation near the colloidal glass transition, Science 287(5453), 627 (2000)
CrossRef ADS Google scholar
[9]
J. D. Eaves, and D. R. Reichman, Spatial dimension and the dynamics of supercooled liquids, Proc. Natl. Acad. Sci. USA 106(36), 15171 (2009)
CrossRef ADS Google scholar
[10]
K. C. Leptos, J. S. Guasto, J. P. Gollub, A. I. Pesci, and R. E. Goldstein, Dynamics of enhanced tracer diffusion in suspensions of swimming eukaryotic microorganisms, Phys. Rev. Lett. 103(19), 198103 (2009)
CrossRef ADS Google scholar
[11]
W. K. Kegel and A. van Blaaderen, Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions, Science 287(5451), 290 (2000)
CrossRef ADS Google scholar
[12]
P. Chaudhuri, L. Berthier, and W. Kob, Universal nature of particle displacements close to glass and jamming transitions, Phys. Rev. Lett. 99(6), 060604 (2007)
CrossRef ADS Google scholar
[13]
S. K. Ghosh, A. G. Cherstvy, D. S. Grebenkov, and R. Metzler, Anomalous, non-Gaussian tracer diffusion in crowded two-dimensional environments, New J. Phys. 18(1), 013027 (2016)
CrossRef ADS Google scholar
[14]
W. He, H. Song, Y. Su, L. Geng, B. J. Ackerson, H. B. Peng, and P. Tong, Dynamic heterogeneity and non- Gaussian statistics for acetylcholine receptors on live cell membrane, Nat. Commun. 7(1), 11701 (2016)
CrossRef ADS Google scholar
[15]
K. Białas, J. Łuczka, P. Hänggi, and J. Spiechowicz, Colossal Brownian yet non-Gaussian diffusion induced by nonequilibrium noise, Phys. Rev. E 102, 042121 (2020)
CrossRef ADS Google scholar
[16]
M. V. Chubynsky and G. W. Slater, Diffusing diffusivity: A model for anomalous, yet Brownian, diffusion, Phys. Rev. Lett. 113(9), 098302 (2014)
CrossRef ADS Google scholar
[17]
A. G. Cherstvy and R. Metzler, Anomalous diffusion in time-fluctuating non-stationary diffusivity landscapes, Phys. Chem. Chem. Phys. 18(34), 23840 (2016)
CrossRef ADS Google scholar
[18]
R. Jain and K. L. Sebastian, Diffusion in a crowded, rearranging environment, J. Phys. Chem. B 120(16), 3988 (2016)
CrossRef ADS Google scholar
[19]
R. Jain and K. L. Sebastian, Diffusing diffusivity: A new derivation and comparison with simulations, J. Chem. Sci. 129(7), 929 (2017)
CrossRef ADS Google scholar
[20]
N. Tyagi and B. J. Cherayil, Non-Gaussian Brownian diffusion in dynamically disordered thermal environments, J. Phys. Chem. B 121(29), 7204 (2017)
CrossRef ADS Google scholar
[21]
L. Luo and M. Yi, Non-Gaussian diffusion in static disordered media, Phys. Rev. E 97(4), 042122 (2018)
CrossRef ADS Google scholar
[22]
A. V. Chechkin, F. Seno, R. Metzler, and I. M. Sokolov, Brownian yet non-Gaussian diffusion: From superstatistics to subordination of diffusing diffusivities, Phys. Rev. X 7(2), 021002 (2017)
CrossRef ADS Google scholar
[23]
J. Ślęzak, R. Metzler, and M. Magdziarz, Superstatistical generalised Langevin equation: Non-Gaussian viscoelastic anomalous diffusion, New J. Phys. 20(2), 023026 (2018)
CrossRef ADS Google scholar
[24]
Y. Li, F. Marchesoni, D. Debnath, and P. K. Ghosh, Non-Gaussian normal diffusion in a fluctuating corrugated channel, Phys. Rev. Res. 1(3), 033003 (2019)
CrossRef ADS Google scholar
[25]
P. Hänggi and F. Marchesoni, Artificial Brownian motors: Controlling transport on the nanoscale, Rev. Mod. Phys. 81(1), 387 (2009)
CrossRef ADS Google scholar
[26]
R. Lipowsky, Generic interactions of flexible membranes, in: Handbook of Biological Physics, Eds. R. Lipowsky and E. Sackmann, Vol. 1, Ch. 11, Elsevier, 1995
CrossRef ADS Google scholar
[27]
P. S. Burada, P. Hänggi, F. Marchesoni, G. Schmid, and P. Talkner, Diffusion in confined geometries, ChemPhysChem 10(1), 45 (2009)
CrossRef ADS Google scholar
[28]
