Kinetic modeling of multiphase flow based on simplified Enskog equation
Yu-Dong Zhang, Ai-Guo Xu, Jing-Jiang Qiu, Hong-Tao Wei, Zung-Hang Wei
Kinetic modeling of multiphase flow based on simplified Enskog equation
A new kinetic model for multiphase flow was presented under the framework of the discrete Boltzmann method (DBM). Significantly different from the previous DBM, a bottom-up approach was adopted in this model. The effects of molecular size and repulsion potential were described by the Enskog collision model; the attraction potential was obtained through the mean-field approximation method. The molecular interactions, which result in the non-ideal equation of state and surface tension, were directly introduced as an external force term. Several typical benchmark problems, including Couette flow, two-phase coexistence curve, the Laplace law, phase separation, and the collision of two droplets, were simulated to verify the model. Especially, for two types of droplet collisions, the strengths of two non-equilibrium effects, and , defined through the second and third order non-conserved kinetic moments of , are comparatively investigated, where is the (equilibrium) distribution function. It is interesting to find that during the collision process, is always significantly larger than , can be used to identify the different stages of the collision process and to distinguish different types of collisions. The modeling method can be directly extended to a higher-order model for the case where the non-equilibrium effect is strong, and the linear constitutive law of viscous stress is no longer valid.
multiphase flow / discrete Boltzmann method / Enskog equation / non-equilibrium characteristics
[1] |
Y. Chen, Q. Xie, A. Sari, P. V. Bardy, and A. Saeedi, Oil/water/rock wettability: Influencing factors and implications for low salinity water flooding in carbonate reservoirs, Fuel 215, 171 (2018)
CrossRef
ADS
Google scholar
|
[2] |
Y. Chen and Z. Deng, Hydrodynamics of a droplet passing through a microfluidic T-junction, J. Fluid Mech. 819, 401 (2017)
CrossRef
ADS
Google scholar
|
[3] |
J. Tice, H. Song, A. Lyon, and R. Ismagilov, Formation of droplets and mixing in multiphase microfluidics at low values of the reynolds and the capillary numbers, Langmuir 19(22), 9127 (2003)
CrossRef
ADS
Google scholar
|
[4] |
A. Günther and K. Jensen, Multiphase microfluidics: From flow characteristics to chemical and materials synthesis, Lab Chip 6(12), 1487 (2006)
CrossRef
ADS
Google scholar
|
[5] |
E. Christopher, Brennen, Fundamentals of Multiphase Flow, Cambridge: Cambridge University Press, 2005
|
[6] |
R. Saurel and C. Pantano, Diffuse-interface capturing methods for compressible two-phase flows, Annu. Rev. Fluid Mech. 50(1), 105 (2018)
CrossRef
ADS
Google scholar
|
[7] |
A. Frezzotti, P. Barbante, and L. Gibelli, Direct simulation Monte Carlo applications to liquid–vapor flows, Phys. Fluids 31(6), 062103 (2019)
CrossRef
ADS
Google scholar
|
[8] |
M. Wörner, Numerical modeling of multiphase flows in microfluidics and micro process engineering: A review of methods and applications, Microfluid. Nanofluidics 12(6), 841 (2012)
CrossRef
ADS
Google scholar
|
[9] |
