Resource reduction for simultaneous generation of two types of continuous variable nonclassical states

Long Tian, Shao-Ping Shi, Yu-Hang Tian, Ya-Jun Wang, Yao-Hui Zheng, Kun-Chi Peng

PDF(1777 KB)
PDF(1777 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (2) : 21502. DOI: 10.1007/s11467-020-1012-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Resource reduction for simultaneous generation of two types of continuous variable nonclassical states

Author information +
History +

Abstract

We demonstrate experimentally the simultaneous generation and detection of two types of continuous variable nonclassical states from one type-0 phase-matching optical parametric amplification (OPA) and subsequent two ring filter cavities (RFCs). The output field of the OPA includes the baseband ω0 and sideband modes ω0±fsubjects to the cavity resonance condition, which are separated by two cascaded RFCs. The first RFC resonates with half the pump wavelength ω0 and the transmitted baseband component is a squeezed state. The reflected fields of the first RFC, including the sideband modes ω0±ωf, are separated by the second RFC, construct Einstein–Podolsky–Rosen entangled state. All freedoms, including the filter cavities for sideband separation and relative phases for the measurements of these sidebands, are actively stabilized. The noise variance of squeezed states is 10.2 dB below the shot noise limit (SNL), the correlation variances of both quadrature amplitude-sum and quadrature phase-difference for the entanglement state are 10.0 dB below the corresponding SNL.

Keywords

squeezed states / entanglement states / continuous variable non-classical states

Cite this article

Download citation ▾
Long Tian, Shao-Ping Shi, Yu-Hang Tian, Ya-Jun Wang, Yao-Hui Zheng, Kun-Chi Peng. Resource reduction for simultaneous generation of two types of continuous variable nonclassical states. Front. Phys., 2021, 16(2): 21502 https://doi.org/10.1007/s11467-020-1012-2

