The unique carrier mobility of Janus MoSSe/GaN heterostructures

Wen-Jin Yin, Xiao-Long Zeng, Bo Wen, Qing-Xia Ge, Ying Xu, Gilberto Teobaldi, Li-Min Liu

PDF(2869 KB)
PDF(2869 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (3) : 33501. DOI: 10.1007/s11467-020-1021-1
RESEARCH ARTICLE
RESEARCH ARTICLE

The unique carrier mobility of Janus MoSSe/GaN heterostructures

Author information +
History +

Abstract

Heterostructure is an effective approach in modulating the physical and chemical behavior of materials. Here, the first-principles calculations were carried out to explore the structural, electronic, and carrier mobility properties of Janus MoSSe/GaN heterostructures. This heterostructure exhibits a superior high carrier mobility of 281.28 cm2·V−1·s−1 for electron carrier and 3951.2 cm2·V−1·s−1 for hole carrier. Particularly, the magnitude of the carrier mobility can be further tuned by Janus structure and stacking modes of the heterostructure. It is revealed that the equivalent mass and elastic moduli strongly affect the carrier mobility of the heterostructure, while the deformation potential contributes to the different carrier mobility for electron and hole of the heterostructure. These results suggest that the Janus MoSSe/GaN heterostructures have many potential applications for the unique carrier mobility.

Keywords

Janus heterostructure / carrier mobility / first-principles calculation

Cite this article

Download citation ▾
Wen-Jin Yin, Xiao-Long Zeng, Bo Wen, Qing-Xia Ge, Ying Xu, Gilberto Teobaldi, Li-Min Liu. The unique carrier mobility of Janus MoSSe/GaN heterostructures. Front. Phys., 2021, 16(3): 33501 https://doi.org/10.1007/s11467-020-1021-1