Y. Zhang, A. Xu, G. Zhang, Z. Chen, and P. Wang, Discrete Boltzmann method for non-equilibrium flows: Based on Shakhov model, Comput. Phys. Commun. 238, 50 (2019)
CrossRef
ADS
Google scholar
|
[10] |
M. Moseler and U. Landman, Formation, stability, and breakup of nanojets, Science 289(5482), 1165 (2000)
CrossRef
ADS
Google scholar
|
[11] |
S. Zhan, Y. Su, Z. Jin, M. Zhang, W. Wang, Y. Hao, and L. Li, Study of liquid-liquid two-phase flow in hydrophilic nanochannels by molecular simulations and theoretical modeling, Chem. Eng. J. 395, 125053 (2020)
CrossRef
ADS
Google scholar
|
[12] |
S. Wolfram, Cellular automaton fluids 1: Basic theory, J. Stat. Phys. 45(3–4), 471 (1986)
CrossRef
ADS
Google scholar
|
[13] |
S. Chen and G. Doolen, Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech. 30(1), 329 (1998)
CrossRef
ADS
Google scholar
|
[14] |
S. Succi, The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond, Oxford: Oxford University Press, 2001
|
[15] |
X. He and G. D. Doolen, Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows, J. Stat. Phys. 107(1–2), 309 (2002)
|
[16] |
R. Qin, Mesoscopic interparticle potentials in the lattice Boltzmann equation for multiphase fluids, Phys. Rev. E 73(6), 066703 (2006)
CrossRef
ADS
Google scholar
|
[17] |
Q. Li, K. Luo, Q. Kang, Y. He, Q. Chen, and Q. Liu, Lattice Boltzmann methods for multiphase flow and phasechange heat transfer, Pror. Energy Combust. Sci. 52, 62 (2016)
CrossRef
ADS
Google scholar
|
[18] |
R. Qin, Thermodynamic properties of phase separation in shear flow, Comput. Fluids 117, 11 (2015)
CrossRef
ADS
Google scholar
|
[19] |
K. Timm, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, and E. Viggen, The Lattice Boltzmann Method-Principles and Practice, Springer, 2017
|
[20] |
D. Grunau, S. Chen, and K. Eggert, A lattice Boltzmann model for multiphase fluid flows, Phys. Fluids 5(10), 2557 (1993)
CrossRef
ADS
Google scholar
|
[21] |
X. Shan and H. Chen, Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E 47(3), 1815 (1993)
CrossRef
ADS
Google scholar
|
[22] |
M. R. Swift, W. R. Osborn, and J. M. Yeomans, Lattice Boltzmann simulation of non-ideal fluids, Phys. Rev. Lett. 75(5), 830 (1995)
CrossRef
ADS
Google scholar
|
[23] |
A. Xu, G. Gonnella, and A. Lamura, Phase-separating binary fluids under oscillatory shear, Phys. Rev. E 67(5), 056105 (2003)
CrossRef
ADS
Google scholar
|
[24] |
X. He, S. Chen, and R. Zhang, A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh–Taylor instability, J. Comput. Phys. 152(2), 642 (1999)
CrossRef
ADS
Google scholar
|
[25] |
H. Liang, Q. Li, B. Shi, and Z. Chai, Lattice Boltzmann simulation of three-dimensional Rayleigh-Taylor instability, Phys. Rev. E 93(3), 033113 (2016)
CrossRef
ADS
Google scholar
|
[26] |
H. Wang, X. Yuan, H. Liang, Z. Chai, and B. Shi, A brief review of the phase-field-based lattice Boltzmann method for multiphase flows, Capillarity 2(3), 33 (2019)
CrossRef
ADS
Google scholar
|
[27] |
D. Sun, A discrete kinetic scheme to model anisotropic liquid–solid phase transitions, Appl. Math. Lett. 103, 106222 (2020)
CrossRef
ADS
Google scholar
|
[28] |
M. Watari and M. Tsutahara, Two-dimensional thermal model of the finite-di ference lattice Boltzmann method with high spatial isotropy, Phys. Rev. E 67(3), 036306 (2003)
CrossRef