X. Yang, C. Liu, Y. Li, F. Marchesoni, P. Hänggi, and H. P. Zhang, Hydrodynamic and entropic effects on colloidal diffusion in corrugated channels, Proc. Natl. Acad. Sci. USA 114(36), 9564 (2017)
CrossRef ADS Google scholar
[29]
V. Sposini, A. V. Chechkin, F. Seno, G. Pagnini, and R. Metzler, Random diffusivity from stochastic equations: Comparison of two models for Brownian yet non-Gaussian diffusion, New J. Phys. 20(4), 043044 (2018)
CrossRef ADS Google scholar
[30]
L. Luo and M. Yi, Quenched trap model on the extreme landscape: The rise of subdiffusion and non-Gaussian diffusion, Phys. Rev. E 100(4), 042136 (2019)
CrossRef ADS Google scholar
[31]
L. Luo and M. Yi, Ergodicity recovery of random walk in heterogeneous disordered media, Chin. Phys. B 29(5), 050503 (2020)
CrossRef ADS Google scholar
[32]
For a review, see: H. C. Berg, Random Walk in Biology, Princeton University Press, 1984
[33]
F. Perrin, Mouvement brownien d’un ellipsoide (I): Dispersion diélectrique pour des molécules ellipsoidales, J. Phys. Radium 5(10), 497 (1934); Mouvement Brownien d’un ellipsoide (II): Rotation libre et dépolarisation des fluorescences (Translation et diffusion de molécules ellipsoidales), J. Phys. Radium VII, 1 (1936)
CrossRef ADS Google scholar
[34]
Y. Han, A. M. Alsayed, M. Nobili, J. Zhang, T. C. Lubensky, and A. G. Yodh, Brownian motion of an ellipsoid, Science 314(5799), 626 (2006)
CrossRef ADS Google scholar
[35]
P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer, 1992
CrossRef ADS Google scholar
[36]
S. R. Aragón and R. Pecora, General theory of dynamic light scattering from cylindrically symmetric particles with translational‐rotational coupling, J. Chem. Phys. 82(12), 5346 (1985)
CrossRef ADS Google scholar
[37]
S. Leitmann, F. Höfling, and T. Franosch, Dynamically crowded solutions of infinitely thin Brownian needles, Phys. Rev. E 96(1), 012118 (2017)
CrossRef ADS Google scholar
[38]
S. Prager, Interaction of rotational and translational diffusion, J. Chem. Phys. 23(12), 2404 (1955)
CrossRef ADS Google scholar
[39]
S. Jiang and S. Granick (Eds.), Janus particle synthesis, self-assembly and applications, RSC Publishing, Cambridge, 2012
[40]
A. Walther and A. H. E. Müller, Janus particles: Synthesis, self-assembly, physical properties, and applications, Chem. Rev. 113(7), 5194 (2013)
CrossRef ADS Google scholar
[41]
M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost, M. Rao, and R. A. Simha, Hydrodynamics of soft active matter, Rev. Mod. Phys. 85(3), 1143 (2013)
CrossRef ADS Google scholar
[42]
J. Elgeti, R. G. Winkler, and G. Gompper, Physics of microswimmers, single particle motion and collective behavior: A review, Rep. Prog. Phys. 78(5), 056601 (2015)
CrossRef ADS Google scholar
[43]
see: e.g., Smart Drug Delivery System, edited by A. D. Sezer, IntechOpen, 2016
[44]
J. Wang, Nanomachines: Fundamentals and Applications, Wiley-VCH, Weinheim, 2013
CrossRef ADS Google scholar
[45]
G. Volpe, I. Buttinoni, D. Vogt, H. J. Kümmerer, and C. Bechinger, Microswimmers in patterned environments, Soft Matter 7(19), 8810 (2011)
CrossRef ADS Google scholar
[46]
P. K. Ghosh, V. R. Misko, F. Marchesoni, and F. Nori, Self-propelled Janus particles in a ratchet: Numerical simulations, Phys. Rev. Lett. 110(26), 268301 (2013)
CrossRef ADS Google scholar
[47]
S. vanTeeffelen and H. Löwen, Dynamics of a Brownian circle swimmer, Phys. Rev. E 78, 020101 (2008)
CrossRef ADS Google scholar
[48]
D. Debnath, P. K. Ghosh, Y. Li, F. Marchesoni, and B. Li, Diffusion of eccentric microswimmers, Soft Matter 12(7), 2017 (2016)
CrossRef ADS Google scholar
[49]
C. Kurzthaler, S. Leitmann, and T. Franosch, Intermediate scattering function of an anisotropic active Brownian particle, Sci. Rep. 6(1), 36702 (2016)
