Kinetic modeling of multiphase flow based on simplified Enskog equation

Yu-Dong Zhang , Ai-Guo Xu , Jing-Jiang Qiu , Hong-Tao Wei , Zung-Hang Wei

Front. Phys. ›› 2020, Vol. 15 ›› Issue (6) : 62503

PDF (2352KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (6) : 62503 DOI: 10.1007/s11467-020-1014-0
RESEARCH ARTICLE

Kinetic modeling of multiphase flow based on simplified Enskog equation

Author information +
History +
PDF (2352KB)

Abstract

A new kinetic model for multiphase flow was presented under the framework of the discrete Boltzmann method (DBM). Significantly different from the previous DBM, a bottom-up approach was adopted in this model. The effects of molecular size and repulsion potential were described by the Enskog collision model; the attraction potential was obtained through the mean-field approximation method. The molecular interactions, which result in the non-ideal equation of state and surface tension, were directly introduced as an external force term. Several typical benchmark problems, including Couette flow, two-phase coexistence curve, the Laplace law, phase separation, and the collision of two droplets, were simulated to verify the model. Especially, for two types of droplet collisions, the strengths of two non-equilibrium effects, D¯2* and D¯3* , defined through the second and third order non-conserved kinetic moments of (ffeq), are comparatively investigated, where f(feq)is the (equilibrium) distribution function. It is interesting to find that during the collision process, D¯2* is always significantly larger than D¯3*, D¯2* can be used to identify the different stages of the collision process and to distinguish different types of collisions. The modeling method can be directly extended to a higher-order model for the case where the non-equilibrium effect is strong, and the linear constitutive law of viscous stress is no longer valid.

Keywords

multiphase flow / discrete Boltzmann method / Enskog equation / non-equilibrium characteristics

Cite this article

Download citation ▾
Yu-Dong Zhang, Ai-Guo Xu, Jing-Jiang Qiu, Hong-Tao Wei, Zung-Hang Wei. Kinetic modeling of multiphase flow based on simplified Enskog equation. Front. Phys., 2020, 15(6): 62503 DOI:10.1007/s11467-020-1014-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. Chen, Q. Xie, A. Sari, P. V. Bardy, and A. Saeedi, Oil/water/rock wettability: Influencing factors and implications for low salinity water flooding in carbonate reservoirs, Fuel 215, 171 (2018)

[2]

Y. Chen and Z. Deng, Hydrodynamics of a droplet passing through a microfluidic T-junction, J. Fluid Mech. 819, 401 (2017)

[3]

J. Tice, H. Song, A. Lyon, and R. Ismagilov, Formation of droplets and mixing in multiphase microfluidics at low values of the reynolds and the capillary numbers, Langmuir 19(22), 9127 (2003)

[4]

A. Günther and K. Jensen, Multiphase microfluidics: From flow characteristics to chemical and materials synthesis, Lab Chip 6(12), 1487 (2006)

[5]

E. Christopher, Brennen, Fundamentals of Multiphase Flow, Cambridge: Cambridge University Press, 2005

[6]

R. Saurel and C. Pantano, Diffuse-interface capturing methods for compressible two-phase flows, Annu. Rev. Fluid Mech. 50(1), 105 (2018)

[7]

A. Frezzotti, P. Barbante, and L. Gibelli, Direct simulation Monte Carlo applications to liquid–vapor flows, Phys. Fluids 31(6), 062103 (2019)

[8]

M. Wörner, Numerical modeling of multiphase flows in microfluidics and micro process engineering: A review of methods and applications, Microfluid. Nanofluidics 12(6), 841 (2012)

[9]

Y. Zhang, A. Xu, G. Zhang, Z. Chen, and P. Wang, Discrete Boltzmann method for non-equilibrium flows: Based on Shakhov model, Comput. Phys. Commun. 238, 50 (2019)

[10]

M. Moseler and U. Landman, Formation, stability, and breakup of nanojets, Science 289(5482), 1165 (2000)

[11]

S. Zhan, Y. Su, Z. Jin, M. Zhang, W. Wang, Y. Hao, and L. Li, Study of liquid-liquid two-phase flow in hydrophilic nanochannels by molecular simulations and theoretical modeling, Chem. Eng. J. 395, 125053 (2020)

[12]

S. Wolfram, Cellular automaton fluids 1: Basic theory, J. Stat. Phys. 45(3–4), 471 (1986)

[13]

S. Chen and G. Doolen, Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech. 30(1), 329 (1998)

[14]

S. Succi, The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond, Oxford: Oxford University Press, 2001

[15]

X. He and G. D. Doolen, Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows, J. Stat. Phys. 107(1–2), 309 (2002)

[16]

R. Qin, Mesoscopic interparticle potentials in the lattice Boltzmann equation for multiphase fluids, Phys. Rev. E 73(6), 066703 (2006)

[17]

Q. Li, K. Luo, Q. Kang, Y. He, Q. Chen, and Q. Liu, Lattice Boltzmann methods for multiphase flow and phasechange heat transfer, Pror. Energy Combust. Sci. 52, 62 (2016)

[18]

R. Qin, Thermodynamic properties of phase separation in shear flow, Comput. Fluids 117, 11 (2015)

[19]

K. Timm, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, and E. Viggen, The Lattice Boltzmann Method-Principles and Practice, Springer, 2017

[20]

D. Grunau, S. Chen, and K. Eggert, A lattice Boltzmann model for multiphase fluid flows, Phys. Fluids 5(10), 2557 (1993)

[21]

X. Shan and H. Chen, Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E 47(3), 1815 (1993)

[22]

M. R. Swift, W. R. Osborn, and J. M. Yeomans, Lattice Boltzmann simulation of non-ideal fluids, Phys. Rev. Lett. 75(5), 830 (1995)

[23]

A. Xu, G. Gonnella, and A. Lamura, Phase-separating binary fluids under oscillatory shear, Phys. Rev. E 67(5), 056105 (2003)

[24]

X. He, S. Chen, and R. Zhang, A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh–Taylor instability, J. Comput. Phys. 152(2), 642 (1999)

[25]

H. Liang, Q. Li, B. Shi, and Z. Chai, Lattice Boltzmann simulation of three-dimensional Rayleigh-Taylor instability, Phys. Rev. E 93(3), 033113 (2016)

[26]

H. Wang, X. Yuan, H. Liang, Z. Chai, and B. Shi, A brief review of the phase-field-based lattice Boltzmann method for multiphase flows, Capillarity 2(3), 33 (2019)

[27]

D. Sun, A discrete kinetic scheme to model anisotropic liquid–solid phase transitions, Appl. Math. Lett. 103, 106222 (2020)

[28]

M. Watari and M. Tsutahara, Two-dimensional thermal model of the finite-di ference lattice Boltzmann method with high spatial isotropy, Phys. Rev. E 67(3), 036306 (2003)

[29]

G. Gonnella, A. Lamura, and V. Sofonea, Lattice Boltzmann simulation of thermal non-ideal fluids, Phys. Rev. E 76(3), 036703 (2007)

[30]

A. Onuki, Dynamic van der Waals theory of two-phase fluids in heat flow, Phys. Rev. Lett. 94(5), 054501 (2005)

[31]

Y. Gan, A. Xu, G. Zhang, and Y. Li, FFT-LB modeling of thermal liquid-vapor system, Commum. Theor. Phys. 57(4), 681 (2012)

[32]

Y. Gan, A. Xu, G. Zhang, Y. Li, and H. Li, Phase separation in thermal systems: A lattice Boltzmann study and morphological characterization, Phys. Rev. E 84(4), 046715 (2011)

[33]

A. Xu, G. Zhang, Y. Gan, F. Chen, and X. Yu, Lattice Boltzmann modeling and simulation of compressible flows, Front. Phys. 7(5), 582 (2012)

[34]

A. Xu, G. Zhang, and Y. Ying, Progess of discrete Boltzmann modeling and simulation of combustion system, Acta Physica Sinica 64, 184701 (2015)

[35]

A. Xu, G. Zhang, and Y. Gan, Progress in studies on discrete Boltzmann modeling of phase separation process, Mech. Eng. 38, 361 (2016)

[36]

A. Xu, G. Zhang, and Y. Zhang, Discrete Boltzmann modeling of compressible flows, in: G. Z. Kyzas and A.C. Mitropoulos (Eds.), Kinetic Theory, InTech, Rijeka, 2018, Ch. 02

[37]

C. Lin and K. Luo, Discrete Boltzmann modeling of unsteady reactive flows with nonequilibrium effects, Phys. Rev. E 99(1), 012142 (2019)

[38]

Y. Gan, A. Xu, G. Zhang, Y. Zhang, and S. Succi, Discrete Boltzmann trans-scale modeling of high-speed compressible flows, Phys. Rev. E 97(5), 053312 (2018)

[39]

Y. Gan, A. Xu, G. Zhang, and S. Succi, Discrete Boltzmann modeling of multiphase flows: hydrodynamic and thermodynamic non-equilibrium effects, Soft Matter 11(26), 5336 (2015)

[40]

Y. Zhang, A. Xu, G. Zhang, Y. Gan, Z. Chen, and S. Succi, Entropy production in thermal phase separation: A kinetic-theory approach, Soft Matter 15(10), 2245 (2019)

[41]

B. Yan, A. Xu, G. Zhang, Y. Ying, and H. Li, Lattice Boltzmann model for combustion and detonation, Front. Phys. 8(1), 94 (2013)

[42]

A. Xu, C. Lin, G. Zhang, and Y. Li, Multiple-relaxationtime lattice Boltzmann kinetic model for combustion, Phys. Rev. E 91(4), 043306 (2015)

[43]

C. Lin, A. Xu, G. Zhang, and Y. Li, Double-distributionfunction discrete Boltzmann model for combustion, Combust. Flame 164, 137 (2016)

[44]

Y. Zhang, A. Xu, G. Zhang, C. Zhu, and C. Lin, Kinetic modeling of detonation and effects of negative temperature coefficient, Combust. Flame 173, 483 (2016)

[45]

C. Lin and K. Luo, MRT discrete Boltzmann method for compressible exothermic reactive flows, Comput. Fluids 166, 176 (2018)

[46]

C. Lin, K. Luo, L. Fei, and S. Succi, A multi-component discrete Boltzmann model for nonequilibrium reactive flows, Sci. Rep. 7(1), 14580 (2017)

[47]

A. Xu, G. Zhang, Y. Zhang, P. Wang, and Y. Ying, Discrete Boltzmann model for implosion and explosion related compressible ow with spherical symmetry, Front. Phys. 13(5), 135102 (2018)

[48]

H. Lai, A. Xu, G. Zhang, Y. Gan, Y. Ying, and S. Succi, Non-equilibrium thermohydrodynamic effects on the Rayleigh-Taylor instability incompressible flow, Phys. Rev. E 94(2), 023106 (2016)

[49]

F. Chen, A. Xu, and G. Zhang, Viscosity, heat conductivity, and Prandtl number effects in the Rayleigh Taylor instability, Front. Phys. 11(6), 114703 (2016)

[50]

H. Ye, H. Lai, D. Li, Y. Gan, C. Lin, L. Chen, and A. Xu, Knudsen number effects on two-dimensional Rayleigh-Taylor instability in compressible fluid: Based on a discrete Boltzmann method, Entropy (Basel) 22(5), 500 (2020)

[51]

Y. Gan, A. Xu, G. Zhang, C. Lin, H. Lai, and Z. Liu, Nonequilibrium and morphological characterizations of Kelvin–Helmholtz instability in compressible flows, Front. Phys. 14(4), 43602 (2019)

[52]

C. Lin, A. Xu, G. Zhang, K. Luo, and Y. Li, Discrete Boltzmann modeling of Rayleigh–Taylor instability in twocomponent compressible flows, Phys. Rev. E 96(5), 053305 (2017)

[53]

H. Liu, W. Kang, Q. Zhang, Y. Zhang, H. Duan, and X. He, Molecular dynamics simulations of microscopic structure of ultra strong shock waves in dense helium, Front. Phys. 11(6), 115206 (2016)

[54]

H. Liu, Y. Zhang, W. Kang, P. Zhang, H. Duan, and X. He, Molecular dynamics simulation of strong shock waves propagating in dense deuterium, taking into consideration effects of excited electrons, Phys. Rev. E 95(2), 023201 (2017)

[55]

H. Liu, W. Kang, H. Duan, P. Zhang, and X. He, Recent progresses on numerical investigations of microscopic structure of strong shock waves in fluid, Sci. China Phys. Mech. Astron. 47(7), 070003 (2017)

[56]

J. Meng, Y. Zhang, N. Hadjiconstantinou, G. Radtke, and X. Shan, Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows, J. Fluid Mech. 718, 347 (2013)

[57]

Y. Gan, A. Xu, G. Zhang, and S. Succi, Discrete Boltzmann modeling of multiphase flows: Hydrodynamic and thermodynamic non-equilibrium effects, Soft Matter 11(26), 5336 (2015)

[58]

Q. Shen, Rarefied Gas Dynamics: Fundamentals, Simulations and Micro Flows, Springer, 2005

[59]

S. Chapman, T. Cowling, and D. Burnett, The Mathematical Theory of Non-Uniform Gases: An Account of The Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases, Cambridge: Cambridge University Press, 1990

[60]

Z. Guo and C. Zheng, Theory and Applications of Lattice Boltzmann Method, Beijing: Science Press, 2008

[61]

V. Bongiorno and H. T. Davis, Modified van der Waals theory of fluid interfaces, Phys. Rev. A 12(5), 2213 (1975)

[62]

H. Huang, M. Sukop, and X. Lu, Multiphase Lattice Boltzmann Methods: Theory and Application, John Wiley & Sons, Inc, 2015

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (2352KB)

630

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/