Laser cooling with adiabatic passage for type-II transitions

Qian Liang, Tao Chen, Wen-Hao Bu, Yu-He Zhang, Bo Yan

PDF(2453 KB)
PDF(2453 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (3) : 32501. DOI: 10.1007/s11467-020-1019-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Laser cooling with adiabatic passage for type-II transitions

Author information +
History +

Abstract

We extend the idea of laser cooling with adiabatic passage to multi-level type-II transitions. We find the cooling force can be significantly enhanced when a proper magnetic field is applied. That is because the magnetic field decomposes the multi-level system into several two-level sub-systems, hence the stimulated absorption and stimulated emission can occur in order, allowing for the multiple photon momentum transfer. We show that this scheme also works on the laser-coolable molecules with a better cooling effect compared to the conventional Doppler cooling. A reduced dependence on spontaneous emission based on our scheme is observed as well. Our results suggest this scheme is very feasible for laser cooling of polar molecules.

Keywords

laser cooling of polar molecule / adiabatic passage / type-II transition / cold molecule / cold atom

Cite this article

Download citation ▾
Qian Liang, Tao Chen, Wen-Hao Bu, Yu-He Zhang, Bo Yan. Laser cooling with adiabatic passage for type-II transitions. Front. Phys., 2021, 16(3): 32501 https://doi.org/10.1007/s11467-020-1019-8

References

[1]
S. Chu, The manipulation of neutral particles, Rev. Mod. Phys. 70(3), 685 (1998)
CrossRef ADS Google scholar
[2]
W. D. Phillips, Laser cooling and trapping of neutral atoms, Rev. Mod. Phys. 70(3), 721 (1998)
CrossRef ADS Google scholar
[3]
C. N. Cohen-Tannoudji, Manipulating atoms with photons, Rev. Mod. Phys. 70(3), 707 (1998)
CrossRef ADS Google scholar
[4]
E. A. Cornell and C. E. Wieman, Bose–Einstein condensation in a dilute gas, the first 70 years and some recent experiments, Rev. Mod. Phys. 74(3), 875 (2002)
CrossRef ADS Google scholar
[5]
I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80(3), 885 (2008)
CrossRef ADS Google scholar
[6]
A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, Optical atomic clocks, Rev. Mod. Phys. 87(2), 637 (2015)
CrossRef ADS Google scholar
[7]
J. L. Bohn, A. M. Rey, and J. Ye, Cold molecules: Progress in quantum engineering of chemistry and quantum matter, Science 357(6355), 1002 (2017)
CrossRef ADS Google scholar
[8]
M. S. Safronova, D. Budker, D. DeMille, D F J. Kimball, A. Derevianko, and C. W. Clark, Search for new physics with atoms and molecules, Rev. Mod. Phys. 90(2), 025008 (2018)
CrossRef ADS Google scholar
[9]
H. Metcalf, Strong optical forces on atoms in multifrequency light, Rev. Mod. Phys. 89(4), 041001 (2017)
CrossRef ADS Google scholar
[10]
T. Lu, X. Miao, and H. Metcalf, Bloch theorem on the Bloch sphere, Phys. Rev. A 71(6), 061405 (2005)
CrossRef ADS Google scholar
[11]
X. Miao, E. Wertz, M. G. Cohen, and H. Metcalf, Strong optical forces from adiabatic rapid passage, Phys. Rev. A 75(1), 011402 (2007)
CrossRef ADS Google scholar
[12]
A. M. Jayich, A. C. Vutha, M. T. Hummon, J. V. Porto, and W. C. Campbell, Continuous all-optical deceleration and single-photon cooling of molecular beams, Phys. Rev. A 89(2), 023425 (2014)
CrossRef ADS Google scholar
[13]
J. Söding, R. Grimm, Yu. B. Ovchinnikov, Ph. Bouyer, and Ch. Salomon, Short-distance atomic beam deceleration with a stimulated light force, Phys. Rev. Lett. 78(8), 1420 (1997)
CrossRef ADS Google scholar
[14]
L. Yatsenko and H. Metcalf, Dressed-atom description of the bichromatic force, Phys. Rev. A 70(6), 063402 (2004)
CrossRef ADS Google scholar
[15]
M. Partlow, X. Miao, J. Bochmann, M. Cashen, and H. Metcalf, Bichromatic slowing and collimation to make an intense helium beam, Phys. Rev. Lett. 93(21), 213004 (2004)
CrossRef ADS Google scholar
[16]
C. Corder, B. Arnold, and H. Metcalf, Laser cooling without spontaneous emission, Phys. Rev. Lett. 114(4), 043002 (2015)
CrossRef ADS Google scholar
[17]
E. S. Shuman, J. F. Barry, and D. DeMille, Laser cooling of a diatomic molecule, Nature 467(7317), 820 (2010)
CrossRef ADS Google scholar
[18]
M. T. Hummon, M. Yeo, B. K. Stuhl, A. L. Collopy, Y. Xia, and J. Ye, 2D magneto-optical trapping of diatomic molecules, Phys. Rev. Lett. 110(14), 143001 (2013)
CrossRef ADS Google scholar
[19]
M. D. Di Rosa, Laser-cooling molecules, Europ. Phys. J. D 31, 395 (2004)
CrossRef ADS Google scholar
[20]
T. Chen, W. Bu, and B. Yan, Structure, branching ratios, and a laser-cooling scheme for the 138BaF molecule, Phys. Rev. A 94(6), 063415 (2016)
CrossRef ADS Google scholar
[21]
B. K. Stuhl, B. C. Sawyer, D. Wang, and J. Ye, Magnetooptical trap for polar molecules, Phys. Rev. Lett. 101(24), 243002 (2008)
CrossRef ADS Google scholar
[22]
T. Chen, W. Bu, and B. Yan, Radiative deflection of a BaF molecular beam via optical cycling, Phys. Rev. A 96(5), 053401 (2017)
CrossRef ADS Google scholar
[23]
I. Kozyryev, L. Baum, L. Aldridge, P. Yu, E. E. Eyler, and J. M. Doyle, Coherent bichromatic force deflection of molecules, Phys. Rev. Lett. 120(6), 063205 (2018)
CrossRef ADS Google scholar
[24]
H. Metcalf and P. V. der Straten, Laser Cooling and Trapping, Springer, 1999
CrossRef ADS Google scholar
[25]
J. Dalibard and C. Cohen-Tannoudji, Laser cooling below the Doppler limit by polarization gradients: Simple theoretical models, J. Opt. Soc. Am. B 6(11), 2023 (1989)
CrossRef ADS Google scholar
[26]
P. Ungar, D. Weiss, E. Riis, and S. Chu, Optical molasses and multilevel atoms: Theory, J. Opt. Soc. Am. B 6(11), 2058 (1989)
CrossRef ADS Google scholar
[27]
S. A. Malinovskaya and G. Liu, Harmonic spectral modulation of an optical frequency comb to control the ultracold molecules formation, Chem. Phys. Lett. 664, 1 (2016)
CrossRef ADS Google scholar
[28]
M. A. Norcia, J. R. K. Cline, J. P. Bartolotta, M. J. Holland, and J. K. Thompson, Narrow-line laser cooling by adiabatic transfer, New J. Phys. 20(2), 023021 (2018)
CrossRef ADS Google scholar
[29]
J. A. Muniz, M. A. Norcia, J. R. K. Cline, and J. K. Thompson, A robust narrow-line magneto-optical trap using adiabatic transfer, arXiv: 1806.00838 (2018)
[30]
N. Petersen, F. Mühlbauer, L. Bougas, A. Sharma, D. Budker, and P. Windpassinger, Sawtooth-wave adiabaticpassage slowing of dysprosium, Phys. Rev. A 99(6), 063414 (2019)
CrossRef ADS Google scholar
[31]
J. P. Bartolotta and M. J. Holland, Sawtooth-wave adiabatic passage in a magneto-optical trap, Phys. Rev. A 101(5), 053434 (2020)
CrossRef ADS Google scholar
[32]
G. P. Greve, B. Wu, and J. K. Thompson, Laser cooling with adiabatic transfer on a Raman transition, New J. Phys. 21(7), 073045 (2019)
CrossRef ADS Google scholar
[33]
J. P. Bartolotta, M. A. Norcia, J. R. K. Cline, J. K. Thompson, and M. J. Holland, Laser cooling by sawtoothwave adiabatic passage, Phys. Rev. A 98(2), 023404 (2018)
CrossRef ADS Google scholar
[34]
A. M. L. Oien, I. T. McKinnie, P. J. Manson, W. J. Sandle, and D. M. Warrington, Cooling mechanisms in the sodium type-II magneto-optical trap, Phys. Rev. A 55(6), 4621 (1997)
CrossRef ADS Google scholar
[35]
V. B. Tiwari, S. Singh, H. S. Rawat, and S. C. Mehendale, Cooling and trapping of 85Rb atoms in the ground hyperfine F= 2 state, Phys. Rev. A 78(6), 063421 (2008)
CrossRef ADS Google scholar
[36]
L. Anderegg, B. L. Augenbraun, E. Chae, B. Hemmerling, N. R. Hutzler, A. Ravi, A. Collopy, J. Ye, W. Ketterle, and J. M. Doyle, Radio frequency magneto-optical trapping of CaF with high density, Phys. Rev. Lett. 119(10), 103201 (2017)
CrossRef ADS Google scholar
[37]
S. Truppe, H. J. Williams, M. Hambach, L. Caldwell, N. J. Fitch, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, Molecules cooled below the Doppler limit, Nat. Phys. 13(12), 1173 (2017)
CrossRef ADS Google scholar
[38]
M. Yeo, M. T. Hummon, A. L. Collopy, B. Yan, B. Hemmerling, E. Chae, J. M. Doyle, and J. Ye, Rotational state microwave mixing for laser cooling of complex diatomic molecules, Phys. Rev. Lett. 114(22), 223003 (2015)
CrossRef ADS Google scholar
[39]
K. Mølmer, Y. Castin, and J. Dalibard, Monte Carlo wavefunction method in quantum optics, J. Opt. Soc. Am. B 10(3), 524 (1993)
CrossRef ADS Google scholar
[40]
A. L. Collopy, M. T. Hummon, M. Yeo, B. Yan, and J. Ye, Prospects for a narrow line MOT in YO, New J. Phys. 17(5), 055008 (2015)
CrossRef ADS Google scholar
[41]
A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, Laser cooling below the onephoton recoil energy by velocity-selective coherent population trapping, Phys. Rev. Lett. 61(7), 826 (1988)
CrossRef ADS Google scholar
[42]
M. Kasevich and S. Chu, Laser cooling below a photon recoil with three-level atoms, Phys. Rev. Lett. 69(12), 1741 (1992)
CrossRef ADS Google scholar
[43]
J. Brown and A. Carrington, Rotational Spectroscopy of Diatomic Molecules, Cambridge University Press, 2003
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(2453 KB)

Accesses

Citations

Detail

Sections
Recommended

/