ADS
Google scholar
|
[29] |
G. Gonnella, A. Lamura, and V. Sofonea, Lattice Boltzmann simulation of thermal non-ideal fluids, Phys. Rev. E 76(3), 036703 (2007)
CrossRef
ADS
Google scholar
|
[30] |
A. Onuki, Dynamic van der Waals theory of two-phase fluids in heat flow, Phys. Rev. Lett. 94(5), 054501 (2005)
CrossRef
ADS
Google scholar
|
[31] |
Y. Gan, A. Xu, G. Zhang, and Y. Li, FFT-LB modeling of thermal liquid-vapor system, Commum. Theor. Phys. 57(4), 681 (2012)
CrossRef
ADS
Google scholar
|
[32] |
Y. Gan, A. Xu, G. Zhang, Y. Li, and H. Li, Phase separation in thermal systems: A lattice Boltzmann study and morphological characterization, Phys. Rev. E 84(4), 046715 (2011)
CrossRef
ADS
Google scholar
|
[33] |
A. Xu, G. Zhang, Y. Gan, F. Chen, and X. Yu, Lattice Boltzmann modeling and simulation of compressible flows, Front. Phys. 7(5), 582 (2012)
CrossRef
ADS
Google scholar
|
[34] |
A. Xu, G. Zhang, and Y. Ying, Progess of discrete Boltzmann modeling and simulation of combustion system, Acta Physica Sinica 64, 184701 (2015)
|
[35] |
A. Xu, G. Zhang, and Y. Gan, Progress in studies on discrete Boltzmann modeling of phase separation process, Mech. Eng. 38, 361 (2016)
|
[36] |
A. Xu, G. Zhang, and Y. Zhang, Discrete Boltzmann modeling of compressible flows, in: G. Z. Kyzas and A.C. Mitropoulos (Eds.), Kinetic Theory, InTech, Rijeka, 2018, Ch. 02
CrossRef
ADS
Google scholar
|
[37] |
C. Lin and K. Luo, Discrete Boltzmann modeling of unsteady reactive flows with nonequilibrium effects, Phys. Rev. E 99(1), 012142 (2019)
CrossRef
ADS
Google scholar
|
[38] |
Y. Gan, A. Xu, G. Zhang, Y. Zhang, and S. Succi, Discrete Boltzmann trans-scale modeling of high-speed compressible flows, Phys. Rev. E 97(5), 053312 (2018)
CrossRef
ADS
Google scholar
|
[39] |
Y. Gan, A. Xu, G. Zhang, and S. Succi, Discrete Boltzmann modeling of multiphase flows: hydrodynamic and thermodynamic non-equilibrium effects, Soft Matter 11(26), 5336 (2015)
CrossRef
ADS
Google scholar
|
[40] |
Y. Zhang, A. Xu, G. Zhang, Y. Gan, Z. Chen, and S. Succi, Entropy production in thermal phase separation: A kinetic-theory approach, Soft Matter 15(10), 2245 (2019)
CrossRef
ADS
Google scholar
|
[41] |
B. Yan, A. Xu, G. Zhang, Y. Ying, and H. Li, Lattice Boltzmann model for combustion and detonation, Front. Phys. 8(1), 94 (2013)
CrossRef
ADS
Google scholar
|
[42] |
A. Xu, C. Lin, G. Zhang, and Y. Li, Multiple-relaxationtime lattice Boltzmann kinetic model for combustion, Phys. Rev. E 91(4), 043306 (2015)
CrossRef
ADS
Google scholar
|
[43] |
C. Lin, A. Xu, G. Zhang, and Y. Li, Double-distributionfunction discrete Boltzmann model for combustion, Combust. Flame 164, 137 (2016)
CrossRef
ADS
Google scholar
|
[44] |
Y. Zhang, A. Xu, G. Zhang, C. Zhu, and C. Lin, Kinetic modeling of detonation and effects of negative temperature coefficient, Combust. Flame 173, 483 (2016)
CrossRef
ADS
Google scholar
|
[45] |
C. Lin and K. Luo, MRT discrete Boltzmann method for compressible exothermic reactive flows, Comput. Fluids 166, 176 (2018)
CrossRef
ADS
Google scholar
|
[46] |
C. Lin, K. Luo, L. Fei, and S. Succi, A multi-component discrete Boltzmann model for nonequilibrium reactive flows, Sci. Rep. 7(1), 14580 (2017)
CrossRef
ADS
Google scholar
|
[47] |
A. Xu, G. Zhang, Y. Zhang, P. Wang, and Y. Ying, Discrete Boltzmann model for implosion and explosion related compressible ow with spherical symmetry, Front. Phys. 13(5), 135102 (2018)
CrossRef
ADS
Google scholar
|
[48] |
H. Lai, A. Xu, G. Zhang, Y. Gan, Y. Ying, and S. Succi, Non-equilibrium thermohydrodynamic effects on the Rayleigh-Taylor instability incompressible flow, Phys. Rev. E 94(2), 023106 (2016)
CrossRef
ADS
Google scholar
|
[49] |
F. Chen, A. Xu, and G. Zhang, Viscosity, heat conductivity, and Prandtl number effects in the Rayleigh Taylor instability, Front. Phys. 11(6), 114703 (2016)
CrossRef
ADS
Google scholar
|
[50] |
H. Ye, H. Lai, D. Li, Y. Gan, C. Lin, L. Chen, and A. Xu, Knudsen number effects on two-dimensional Rayleigh-Taylor instability in compressible fluid: Based on a discrete Boltzmann method, Entropy (Basel) 22(5), 500 (2020)
CrossRef
ADS
Google scholar
|
[51] |
Y. Gan, A. Xu, G. Zhang, C. Lin, H. Lai, and Z. Liu, Nonequilibrium and morphological characterizations of Kelvin–Helmholtz instability in compressible flows, Front. Phys. 14(4), 43602 (2019)
CrossRef
ADS
Google scholar
|
[52] |
C. Lin, A. Xu, G. Zhang, K. Luo, and Y. Li, Discrete Boltzmann modeling of Rayleigh–Taylor instability in twocomponent compressible flows, Phys. Rev. E 96(5), 053305 (2017)
CrossRef
ADS
Google scholar
|
[53] |
H. Liu, W. Kang, Q. Zhang, Y. Zhang, H. Duan, and X. He, Molecular dynamics simulations of microscopic structure of ultra strong shock waves in dense helium, Front. Phys. 11(6), 115206 (2016)
CrossRef
ADS
Google scholar
|
[54] |
H. Liu, Y. Zhang, W. Kang, P. Zhang, H. Duan, and X. He, Molecular dynamics simulation of strong shock waves propagating in dense deuterium, taking into consideration effects of excited electrons, Phys. Rev. E 95(2), 023201 (2017)
CrossRef
ADS
Google scholar
|
[55] |
H. Liu, W. Kang, H. Duan, P. Zhang, and X. He, Recent progresses on numerical investigations of microscopic structure of strong shock waves in fluid, Sci. China Phys. Mech. Astron. 47(7), 070003 (2017)
CrossRef
ADS
Google scholar
|
[56] |
J. Meng, Y. Zhang, N. Hadjiconstantinou, G. Radtke, and X. Shan, Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows, J. Fluid Mech. 718, 347 (2013)
CrossRef
ADS
Google scholar
|
[57] |
Y. Gan, A. Xu, G. Zhang, and S. Succi, Discrete Boltzmann modeling of multiphase flows: Hydrodynamic and thermodynamic non-equilibrium effects, Soft Matter 11(26), 5336 (2015)
CrossRef
ADS
Google scholar
|
[58] |
Q. Shen, Rarefied Gas Dynamics: Fundamentals, Simulations and Micro Flows, Springer, 2005
CrossRef
ADS
Google scholar
|
[59] |
S. Chapman, T. Cowling, and D. Burnett, The Mathematical Theory of Non-Uniform Gases: An Account of The Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases, Cambridge: Cambridge University Press, 1990
|
[60] |
Z. Guo and C. Zheng, Theory and Applications of Lattice Boltzmann Method, Beijing: Science Press, 2008
|
[61] |
V. Bongiorno and H. T. Davis, Modified van der Waals theory of fluid interfaces, Phys. Rev. A 12(5), 2213 (1975)
CrossRef
ADS
Google scholar
|
[62] |
H. Huang, M. Sukop, and X. Lu, Multiphase Lattice Boltzmann Methods: Theory and Application, John Wiley & Sons, Inc, 2015
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |