Laser cooling with adiabatic passage for type-II transitions
Qian Liang, Tao Chen, Wen-Hao Bu, Yu-He Zhang, Bo Yan
Laser cooling with adiabatic passage for type-II transitions
We extend the idea of laser cooling with adiabatic passage to multi-level type-II transitions. We find the cooling force can be significantly enhanced when a proper magnetic field is applied. That is because the magnetic field decomposes the multi-level system into several two-level sub-systems, hence the stimulated absorption and stimulated emission can occur in order, allowing for the multiple photon momentum transfer. We show that this scheme also works on the laser-coolable molecules with a better cooling effect compared to the conventional Doppler cooling. A reduced dependence on spontaneous emission based on our scheme is observed as well. Our results suggest this scheme is very feasible for laser cooling of polar molecules.
laser cooling of polar molecule / adiabatic passage / type-II transition / cold molecule / cold atom
[1] |
S. Chu, The manipulation of neutral particles, Rev. Mod. Phys. 70(3), 685 (1998)
CrossRef
ADS
Google scholar
|
[2] |
W. D. Phillips, Laser cooling and trapping of neutral atoms, Rev. Mod. Phys. 70(3), 721 (1998)
CrossRef
ADS
Google scholar
|
[3] |
C. N. Cohen-Tannoudji, Manipulating atoms with photons, Rev. Mod. Phys. 70(3), 707 (1998)
CrossRef
ADS
Google scholar
|
[4] |
E. A. Cornell and C. E. Wieman, Bose–Einstein condensation in a dilute gas, the first 70 years and some recent experiments, Rev. Mod. Phys. 74(3), 875 (2002)
CrossRef
ADS
Google scholar
|
[5] |
I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80(3), 885 (2008)
CrossRef
ADS
Google scholar
|
[6] |
A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, Optical atomic clocks, Rev. Mod. Phys. 87(2), 637 (2015)
CrossRef
ADS
Google scholar
|
[7] |
J. L. Bohn, A. M. Rey, and J. Ye, Cold molecules: Progress in quantum engineering of chemistry and quantum matter, Science 357(6355), 1002 (2017)
CrossRef
ADS
Google scholar
|
[8] |
M. S. Safronova, D. Budker, D. DeMille, D F J. Kimball, A. Derevianko, and C. W. Clark, Search for new physics with atoms and molecules, Rev. Mod. Phys. 90(2), 025008 (2018)
CrossRef
ADS
Google scholar
|
[9] |
H. Metcalf, Strong optical forces on atoms in multifrequency light, Rev. Mod. Phys. 89(4), 041001 (2017)
CrossRef
ADS
Google scholar
|
[10] |
T. Lu, X. Miao, and H. Metcalf, Bloch theorem on the Bloch sphere, Phys. Rev. A 71(6), 061405 (2005)
CrossRef
ADS
Google scholar
|
[11] |
X. Miao, E. Wertz, M. G. Cohen, and H. Metcalf, Strong optical forces from adiabatic rapid passage, Phys. Rev. A 75(1), 011402 (2007)
CrossRef
ADS
Google scholar
|
[12] |
A. M. Jayich, A. C. Vutha, M. T. Hummon, J. V. Porto, and W. C. Campbell, Continuous all-optical deceleration and single-photon cooling of molecular beams, Phys. Rev. A 89(2), 023425 (2014)
CrossRef
ADS
Google scholar
|
[13] |
J. Söding, R. Grimm, Yu. B. Ovchinnikov, Ph. Bouyer, and Ch. Salomon, Short-distance atomic beam deceleration with a stimulated light force, Phys. Rev. Lett. 78(8), 1420 (1997)
CrossRef
ADS
Google scholar
|
[14] |
L. Yatsenko and H. Metcalf, Dressed-atom description of the bichromatic force, Phys. Rev. A 70(6), 063402 (2004)
CrossRef
ADS
Google scholar
|
[15] |
M. Partlow, X. Miao, J. Bochmann, M. Cashen, and H. Metcalf, Bichromatic slowing and collimation to make an intense helium beam, Phys. Rev. Lett. 93(21), 213004 (2004)
CrossRef
ADS
Google scholar
|
[16] |
C. Corder, B. Arnold, and H. Metcalf, Laser cooling without spontaneous emission, Phys. Rev. Lett. 114(4), 043002 (2015)
CrossRef
ADS
Google scholar
|
[17] |
E. S. Shuman, J. F. Barry, and D. DeMille, Laser cooling of a diatomic molecule, Nature 467(7317), 820 (2010)
CrossRef
ADS
Google scholar
|
[18] |
M. T. Hummon, M. Yeo, B. K. Stuhl, A. L. Collopy, Y. Xia, and J. Ye, 2D magneto-optical trapping of diatomic molecules, Phys. Rev. Lett. 110(14), 143001 (2013)
CrossRef
ADS
Google scholar
|
[19] |
M. D. Di Rosa, Laser-cooling molecules, Europ. Phys. J. D 31, 395 (2004)
CrossRef
ADS
Google scholar
|
[20] |
T. Chen, W. Bu, and B. Yan, Structure, branching ratios, and a laser-cooling scheme for the 138BaF molecule, Phys. Rev. A 94(6), 063415 (2016)
CrossRef
ADS
Google scholar
|
[21] |
B. K. Stuhl, B. C. Sawyer, D. Wang, and J. Ye, Magnetooptical trap for polar molecules, Phys. Rev. Lett. 101(24), 243002 (2008)
CrossRef
ADS
Google scholar
|
[22] |
T. Chen, W. Bu, and B. Yan, Radiative deflection of a BaF molecular beam via optical cycling, Phys. Rev. A 96(5), 053401 (2017)
CrossRef
ADS
Google scholar
|
[23] |
I. Kozyryev, L. Baum, L. Aldridge, P. Yu, E. E. Eyler, and J. M. Doyle, Coherent bichromatic force deflection of molecules, Phys. Rev. Lett. 120(6), 063205 (2018)
CrossRef
ADS
Google scholar
|
[24] |
H. Metcalf and P. V. der Straten, Laser Cooling and Trapping, Springer, 1999
CrossRef
ADS
Google scholar
|
[25] |
J. Dalibard and C. Cohen-Tannoudji, Laser cooling below the Doppler limit by polarization gradients: Simple theoretical models, J. Opt. Soc. Am. B 6(11), 2023 (1989)
CrossRef
ADS
Google scholar
|
[26] |
P. Ungar, D. Weiss, E. Riis, and S. Chu, Optical molasses and multilevel atoms: Theory, J. Opt. Soc. Am. B 6(11), 2058 (1989)
CrossRef
ADS
Google scholar
|
[27] |
S. A. Malinovskaya and G. Liu, Harmonic spectral modulation of an optical frequency comb to control the ultracold molecules formation, Chem. Phys. Lett. 664, 1 (2016)
CrossRef
ADS
Google scholar
|
[28] |
M. A. Norcia, J. R. K. Cline, J. P. Bartolotta, M. J. Holland, and J. K. Thompson, Narrow-line laser cooling by adiabatic transfer, New J. Phys. 20(2), 023021 (2018)
CrossRef
ADS
Google scholar
|
[29] |
J. A. Muniz, M. A. Norcia, J. R. K. Cline, and J. K. Thompson, A robust narrow-line magneto-optical trap using adiabatic transfer, arXiv: 1806.00838 (2018)
|
[30] |
N. Petersen, F. Mühlbauer, L. Bougas, A. Sharma, D. Budker, and P. Windpassinger, Sawtooth-wave adiabaticpassage slowing of dysprosium, Phys. Rev. A 99(6), 063414 (2019)
CrossRef
ADS
Google scholar
|
[31] |
J. P. Bartolotta and M. J. Holland, Sawtooth-wave adiabatic passage in a magneto-optical trap, Phys. Rev. A 101(5), 053434 (2020)
CrossRef
ADS
Google scholar
|
[32] |
G. P. Greve, B. Wu, and J. K. Thompson, Laser cooling with adiabatic transfer on a Raman transition, New J. Phys. 21(7), 073045 (2019)
CrossRef
ADS
Google scholar
|
[33] |
J. P. Bartolotta, M. A. Norcia, J. R. K. Cline, J. K. Thompson, and M. J. Holland, Laser cooling by sawtoothwave adiabatic passage, Phys. Rev. A 98(2), 023404 (2018)
CrossRef
ADS
Google scholar
|
[34] |
A. M. L. Oien, I. T. McKinnie, P. J. Manson, W. J. Sandle, and D. M. Warrington, Cooling mechanisms in the sodium type-II magneto-optical trap, Phys. Rev. A 55(6), 4621 (1997)
CrossRef
ADS
Google scholar
|
[35] |
V. B. Tiwari, S. Singh, H. S. Rawat, and S. C. Mehendale, Cooling and trapping of 85Rb atoms in the ground hyperfine F= 2 state, Phys. Rev. A 78(6), 063421 (2008)
CrossRef
ADS
Google scholar
|
[36] |
L. Anderegg, B. L. Augenbraun, E. Chae, B. Hemmerling, N. R. Hutzler, A. Ravi, A. Collopy, J. Ye, W. Ketterle, and J. M. Doyle, Radio frequency magneto-optical trapping of CaF with high density, Phys. Rev. Lett. 119(10), 103201 (2017)
CrossRef
ADS
Google scholar
|
[37] |
S. Truppe, H. J. Williams, M. Hambach, L. Caldwell, N. J. Fitch, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, Molecules cooled below the Doppler limit, Nat. Phys. 13(12), 1173 (2017)
CrossRef
ADS
Google scholar
|
[38] |
M. Yeo, M. T. Hummon, A. L. Collopy, B. Yan, B. Hemmerling, E. Chae, J. M. Doyle, and J. Ye, Rotational state microwave mixing for laser cooling of complex diatomic molecules, Phys. Rev. Lett. 114(22), 223003 (2015)
CrossRef
ADS
Google scholar
|
[39] |
K. Mølmer, Y. Castin, and J. Dalibard, Monte Carlo wavefunction method in quantum optics, J. Opt. Soc. Am. B 10(3), 524 (1993)
CrossRef
ADS
Google scholar
|
[40] |
A. L. Collopy, M. T. Hummon, M. Yeo, B. Yan, and J. Ye, Prospects for a narrow line MOT in YO, New J. Phys. 17(5), 055008 (2015)
CrossRef
ADS
Google scholar
|
[41] |
A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, Laser cooling below the onephoton recoil energy by velocity-selective coherent population trapping, Phys. Rev. Lett. 61(7), 826 (1988)
CrossRef
ADS
Google scholar
|
[42] |
M. Kasevich and S. Chu, Laser cooling below a photon recoil with three-level atoms, Phys. Rev. Lett. 69(12), 1741 (1992)
CrossRef
ADS
Google scholar
|
[43] |
J. Brown and A. Carrington, Rotational Spectroscopy of Diatomic Molecules, Cambridge University Press, 2003
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |