Tight upper bound on the quantum value of Svetlichny operators under local filtering and hidden genuine nonlocality

Ling-Yun Sun, Li Xu, Jing Wang, Ming Li, Shu-Qian Shen, Lei Li, Shao-Ming Fei

PDF(811 KB)
PDF(811 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (3) : 31501. DOI: 10.1007/s11467-020-1015-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Tight upper bound on the quantum value of Svetlichny operators under local filtering and hidden genuine nonlocality

Author information +
History +

Abstract

Nonlocal quantum correlations among the quantum subsystems play essential roles in quantum science. The violation of the Svetlichny inequality provides sufficient conditions of genuine tripartite nonlocality. We provide tight upper bounds on the maximal quantum value of the Svetlichny operators under local filtering operations, and present a qualitative analytical analysis on the hidden genuine nonlocality for three-qubit systems. We investigate in detail two classes of three-qubit states whose hidden genuine nonlocalities can be revealed by local filtering.

Keywords

Bell inequalities / Svetlichny inequality / local filtering operations

Cite this article

Download citation ▾
Ling-Yun Sun, Li Xu, Jing Wang, Ming Li, Shu-Qian Shen, Lei Li, Shao-Ming Fei. Tight upper bound on the quantum value of Svetlichny operators under local filtering and hidden genuine nonlocality. Front. Phys., 2021, 16(3): 31501 https://doi.org/10.1007/s11467-020-1015-z

References

[1]
R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81(2), 865 (2009)
CrossRef ADS Google scholar
[2]
M. Li, M. J. Zhao, S. M. Fei, and Z. X. Wang, Experimental detection of quantum entanglement, Front. Phys. 8(4), 357 (2013)
CrossRef ADS Google scholar
[3]
Q. Dong, A. J. Torres-Arenas, G. H. Sun, W. C. Qiang, and S. H. Dong, Entanglement measures of a new type pseudo-pure state in accelerated frames, Front. Phys. 14(2), 21603 (2019)
CrossRef ADS Google scholar
[4]
M. David, G. Ramírez, B. J. Falaye, G.-H. Sun, M. Cruz-Irisson, and S.-H. Dong, Quantum teleportation and information splitting via four-qubit cluster state and a Bell state, Front. Phys. 12(5), 120306 (2017)
CrossRef ADS Google scholar
[5]
L. Roa, A. Espinoza, A Muñoz, and M. L. Ladrón de Guevara, Recovering information in probabilistic quantum teleportation, Front. Phys. 14(6), 61602 (2019)
CrossRef ADS Google scholar
[6]
X.-F. Qi, T. Gao, and F.-L. Yan, Quantifying the quantumness of ensembles via unitary similarity invariant norms, Front. Phys. 13(4), 130309 (2018)
CrossRef ADS Google scholar
[7]
Č. Brukner, M. Żukowski, and A. Zeilinger, Quantum communication complexity protocol with two entangled qutrits, Phys. Rev. Lett. 89(19), 197901 (2002)
CrossRef ADS Google scholar
[8]
H. Buhrman, R. Cleve, S. Massar, and R. de Wolf, Nonlocality and communication complexity, Rev. Mod. Phys. 82(1), 665 (2010)
CrossRef ADS Google scholar
[9]
V. Scarani and N. Gisin, Quantum communication between N partners and Bell’s inequalities, Phys. Rev. Lett. 87(11), 117901 (2001)
CrossRef ADS Google scholar
[10]
G. He, J. Zhu, and G. Zeng, Quantum secure communication using continuous variable Einstein–Podolsky–Rosen correlations, Phys. Rev. A 73(1), 012314 (2006)
CrossRef ADS Google scholar
[11]
X. B. Wang, C.Z. Peng, J. W. Pan, H. X. Ma, T. Yang, and H. Ying, The security and recent technology of quantum key distribution, Front. Phys. 1(3), 251 (2006)
CrossRef ADS Google scholar
[12]
L.-M. Liang, S.-H. Sun, M.-S. Jiang, and C.-Y. Li, Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices, Front. Phys. 9(5), 613 (2014)
CrossRef ADS Google scholar
[13]
J. D. Bancal, N. Gisin, Y. C. Liang, and S. Pironio, Deviceindependent witnesses of genuine multipartite entanglement, Phys. Rev. Lett. 106(25), 250404 (2011)
CrossRef ADS Google scholar
[14]
Z. Ficek, Quantum entanglement and disentanglement of multi-atom systems, Front. Phys. 5(1), 26 (2010)
CrossRef ADS Google scholar
[15]
Q. Dong, A.J. Torres-Arenas, G.-H. Sun, and S.-H. Dong, Tetrapartite entanglement features of W-Class state in uniform acceleration, Front. Phys. 15(1), 11602 (2020)
CrossRef ADS Google scholar
[16]
X.-T. Mo and Z.-Y. Xue, Single-step multipartite entangled states generation from coupled circuit cavities, Front. Phys. 14(3), 31602 (2019)
CrossRef ADS Google scholar
[17]
J. S. Bell, On the Einstein–Podolsky–Rosen paradox, Phys. Physique. Fizika. 1(3), 195 (1964)
CrossRef ADS Google scholar
[18]
N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, Bell nonlocality, Rev. Mod. Phys. 86(2), 419 (2014)
CrossRef ADS Google scholar
[19]
J. D. Bancal, J. Barrett, N. Gisin, and S. Pironio, Definitions of multipartite nonlocality, Phys. Rev. A 88(1), 014102 (2013)
CrossRef ADS Google scholar
[20]
M. D. Reid, Q. Y. He, and P. D. Drummond, Entanglement and nonlocality in multi-particle systems, Front. Phys. 7(1), 72 (2012)
CrossRef ADS Google scholar
[21]
J. Batle, A. Farouk, O. Tarawneh, and S. Abdalla, Multipartite quantum correlations among atoms in QED cavities, Front. Phys. 13(1), 130305 (2018)
CrossRef ADS Google scholar
[22]
G. Svetlichny, Distinguishing three-body from two-body nonseparability by a Bell-type inequality, Phys. Rev. D 35(10), 3066 (1987)
CrossRef ADS Google scholar
[23]
M. Li, S. Shen, N. Jing, S. M. Fei, and X. Li-Jost, Tight upper bound for the maximal quantum value of the Svetlichny operators, Phys. Rev. A 96(4), 042323 (2017)
CrossRef ADS Google scholar
[24]
F. Hirsch, M. T. Quintino, J. Bowles, and N. Brunner, Genuine hidden quantum nonlocality, Phys. Rev. Lett. 111(16), 160402 (2013)
CrossRef ADS Google scholar
[25]
F. Verstraete, J. Dehaene, and B. De Moor, Normal forms and entanglement measures for multipartite quantum states, Phys. Rev. A 68(1), 012103 (2003)
CrossRef ADS Google scholar
[26]
H. M. Wiseman, S. J. Jones, and A. C. Doherty, Steering, entanglement, nonlocality, and the Einstein–Podolsky– Rosen paradox, Phys. Rev. Lett. 98(14), 140402 (2007)
CrossRef ADS Google scholar
[27]
S. Popescu, Bell’s inequalities and density matrices: Revealing hidden nonlocality, Phys. Rev. Lett. 74(14), 2619 (1995)
CrossRef ADS Google scholar
[28]
N. Gisin, Hidden quantum nonlocality revealed by local filters, Phys. Lett. A 210(3), 151 (1996)
CrossRef ADS Google scholar
[29]
M. Li, H. Qin, J. Wang, S.-M. Fei, and C.-S. Sun, Maximal violation of Bell inequalities under local filtering, Sci. Rep. 7, 46505 (2017)
CrossRef ADS Google scholar
[30]
T. Pramanik, Y. W. Cho, S. W. Han, S. Y. Lee, Y. S. Kim, and S. Moon, Revealing hidden quantum steerability using local filtering operations, Phys. Rev. A 99(3), 030101 (2019)
CrossRef ADS Google scholar
[31]
L. Tendick, H. Kampermann, and D. Bruß, Activation of nonlocality in bound entanglement, Phys. Rev. Lett. 124(5), 050401 (2020)
CrossRef ADS Google scholar
[32]
J. Schlienz and G. Mahler, Description of entanglement, Phys. Rev. A 52(6), 4396 (1995)
CrossRef ADS Google scholar
[33]
M. Li, T. Zhang, S. M. Fei, X. Li-Jost, and N. Jing, Local unitary equivalence of multiqubit mixed quantum states, Phys. Rev. A 89(6), 062325 (2014)
CrossRef ADS Google scholar
[34]
M. L. Almeida, S. Pironio, J. Barrett, G. Tóth, and A. Acín, Noise robustness of the nonlocality of entangled quantum states, Phys. Rev. Lett. 99(4), 040403 (2007)
CrossRef ADS Google scholar
[35]
R. Augusiak, M. Demianowicz, J. Tura, and A. Acín, Entanglement and nonlocality are inequivalent for any number of parties, Phys. Rev. Lett. 115(3), 030404 (2015)
CrossRef ADS Google scholar
[36]
S. M. Hashemi Rafsanjani, M. Huber, C. J. Broadbent, and J. H. Eberly, Genuinely multi-partite concurrence of N-qubit X matrices, Phys. Rev. A 86(6), 062303 (2012)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(811 KB)

Accesses

Citations

Detail

Sections
Recommended

/