References

[1]
Y. Gao, T. Cao, F. Cellini, C. Berger, W. A. de Heer, E. Tosatti, E. Riedo, and A. Bongiorno, Ultrahard carbon film from epitaxial two-layer graphene, Nat. Nanotechnol. 13(2), 133 (2018)
CrossRef ADS Google scholar
[2]
C. Tan, X. Cao, X. J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G. H. Nam, M. Sindoro, and H. Zhang, Recent advances in ultrathin two-dimensional nanomaterials, Chem. Rev. 117(9), 6225 (2017)
CrossRef ADS Google scholar
[3]
W. J. Yin, B. Wen, C. Zhou, A. Selloni, and L. M. Liu, Excess electrons in reduced rutile and anatase TiO2, Surf. Sci. Rep. 73(2), 58 (2018)
CrossRef ADS Google scholar
[4]
M. Wang, Y. Pang, D. Y. Liu, S. H. Zheng, and Q. L. Song, Tuning magnetism by strain and external electric field in zigzag Janus MoSSe nanoribbons, Comput. Mater. Sci. 146, 240 (2018)
CrossRef ADS Google scholar
[5]
A. K. Geim, Graphene: Status and prospects, Science 324(5934), 1530 (2009)
CrossRef ADS Google scholar
[6]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
CrossRef ADS Google scholar
[7]
C. Lin, D. Shin, and A. A. Demkov, Localized states induced by an oxygen vacancy in rutile TiO2, J. Appl. Phys. 117(22), 225703 (2015)
CrossRef ADS Google scholar
[8]
Z. K. Han, Y. Z. Yang, B. Zhu, M. V. Ganduglia-Pirovano, and Y. Gao, Unraveling the oxygen vacancy structures at the reduced CeO2 (111) surface, Phys. Rev. Mater. 2(3), 035802 (2018)
CrossRef ADS Google scholar
[9]
T. Umebayashi, T. Yamaki, H. Itoh, and K. Asai, Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations, J. Phys. Chem. Solids 63(10), 1909 (2002)
CrossRef ADS Google scholar
[10]
H. C. Yang, Y. Xie, J. Hou, A. K. Cheetham, V. Chen, and S. B. Darling, Janus membranes: Creating asymmetry for energy efficiency, Adv. Mater. 30(43), 1801495 (2018)
CrossRef ADS Google scholar
[11]
H. Zhang, Y.N. Zhang, H. Liu, and L.M. Liu, Novel heterostructures by stacking layered molybdenum disulfides and nitrides for solar energy conversion, J. Mater. Chem. A 2(37), 15389 (2014)
CrossRef ADS Google scholar
[12]
Y. Gong, H. Yuan, C. L. Wu, P. Tang, S. Z. Yang, A. Yang, G. Li, B. Liu, J. van de Groep, M. L. Brongersma, M. F. Chisholm, S. C. Zhang, W. Zhou, and Y. Cui, Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics, Nat. Nanotechnol. 13(4), 294 (2018)
CrossRef ADS Google scholar
[13]
M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem. 5(4), 263 (2013)
CrossRef ADS Google scholar
[14]
C. Ataca, H. Şahin, and S. Ciraci, Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure, J. Phys. Chem. C 116(16), 8983 (2012)
CrossRef ADS Google scholar
[15]
Q. Xiang, J. Yu, and M. Jaroniec, Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles, J. Am. Chem. Soc. 134(15), 6575 (2012)
CrossRef ADS Google scholar
[16]
B. Radisavljevic and A. Kis, Mobility engineering and a metal–insulator transition in monolayer MoS2, Nat. Mater. 12(9), 815 (2013)
CrossRef ADS Google scholar
[17]
W. S. Yun, S. W. Han, S. C. Hong, I. G. Kim, and J. D. Lee, Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors ( M= Mo, W; X= S, Se, Te), Phys. Rev. B 85(3), 033305 (2012)
CrossRef ADS Google scholar
[18]
S. Fathipour, N. Ma, W. S. Hwang, V. Protasenko, S. Vishwanath, H. G. Xing, H. Xu, D. Jena, J. Appenzeller, and A. Seabaugh, Exfoliated multilayer MoTe2 field-effect transistors, Appl. Phys. Lett. 105(19), 192101 (2014)
CrossRef ADS Google scholar
[19]
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat. Nanotech. 6, 147 (2011)
CrossRef ADS Google scholar
[20]
Y. Guo, Q. Wu, Y. Li, N. Lu, K. Mao, Y. Bai, J. Zhao, J. Wang, and X. C. Zeng, Copper(I) sulfide: A twodimensional semiconductor with superior oxidation resistance and high carrier mobility, Nanoscale Horizons 4(1), 223 (2019)
CrossRef ADS Google scholar
[21]
Y. Guo, L. Ma, K. Mao, M. Ju, Y. Bai, J. Zhao, and X. C. Zeng, Eighteen functional monolayer metal oxides: wide bandgap semiconductors with superior oxidation resistance and ultrahigh carrier mobility, Nanoscale Horizons 4(3), 592 (2019)
CrossRef ADS Google scholar
[22]
G. Mattioli, F. Filippone, P. Alippi, and A. Amore Bonapasta, Ab initio study of the electronic states induced by oxygen vacancies in rutile and anatase, Phys. Rev. B 78, 241201(R) (2008)
CrossRef ADS Google scholar
[23]
S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B. I. Yakobson, J.C. Idrobo, P. M. Ajayan, and J. Lou, Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers, Nat. Mater. 12(8), 754 (2013)
CrossRef ADS Google scholar
[24]
X. Ma, X. Wu, H. Wang, and Y. Wang, A Janus MoSSe monolayer: A potential wide solar-spectrum watersplitting photocatalyst with a low carrier recombination rate, J. Mater. Chem. A 6(5), 2295 (2018)
CrossRef ADS Google scholar
[25]
R. Chaurasiya and A. Dixit, Defect engineered MoSSe Janus monolayer as a promising two dimensional material for NO2 and NO gas sensing, Appl. Surf. Sci. 490, 204 (2019)
CrossRef ADS Google scholar
[26]
Y. Cai, G. Zhang, and Y. W. Zhang, Polarity-reversed robust carrier mobility in monolayer MoS2 nanoribbons, J. Am. Chem. Soc. 136(17), 6269 (2014)
CrossRef ADS Google scholar
[27]
A. Y. Lu, H. Zhu, J. Xiao, C. P. Chuu, Y. Han, M. H. Chiu, C. C. Cheng, C. W. Yang, K. H. Wei, Y. Yang, Y. Wang, D. Sokaras, D. Nordlund, P. Yang, D. A. Muller, M.Y. Chou, X. Zhang, and L. J. Li, Janus monolayers of transition metal dichalcogenides, Nat. Nanotechnol. 12(8), 744 (2017)
CrossRef ADS Google scholar
[28]
J. Zhang, S. Jia, I. Kholmanov, L. Dong, D. Er, W. Chen, H. Guo, Z. Jin, V. B. Shenoy, L. Shi, and J. Lou, Janus monolayer transition-metal dichalcogenides, ACS Nano 11(8), 8192 (2017)
CrossRef ADS Google scholar
[29]
R. Peng, Y. Ma, S. Zhang, B. Huang, and Y. Dai, Valley polarization in janus single-layer MoSSe via magnetic doping, J. Phys. Chem. Lett. 9(13), 3612 (2018)
CrossRef ADS Google scholar
[30]
W. J. Yin, B. Wen, G. Z. Nie, X. L. Wei, and L. M. Liu, Tunable dipole and carrier mobility for a few layer Janus MoSSe structure, J. Mater. Chem. C 6(7), 1693 (2018)
CrossRef ADS Google scholar
[31]
H. C. Yang, J. Hou, V. Chen, and Z. K. Xu, Janus membranes: Exploring duality for advanced separation, Angew. Chem. Int. Ed. Engl. 55(43), 13398 (2016)
CrossRef ADS Google scholar
[32]
Y. Guo, S. Zhou, Y. Bai, and J. Zhao, Enhanced piezoelectric effect in Janus group-III chalcogenide monolayers, Appl. Phys. Lett. 110(16), 163102 (2017)
CrossRef ADS Google scholar
[33]
L. Dong, J. Lou, and V. B. Shenoy, Large in-plane and vertical piezoelectricity in Janus transition metal dichalchogenides, ACS Nano 11(8), 8242 (2017)
CrossRef ADS Google scholar
[34]
H. L. Wang, L. S. Zhang, Z. G. Chen, J. Q. Hu, S. J. Li, Z. H. Wang, J. S. Liu, and X. C. Wang, Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances, Chem. Soc. Rev. 43(15), 5234 (2014)
CrossRef ADS Google scholar
[35]
Y. Ding, J. Shi, C. Xia, M. Zhang, J. Du, P. Huang, M. Wu, H. Wang, Y. Cen, and S. Pan, Enhancement of hole mobility in InSe monolayer via an InSe and black phosphorus heterostructure, Nanoscale 9(38), 14682 (2017)
CrossRef ADS Google scholar
[36]
F. B. Zheng, L. Zhang, J. Zhang, P. Wang, and C. W. Zhang, Germanene/GaGeTe heterostructure: A promising electric-field induced data storage device with high carrier mobility, Phys. Chem. Chem. Phys. 22(9), 5163 (2020)
CrossRef ADS Google scholar
[37]
Y. Yao, J. Cao, W. Yin, L. Yang, and X. Wei, A 2D ZnSe/BiOX vertical heterostructure as a promising photocatalyst for water splitting: A first-principles study, J. Phys. D Appl. Phys. 53(5), 055108 (2020)
CrossRef ADS Google scholar
[38]