References

[1]
S. L. Braunstein and P. van Loock, Quantum information with continuous variables, Rev. Mod. Phys. 77(2), 513 (2005)
CrossRef ADS Google scholar
[2]
S. Liu, Y. Lou, and J. Jing, Orbital angular momentum multiplexed deterministic all-optical quantum teleportation, Nat. Commun. 11(1), 3875 (2020)
CrossRef ADS Google scholar
[3]
S. Shi, L. Tian, Y. Wang, Y. Zheng, C. Xie, and K. Peng, Demonstration of channel multiplexing quantum communication exploiting entangled sideband modes, Phys. Rev. Lett. 125(7), 070502 (2020)
CrossRef ADS Google scholar
[4]
X. Y. Li, Q. Pan, J. T. Jing, J. Zhang, C. D. Xie, and K. C. Peng, Quantum dense coding exploiting a bright Einstein–Podolsky–Rosen beam, Phys. Rev. Lett. 88(4), 047904 (2002)
CrossRef ADS Google scholar
[5]
J. T. Jing, J. Zhang, Y. Yan, F. G. Zhao, C. D. Xie, and K. C. Peng, Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables, Phys. Rev. Lett. 90(16), 167903 (2003)
CrossRef ADS Google scholar
[6]
X. Pan, S. Yu, Y. Zhou, K. Zhang, K. Zhang, S. Lv, S. Li, W. Wang, and J. Jing, Orbital–angular-momentum multiplexed continuous-variable entanglement from fourwave mixing in hot atomic vapor, Phys. Rev. Lett. 123(7), 070506 (2019)
CrossRef ADS Google scholar
[7]
S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, and S. L. Braunstein, Advances in quantum teleportation, Nat. Photonics 9(10), 641 (2015)
CrossRef ADS Google scholar
[8]
R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam, Quantum metrology for gravitational wave astronomy, Nat. Commun. 1(1), 121 (2010)
CrossRef ADS Google scholar
[9]
F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, Quantum metrology with parametric amplifierbased photon correlation interferometers, Nat. Commun. 5(1), 3049 (2014)
CrossRef ADS Google scholar
[10]
K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, A quantum enhanced prototype gravitational-wave detector, Nat. Phys. 4(6), 472 (2008)
CrossRef ADS Google scholar
[11]
H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, First long-term application of squeezed states of light in a gravitational-wave observatory, Phys. Rev. Lett. 110(18), 181101 (2013)
CrossRef ADS Google scholar
[12]
T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection, Phys. Rev. Lett. 104(25), 251102 (2010)
CrossRef ADS Google scholar
[13]
A. Thüring, R. Schnabel, H. Lück, and K. Danzmann, Detuned twin-signal-recycling for ultrahigh-precision interferometers, Opt. Lett. 32(8), 985 (2007)
CrossRef ADS Google scholar
[14]
Q. Zhuang, Z. Zhang, and J. H. Shapiro, Distributed quantum sensing using continuous-variable multipartite entanglement, Phys. Rev. A 97(3), 032329 (2018)
CrossRef ADS Google scholar
[15]
S. Liu, Y. Lou, and J. Jing, Interference-induced quantum squeezing enhancement in a two-beam phase-sensitive amplifier, Phys. Rev. Lett. 123(11), 113602 (2019)
CrossRef ADS Google scholar
[16]
C. Xu, L. Zhang, S. Huang, T. Ma, F. Liu, H. Yonezawa, Y. Zhang, and M. Xiao, Sensing and tracking enhanced by quantum squeezing, Photon. Res. 7(6), A14 (2019)
CrossRef ADS Google scholar
[17]
R. Raussendorf and H. J. Briegel, A one-way quantum computer, Phys. Rev. Lett. 86(22), 5188 (2001)
CrossRef ADS Google scholar
[18]
M. V. Larsen, X. S. Guo, C. R. Breum, J. S. Neergaard-Nielsen, and U. L. Andersen, Deterministic generation of a two-dimensional cluster state, Science 366(6463), 369 (2019)
CrossRef ADS Google scholar
[19]
W. Asavanant, Y. Shiozawa, S. Yokoyama, B. Charoensombutamon, H. Emura, R. N. Alexander, S. Takeda, J. Yoshikawa, N. C. Menicucci, H. Yonezawa, and A. Furusawa, Generation of time-domain-multiplexed twodimensional cluster state, Science 366(6463), 373 (2019)
CrossRef ADS Google scholar
[20]
Z. Y. Ou, S. F. Pereira, and H. J. Kimble, Quantum noise reduction in optical amplification, Phys. Rev. Lett. 70(21), 3239 (1993)
CrossRef ADS Google scholar
[21]
S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, 7 dB quadrature squeezing at 860 nm with periodically poled KTiOPO4, Appl. Phys. Lett. 89(6), 061116 (2006)
CrossRef ADS Google scholar
[22]
Y. Takeno, M. Yukawa, H. Yonezawa, and A. Furusawa, Observation of −9 dB quadrature squeezing with improvement of phase stability in homodyne measurement, Opt. Express 15(7), 4321 (2007)
CrossRef ADS Google scholar
[23]
H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Goßler, K. Danzmann, and R. Schnabel, Observation of squeezed light with 10 dB quantum noise reduction, Phys. Rev. Lett. 100(3), 033602 (2008)
CrossRef ADS Google scholar
[24]
M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB, Opt. Express 19(25), 25763 (2011)
CrossRef ADS Google scholar
[25]
A. Schönbeck, F. Thies, and R. Schnabel, 13 dB squeezed vacuum states at 1550 nm from 12 mW external pump power at 775 nm, Opt. Lett. 43(1), 110 (2018)
CrossRef ADS Google scholar
[26]
