Tight upper bound on the quantum value of Svetlichny operators under local filtering and hidden genuine nonlocality

Ling-Yun Sun , Li Xu , Jing Wang , Ming Li , Shu-Qian Shen , Lei Li , Shao-Ming Fei

Front. Phys. ›› 2021, Vol. 16 ›› Issue (3) : 31501

PDF (811KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (3) : 31501 DOI: 10.1007/s11467-020-1015-z
RESEARCH ARTICLE

Tight upper bound on the quantum value of Svetlichny operators under local filtering and hidden genuine nonlocality

Author information +
History +
PDF (811KB)

Abstract

Nonlocal quantum correlations among the quantum subsystems play essential roles in quantum science. The violation of the Svetlichny inequality provides sufficient conditions of genuine tripartite nonlocality. We provide tight upper bounds on the maximal quantum value of the Svetlichny operators under local filtering operations, and present a qualitative analytical analysis on the hidden genuine nonlocality for three-qubit systems. We investigate in detail two classes of three-qubit states whose hidden genuine nonlocalities can be revealed by local filtering.

Keywords

Bell inequalities / Svetlichny inequality / local filtering operations

Cite this article

Download citation ▾
Ling-Yun Sun, Li Xu, Jing Wang, Ming Li, Shu-Qian Shen, Lei Li, Shao-Ming Fei. Tight upper bound on the quantum value of Svetlichny operators under local filtering and hidden genuine nonlocality. Front. Phys., 2021, 16(3): 31501 DOI:10.1007/s11467-020-1015-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81(2), 865 (2009)

[2]

M. Li, M. J. Zhao, S. M. Fei, and Z. X. Wang, Experimental detection of quantum entanglement, Front. Phys. 8(4), 357 (2013)

[3]

Q. Dong, A. J. Torres-Arenas, G. H. Sun, W. C. Qiang, and S. H. Dong, Entanglement measures of a new type pseudo-pure state in accelerated frames, Front. Phys. 14(2), 21603 (2019)

[4]

M. David, G. Ramírez, B. J. Falaye, G.-H. Sun, M. Cruz-Irisson, and S.-H. Dong, Quantum teleportation and information splitting via four-qubit cluster state and a Bell state, Front. Phys. 12(5), 120306 (2017)

[5]

L. Roa, A. Espinoza, A Muñoz, and M. L. Ladrón de Guevara, Recovering information in probabilistic quantum teleportation, Front. Phys. 14(6), 61602 (2019)

[6]

X.-F. Qi, T. Gao, and F.-L. Yan, Quantifying the quantumness of ensembles via unitary similarity invariant norms, Front. Phys. 13(4), 130309 (2018)

[7]

Č. Brukner, M. Żukowski, and A. Zeilinger, Quantum communication complexity protocol with two entangled qutrits, Phys. Rev. Lett. 89(19), 197901 (2002)

[8]

H. Buhrman, R. Cleve, S. Massar, and R. de Wolf, Nonlocality and communication complexity, Rev. Mod. Phys. 82(1), 665 (2010)

[9]

V. Scarani and N. Gisin, Quantum communication between N partners and Bell’s inequalities, Phys. Rev. Lett. 87(11), 117901 (2001)

[10]

G. He, J. Zhu, and G. Zeng, Quantum secure communication using continuous variable Einstein–Podolsky–Rosen correlations, Phys. Rev. A 73(1), 012314 (2006)

[11]

X. B. Wang, C.Z. Peng, J. W. Pan, H. X. Ma, T. Yang, and H. Ying, The security and recent technology of quantum key distribution, Front. Phys. 1(3), 251 (2006)

[12]

L.-M. Liang, S.-H. Sun, M.-S. Jiang, and C.-Y. Li, Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices, Front. Phys. 9(5), 613 (2014)

[13]

J. D. Bancal, N. Gisin, Y. C. Liang, and S. Pironio, Deviceindependent witnesses of genuine multipartite entanglement, Phys. Rev. Lett. 106(25), 250404 (2011)

[14]

Z. Ficek, Quantum entanglement and disentanglement of multi-atom systems, Front. Phys. 5(1), 26 (2010)

[15]

Q. Dong, A.J. Torres-Arenas, G.-H. Sun, and S.-H. Dong, Tetrapartite entanglement features of W-Class state in uniform acceleration, Front. Phys. 15(1), 11602 (2020)

[16]

X.-T. Mo and Z.-Y. Xue, Single-step multipartite entangled states generation from coupled circuit cavities, Front. Phys. 14(3), 31602 (2019)

[17]

J. S. Bell, On the Einstein–Podolsky–Rosen paradox, Phys. Physique. Fizika. 1(3), 195 (1964)

[18]

N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, Bell nonlocality, Rev. Mod. Phys. 86(2), 419 (2014)

[19]

J. D. Bancal, J. Barrett, N. Gisin, and S. Pironio, Definitions of multipartite nonlocality, Phys. Rev. A 88(1), 014102 (2013)

[20]

M. D. Reid, Q. Y. He, and P. D. Drummond, Entanglement and nonlocality in multi-particle systems, Front. Phys. 7(1), 72 (2012)

[21]

J. Batle, A. Farouk, O. Tarawneh, and S. Abdalla, Multipartite quantum correlations among atoms in QED cavities, Front. Phys. 13(1), 130305 (2018)

[22]

G. Svetlichny, Distinguishing three-body from two-body nonseparability by a Bell-type inequality, Phys. Rev. D 35(10), 3066 (1987)

[23]

M. Li, S. Shen, N. Jing, S. M. Fei, and X. Li-Jost, Tight upper bound for the maximal quantum value of the Svetlichny operators, Phys. Rev. A 96(4), 042323 (2017)

[24]

F. Hirsch, M. T. Quintino, J. Bowles, and N. Brunner, Genuine hidden quantum nonlocality, Phys. Rev. Lett. 111(16), 160402 (2013)

[25]

F. Verstraete, J. Dehaene, and B. De Moor, Normal forms and entanglement measures for multipartite quantum states, Phys. Rev. A 68(1), 012103 (2003)

[26]

H. M. Wiseman, S. J. Jones, and A. C. Doherty, Steering, entanglement, nonlocality, and the Einstein–Podolsky– Rosen paradox, Phys. Rev. Lett. 98(14), 140402 (2007)

[27]

S. Popescu, Bell’s inequalities and density matrices: Revealing hidden nonlocality, Phys. Rev. Lett. 74(14), 2619 (1995)

[28]

N. Gisin, Hidden quantum nonlocality revealed by local filters, Phys. Lett. A 210(3), 151 (1996)

[29]

M. Li, H. Qin, J. Wang, S.-M. Fei, and C.-S. Sun, Maximal violation of Bell inequalities under local filtering, Sci. Rep. 7, 46505 (2017)

[30]

T. Pramanik, Y. W. Cho, S. W. Han, S. Y. Lee, Y. S. Kim, and S. Moon, Revealing hidden quantum steerability using local filtering operations, Phys. Rev. A 99(3), 030101 (2019)

[31]

L. Tendick, H. Kampermann, and D. Bruß, Activation of nonlocality in bound entanglement, Phys. Rev. Lett. 124(5), 050401 (2020)

[32]

J. Schlienz and G. Mahler, Description of entanglement, Phys. Rev. A 52(6), 4396 (1995)

[33]

M. Li, T. Zhang, S. M. Fei, X. Li-Jost, and N. Jing, Local unitary equivalence of multiqubit mixed quantum states, Phys. Rev. A 89(6), 062325 (2014)

[34]

M. L. Almeida, S. Pironio, J. Barrett, G. Tóth, and A. Acín, Noise robustness of the nonlocality of entangled quantum states, Phys. Rev. Lett. 99(4), 040403 (2007)

[35]

R. Augusiak, M. Demianowicz, J. Tura, and A. Acín, Entanglement and nonlocality are inequivalent for any number of parties, Phys. Rev. Lett. 115(3), 030404 (2015)

[36]

S. M. Hashemi Rafsanjani, M. Huber, C. J. Broadbent, and J. H. Eberly, Genuinely multi-partite concurrence of N-qubit X matrices, Phys. Rev. A 86(6), 062303 (2012)

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (811KB)

952

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/