W. Li, Z. Lin, and G. Yang, A 2D self-assembled MoS2 /ZnIn2S4 heterostructure for efficient photocatalytic hydrogen evolution, Nanoscale 9(46), 18290 (2017)
CrossRef ADS Google scholar
[39]
X. Sun, H. Deng, W. Zhu, Z. Yu, C. Wu, and Y. Xie, Interface engineering in two-dimensional heterostructures: Towards an advanced catalyst for ullmann couplings, Angew. Chem. Int. Ed. Engl. 55(5), 1704 (2016)
CrossRef ADS Google scholar
[40]
Z. Wei, F. F. Liang, Y. F. Liu, W. J. Luo, J. Wang, W. Q. Yao, and Y. F. Zhu, Photoelectrocatalytic degradation of phenol-containing wastewater by TiO2/g-C3N4hybrid heterostructure thin film, Appl. Catal. B 201, 600 (2017)
CrossRef ADS Google scholar
[41]
W. Yin, B. Wen, Q. Ge, D. Zou, Y. Xu, M. Liu, X. Wei, M. Chen, and X. Fan, Role of intrinsic dipole on photocatalytic water splitting for Janus MoSSe/nitrides heterostructure: A first-principles study, Prog. Nat. Sci.: Mater. Inter. 29, 335 (2019)
CrossRef ADS Google scholar
[42]
W. Yin, B. Wen, Q. Ge, X. Wei, G. Teobaldi, and L. Liu, Effect of crystal field on the formation and diffusion of oxygen vacancy at anatase (101) surface and sub-surface, Prog. Nat. Sci.: Mater. Inter. 30(1), 128 (2020)
CrossRef ADS Google scholar
[43]
M. L. Sun, J. P. Chou, Q. Q. Ren, Y. M. Zhao, J. Yu, and W. C. Tang, Tunable Schottky barrier in van der Waals heterostructures of graphene and g-GaN, Appl. Phys. Lett. 110(17), 173105 (2017)
CrossRef ADS Google scholar
[44]
L. Zhou, Y. Dai, J. Guo, R. Chen, Y. Xie, and W. Luo, Novel Ag3PO4/LaCo1−xBixO3 composite photocatalyst with enhanced photocatalytic degradation of BPA under visible light, Mater. Lett. 213, 387 (2018)
CrossRef ADS Google scholar
[45]
Z. Y. Al Balushi, K. Wang, R. K. Ghosh, R. A. Vilá, S. M. Eichfeld, J. D. Caldwell, X. Qin, Y.C. Lin, P. A. DeSario, G. Stone, S. Subramanian, D. F. Paul, R. M. Wallace, S. Datta, J. M. Redwing, and J. A. Robinson, Two-dimensional gallium nitride realized via graphene encapsulation, Nat. Mater. 15(11), 1166 (2016)
CrossRef ADS Google scholar
[46]
Y. Zhao, H. Wang, H. Zhou, and T. Lin, Directional fluid transport in thin porous materials and its functional applications, Small 13(4), 1601070 (2017)
CrossRef ADS Google scholar
[47]
X. Li, Z. Li, and J. Yang, Proposed photosynthesis method for producing hydrogen from dissociated water molecules using incident near-infrared light, Phys. Rev. Lett. 112(1), 018301 (2014)
CrossRef ADS Google scholar
[48]
G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47(1), 558 (1993)
CrossRef ADS Google scholar
[49]
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set., Phys. Rev. B 54(16), 11169 (1996)
CrossRef ADS Google scholar
[50]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef ADS Google scholar
[51]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)], Phys. Rev. Lett. 78(7), 1396 (1997)
CrossRef ADS Google scholar
[52]
S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, A consistent and accurate ab initioparametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. 132, 154104 (2010)
CrossRef ADS Google scholar
[53]
X. B. Li, P. Guo, Y. N. Zhang, R. F. Peng, H. Zhang, and L. M. Liu, High carrier mobility of few-layer PbX (X= S, Se, Te), J. Mater. Chem. C 3(24), 6284 (2015)
CrossRef ADS Google scholar
[54]
S. Bruzzone and G. Fiori, Ab-initio simulations of deformation potentials and electron mobility in chemically modified graphene and two-dimensional hexagonal boronnitride, Appl. Phys. Lett. 99(22), 222108 (2011)
CrossRef ADS Google scholar
[55]
C. L. Lu, C. P. Chang, Y. C. Huang, R. B. Chen, and M. L. Lin, Influence of an electric field on the optical properties of few-layer graphene with ABstacking, Phys. Rev. B 73(14), 144427 (2006)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(2869 KB)

Accesses

Citations

Detail

Sections
Recommended

/