CrossRef ADS Google scholar
[50]
J. R. Howse, R. A. L. Jones, A. J. Ryan, T. Gough, R. Vafabakhsh, and R. Golestanian, Self-motile colloidal particles: From directed propulsion to random walk, Phys. Rev. Lett. 99(4), 048102 (2007)
CrossRef ADS Google scholar
[51]
B. ten Hagen, S. van Teeffelen, and H. Löwen, Non- Gaussian behaviour of a self-propelled particle on a substrate, Condens. Matter Phys. 12(4), 725 (2009)
CrossRef ADS Google scholar
[52]
X. Ao, P. K. Ghosh, Y. Li, G. Schmid, P. Hä nggi, and F. Marchesoni, Diffusion of chiral Janus particles in a sinusoidal channel, EPL 109(1), 10003 (2015)
CrossRef ADS Google scholar
[53]
X. Zheng, B. ten Hagen, A. Kaiser, M. Wu, H. Cui, Z. Silber-Li, and H. Löwen, Non-Gaussian statistics for the motion of self-propelled Janus particles: Experiment versus theory, Phys. Rev. E 88(3), 032304 (2013)
CrossRef ADS Google scholar
[54]
D. Debnath, P. K. Ghosh, V. R. Misko, Y. Li, F. Marchesoni, and F. Nori, Enhanced motility in a binary mixture of active nano/microswimmers, Nanoscale 12(17), 9717 (2020)
CrossRef ADS Google scholar
[55]
W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 2, New York: Wiley, 1991
[56]
L. Bosi, P. K. Ghosh, and F. Marchesoni, Analytical estimates of free Brownian diffusion times in corrugated narrow channels, J. Chem. Phys. 137(17), 174110 (2012)
CrossRef ADS Google scholar
[57]
T. H. Solomon and J. P. Gollub, Chaotic particle transport in time-dependent Rayleigh–Bénard convection, Phys. Rev. A 38(12), 6280 (1988)
CrossRef ADS Google scholar
[58]
T. H. Solomon and I. Mezić, Uniform resonant chaotic mixing in fluid flows, Nature 425(6956), 376 (2003)
CrossRef ADS Google scholar
[59]
M. N. Rosenbluth, H. L. Berk, I. Doxas, and W. Horton, Effective diffusion in laminar convective flows, Phys. Fluids 30(9), 2636 (1987)
CrossRef ADS Google scholar
[60]
W. Young, A. Pumir, and Y. Pomeau, Anomalous diffusion of tracer in convection rolls, Phys. Fluids A 1(3), 462 (1989)
CrossRef ADS Google scholar
[61]
Y. N. Young and M. J. Shelley, Stretch-coil transition and transport of fibers in cellular flows, Phys. Rev. Lett. 99(5), 058303 (2007) H. Manikantan and D. Saintillan, Subdiffusive transport of fluctuating elastic filaments in cellular flows, Phys. Fluids 25(7), 073603 (2013)
CrossRef ADS Google scholar
[62]
A. Sarracino, F. Cecconi, A. Puglisi, and A. Vulpiani, Nonlinear response of inertial tracers in steady laminar flows: Differential and absolute negative mobility, Phys. Rev. Lett. 117(17), 174501 (2016)
CrossRef ADS Google scholar
[63]
C. Torney and Z. Neufeld, Transport and aggregation of self-propelled particles in fluid flows, Phys. Rev. Lett. 99(7), 078101 (2007)
CrossRef ADS Google scholar
[64]
N. O. Weiss, The expulsion of magnetic flux by eddies, Proc. R. Soc. Lond. A 293(1434), 310 (1966)
CrossRef ADS Google scholar
[65]
Y. Li, L. Li, F. Marchesoni, D. Debnath, and P. K. Ghosh, Diffusion of chiral janus particles in convection rolls., Physical Review Research 2(1), 013250 (2020)
CrossRef ADS Google scholar
[66]
Q. Yin, Y. Li, F. Marchesoni, T. Debnath, and P. K. Ghosh, Exit times of a Brownian particle out of a convection roll, Phys. Fluids 32(9), 092010 (2020)
CrossRef ADS Google scholar
[67]
J. Feng and T. G. Kurtz, Large Deviations for Stochastic processes, Mathematical Surveys and Monographs, Vol. 131, Am. Math. Society, 2006
CrossRef ADS Google scholar
[68]
Q. Yin, Y. Li, B. Li, F. Marchesoni, S. Nayak, and P. K. Ghosh, Diffusion transients in convection rolls, J. Fluid Mech., Doi: 10.1017/jfm.2020.1127 (2021)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(1495 KB)

Accesses

Citations

Detail

Sections
Recommended

/