K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, Squeezing in the audio gravitational-wave detection band, Phys. Rev. Lett. 93(16), 161105 (2004)
CrossRef ADS Google scholar
[27]
T. Eberle, V. Händchen, and R. Schnabel, Stable control of 10 dB two-mode squeezed vacuum states of light, Opt. Express 21(9), 11546 (2013)
CrossRef ADS Google scholar
[28]
W. H. Zhang, J. R. Wang, Y. H. Zheng, Y. J. Wang, and K. C. Peng, Optimization of the squeezing factor by temperature-dependent phase shift compensation in a doubly resonant optical parametric oscillator, Appl. Phys. Lett. 115(17), 171103 (2019)
CrossRef ADS Google scholar
[29]
W. H. Yang, S. P. Shi, Y. J. Wang, W. G. Ma, Y. H. Zheng, and K. C. Peng, Detection of stably bright squeezed light with the quantum noise reduction of 12.6 dB by mutually compensating the phase fluctuations, Opt. Lett. 42(21), 4553 (2017)
CrossRef ADS Google scholar
[30]
X. C. Sun, Y. J. Wang, L. Tian, Y. H. Zheng, and K. C. Peng, Detection of 13.8 dB squeezed vacuum states by optimizing the interference efficiency and gain of balanced homodyne detection, Chin. Opt. Lett. 17(7), 072701 (2019)
CrossRef ADS Google scholar
[31]
C. Cai, L. Ma, J. Li, H. Guo, K. Liu, H. X. Sun, R. G. Yang, and J. R. Gao, Generation of a continuous-variable quadripartite cluster state multiplexed in the spatial domain, Photon. Res. 6(5), 479 (2018)
CrossRef ADS Google scholar
[32]
H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency, Phys. Rev. Lett. 117(11), 110801 (2016)
CrossRef ADS Google scholar
[33]
D. F. Walls, Squeezed states of light, Nature 306(5939), 141 (1983)
CrossRef ADS Google scholar
[34]
J. Roslund, R. M. de Araújo, S. Jiang, C. Fabre, and N. Treps, Wavelength-multiplexed quantum networks with ultrafast frequency combs, Nat. Photonics 8(2), 109 (2014)
CrossRef ADS Google scholar
[35]
E. H. Huntington, G. N. Milford, C. Robilliard, T. C. Ralph, O. Gl�ckl, U. L. Andersen, S. Lorenz, and G. Leuchs, Demonstration of the spatial separation of the entangled quantum sidebands of an optical field, Phys. Rev. A 71(4), 041802(R) (2005)
CrossRef ADS Google scholar
[36]
B. Hage, A. Samblowski, and R. Schnabel, Towards Einstein-Podolsky-Rosen quantum channel multiplexing, Phys. Rev. A 81(6), 062301 (2010)
CrossRef ADS Google scholar
[37]
C. Schori, J. L. Sorensen, and E. S. Polzik, Narrow-band frequency tunable light source of continuous quadrature entanglement, Phys. Rev. A 66(3), 033802 (2002)
CrossRef ADS Google scholar
[38]
Y. Ma, H. Miao, B. H. Pang, M. Evans, C. Zhao, J. Harms, R. Schnabel, and Y. Chen, Proposal for gravitational-wave detection beyond the standard quantum limit through EPR entanglement, Nat. Phys. 13(8), 776 (2017)
CrossRef ADS Google scholar
[39]
M. J. Yap, P. Altin, T. G. McRae, B. J. J. Slagmolen, R. L. Ward, and D. E. McClelland, Generation and control of frequency-dependent squeezing via Einstein–Podolsky– Rosen entanglement, Nat. Photonics 14(4), 223 (2020)
CrossRef ADS Google scholar
[40]
J. Südbeck, S. Steinlechner, M. Korobko, and R. Schnabel, Demonstration of interferometer enhancement through Einstein-Podolsky-Rosen entanglement, Nat. Photonics 14(4), 240 (2020)
CrossRef ADS Google scholar
[41]
S. P. Shi, Y. J. Wang, L. Tian, J. R. Wang, X. C. Sun, and Y. H. Zheng, Observation of a comb of squeezed states with a strong squeezing factor by a bichromatic local oscillator, Opt. Lett. 45(8), 2419 (2020)
CrossRef ADS Google scholar
[42]
H. J. Lee, H. Kim, M. Cha, and H. S. Moon, Simultaneous type-0 and type-II spontaneous parametric downconversions in a single periodically poled KTiOPO4 crystal, Appl. Phys. B 108(3), 585 (2012)
CrossRef ADS Google scholar
[43]
M. Pysher, A. Bahabad, P. Peng, A. Arie, and O. Pfister, Quasi-phase-matched concurrent nonlinearities in periodically poled KTiOPO4 for quantum computing over the optical frequency comb, Opt. Lett. 35(4), 565 (2010)
CrossRef ADS Google scholar
[44]
M. R. Huo, J. L. Qin, Z. H. Yan, X. J. Jia, and K. C. Peng, Generation of two types of nonclassical optical states using an optical parametric oscillator with a PPKTP crystal, Appl. Phys. Lett. 109(22), 221101 (2016)
CrossRef ADS Google scholar
[45]
S. P. Shi, Y. J. Wang, W. H. Yang, Y. H. Zheng, and K. C. Peng, Detection and perfect fitting of 13.2 dB squeezed vacuum states by considering green-light-induced-infrared absorption, Opt. Lett. 43(21), 5411 (2018)
CrossRef ADS Google scholar
[46]
X. C. Sun, Y. J. Wang, L. Tian, S. P. Shi, Y. H. Zheng, and K. C. Peng, Dependence of the squeezing and antisqueezing factors of bright squeezed light on the seed beam power and pump beam noise, Opt. Lett. 44(7), 1789 (2019)
CrossRef ADS Google scholar
[47]
L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Inseparability criterion for continuous variable systems, Phys. Rev. Lett. 84(12), 2722 (2000)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(1777 KB)

Accesses

Citations

Detail

Sections
Recommended

/