Tight upper bound on the quantum value of Svetlichny operators under local filtering and hidden genuine nonlocality
Ling-Yun Sun, Li Xu, Jing Wang, Ming Li, Shu-Qian Shen, Lei Li, Shao-Ming Fei
Tight upper bound on the quantum value of Svetlichny operators under local filtering and hidden genuine nonlocality
Nonlocal quantum correlations among the quantum subsystems play essential roles in quantum science. The violation of the Svetlichny inequality provides sufficient conditions of genuine tripartite nonlocality. We provide tight upper bounds on the maximal quantum value of the Svetlichny operators under local filtering operations, and present a qualitative analytical analysis on the hidden genuine nonlocality for three-qubit systems. We investigate in detail two classes of three-qubit states whose hidden genuine nonlocalities can be revealed by local filtering.
Bell inequalities / Svetlichny inequality / local filtering operations
[1] |
R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81(2), 865 (2009)
CrossRef
ADS
Google scholar
|
[2] |
M. Li, M. J. Zhao, S. M. Fei, and Z. X. Wang, Experimental detection of quantum entanglement, Front. Phys. 8(4), 357 (2013)
CrossRef
ADS
Google scholar
|
[3] |
Q. Dong, A. J. Torres-Arenas, G. H. Sun, W. C. Qiang, and S. H. Dong, Entanglement measures of a new type pseudo-pure state in accelerated frames, Front. Phys. 14(2), 21603 (2019)
CrossRef
ADS
Google scholar
|
[4] |
M. David, G. Ramírez, B. J. Falaye, G.-H. Sun, M. Cruz-Irisson, and S.-H. Dong, Quantum teleportation and information splitting via four-qubit cluster state and a Bell state, Front. Phys. 12(5), 120306 (2017)
CrossRef
ADS
Google scholar
|
[5] |
L. Roa, A. Espinoza, A Muñoz, and M. L. Ladrón de Guevara, Recovering information in probabilistic quantum teleportation, Front. Phys. 14(6), 61602 (2019)
CrossRef
ADS
Google scholar
|
[6] |
X.-F. Qi, T. Gao, and F.-L. Yan, Quantifying the quantumness of ensembles via unitary similarity invariant norms, Front. Phys. 13(4), 130309 (2018)
CrossRef
ADS
Google scholar
|
[7] |
Č. Brukner, M. Żukowski, and A. Zeilinger, Quantum communication complexity protocol with two entangled qutrits, Phys. Rev. Lett. 89(19), 197901 (2002)
CrossRef
ADS
Google scholar
|
[8] |
H. Buhrman, R. Cleve, S. Massar, and R. de Wolf, Nonlocality and communication complexity, Rev. Mod. Phys. 82(1), 665 (2010)
CrossRef
ADS
Google scholar
|
[9] |
V. Scarani and N. Gisin, Quantum communication between N partners and Bell’s inequalities, Phys. Rev. Lett. 87(11), 117901 (2001)
CrossRef
ADS
Google scholar
|
[10] |
G. He, J. Zhu, and G. Zeng, Quantum secure communication using continuous variable Einstein–Podolsky–Rosen correlations, Phys. Rev. A 73(1), 012314 (2006)
CrossRef
ADS
Google scholar
|
[11] |
X. B. Wang, C.Z. Peng, J. W. Pan, H. X. Ma, T. Yang, and H. Ying, The security and recent technology of quantum key distribution, Front. Phys. 1(3), 251 (2006)
CrossRef
ADS
Google scholar
|
[12] |
L.-M. Liang, S.-H. Sun, M.-S. Jiang, and C.-Y. Li, Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices, Front. Phys. 9(5), 613 (2014)
CrossRef
ADS
Google scholar
|
[13] |
J. D. Bancal, N. Gisin, Y. C. Liang, and S. Pironio, Deviceindependent witnesses of genuine multipartite entanglement, Phys. Rev. Lett. 106(25), 250404 (2011)
CrossRef
ADS
Google scholar
|
[14] |
Z. Ficek, Quantum entanglement and disentanglement of multi-atom systems, Front. Phys. 5(1), 26 (2010)
CrossRef
ADS
Google scholar
|
[15] |
Q. Dong, A.J. Torres-Arenas, G.-H. Sun, and S.-H. Dong, Tetrapartite entanglement features of W-Class state in uniform acceleration, Front. Phys. 15(1), 11602 (2020)
CrossRef
ADS
Google scholar
|
[16] |
X.-T. Mo and Z.-Y. Xue, Single-step multipartite entangled states generation from coupled circuit cavities, Front. Phys. 14(3), 31602 (2019)
CrossRef
ADS
Google scholar
|
[17] |
J. S. Bell, On the Einstein–Podolsky–Rosen paradox, Phys. Physique. Fizika. 1(3), 195 (1964)
CrossRef
ADS
Google scholar
|
[18] |
N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, Bell nonlocality, Rev. Mod. Phys. 86(2), 419 (2014)
CrossRef
ADS
Google scholar
|
[19] |
J. D. Bancal, J. Barrett, N. Gisin, and S. Pironio, Definitions of multipartite nonlocality, Phys. Rev. A 88(1), 014102 (2013)
CrossRef
ADS
Google scholar
|
[20] |
M. D. Reid, Q. Y. He, and P. D. Drummond, Entanglement and nonlocality in multi-particle systems, Front. Phys. 7(1), 72 (2012)
CrossRef
ADS
Google scholar
|
[21] |
J. Batle, A. Farouk, O. Tarawneh, and S. Abdalla, Multipartite quantum correlations among atoms in QED cavities, Front. Phys. 13(1), 130305 (2018)
CrossRef
ADS
Google scholar
|
[22] |
G. Svetlichny, Distinguishing three-body from two-body nonseparability by a Bell-type inequality, Phys. Rev. D 35(10), 3066 (1987)
CrossRef
ADS
Google scholar
|
[23] |
M. Li, S. Shen, N. Jing, S. M. Fei, and X. Li-Jost, Tight upper bound for the maximal quantum value of the Svetlichny operators, Phys. Rev. A 96(4), 042323 (2017)
CrossRef
ADS
Google scholar
|
[24] |
F. Hirsch, M. T. Quintino, J. Bowles, and N. Brunner, Genuine hidden quantum nonlocality, Phys. Rev. Lett. 111(16), 160402 (2013)
CrossRef
ADS
Google scholar
|
[25] |
F. Verstraete, J. Dehaene, and B. De Moor, Normal forms and entanglement measures for multipartite quantum states, Phys. Rev. A 68(1), 012103 (2003)
CrossRef
ADS
Google scholar
|
[26] |
H. M. Wiseman, S. J. Jones, and A. C. Doherty, Steering, entanglement, nonlocality, and the Einstein–Podolsky– Rosen paradox, Phys. Rev. Lett. 98(14), 140402 (2007)
CrossRef
ADS
Google scholar
|
[27] |
S. Popescu, Bell’s inequalities and density matrices: Revealing hidden nonlocality, Phys. Rev. Lett. 74(14), 2619 (1995)
CrossRef
ADS
Google scholar
|
[28] |
N. Gisin, Hidden quantum nonlocality revealed by local filters, Phys. Lett. A 210(3), 151 (1996)
CrossRef
ADS
Google scholar
|
[29] |
M. Li, H. Qin, J. Wang, S.-M. Fei, and C.-S. Sun, Maximal violation of Bell inequalities under local filtering, Sci. Rep. 7, 46505 (2017)
CrossRef
ADS
Google scholar
|
[30] |
T. Pramanik, Y. W. Cho, S. W. Han, S. Y. Lee, Y. S. Kim, and S. Moon, Revealing hidden quantum steerability using local filtering operations, Phys. Rev. A 99(3), 030101 (2019)
CrossRef
ADS
Google scholar
|
[31] |
L. Tendick, H. Kampermann, and D. Bruß, Activation of nonlocality in bound entanglement, Phys. Rev. Lett. 124(5), 050401 (2020)
CrossRef
ADS
Google scholar
|
[32] |
J. Schlienz and G. Mahler, Description of entanglement, Phys. Rev. A 52(6), 4396 (1995)
CrossRef
ADS
Google scholar
|
[33] |
M. Li, T. Zhang, S. M. Fei, X. Li-Jost, and N. Jing, Local unitary equivalence of multiqubit mixed quantum states, Phys. Rev. A 89(6), 062325 (2014)
CrossRef
ADS
Google scholar
|
[34] |
M. L. Almeida, S. Pironio, J. Barrett, G. Tóth, and A. Acín, Noise robustness of the nonlocality of entangled quantum states, Phys. Rev. Lett. 99(4), 040403 (2007)
CrossRef
ADS
Google scholar
|
[35] |
R. Augusiak, M. Demianowicz, J. Tura, and A. Acín, Entanglement and nonlocality are inequivalent for any number of parties, Phys. Rev. Lett. 115(3), 030404 (2015)
CrossRef
ADS
Google scholar
|
[36] |
S. M. Hashemi Rafsanjani, M. Huber, C. J. Broadbent, and J. H. Eberly, Genuinely multi-partite concurrence of N-qubit X matrices, Phys. Rev. A 86(6), 062303 (2012)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |